Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation
Abstract
:1. Introduction
2. Result and Discussion
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Experimental Procedures
3.2.1. Synthesis of 5-(3-(Trifluoromethyl)pyridin-2-yl)-2-methylpyridine (4)
3.2.2. Synthesis of 3-(Trifluoromethyl)-2,3‘-bipyridin-6′-carboxylic acid (5) by Route 1
3.2.3. Synthesis of 3-(Trifluoromethyl)-2,3‘-bipyridin-6′-carbaldehyde (6) by Route 2
3.2.4. Synthesis of 6-Bromo-2-(3-(trifluoro)-2,3′-bipyridin-6-yl)-1H-benzo[d]imidazole (1) by Route 1
3.2.5. Synthesis of 6-Bromo-2-(3-(trifluoro)-2,3′-bipyridin-6-yl)-1H-benzo[d]imidazole (1) by Route 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
TPPO | triphenylphosphine oxide |
BBD | 4-bromobenzene-1,2-diamine |
HBTU | O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate |
BBD | 4-Bromobenzene-1,2-diamine |
BQ | 1,4-Benzoquinone |
DIPEA | N,N-diisopropylethylamine |
DMF | N,N-dimethylformamide |
EtOAc | ethyl acetate |
IPA | isopropanol |
CAN | acetonitrile |
IPE | isopropyl ether |
References
- Goa, K.L.; Sorkin, E.M.; Gabapentin, A. Review of its Pharmacological Properties and Clinical Potential in Epilepsy. Drugs 1993, 46, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; Franklin, G.M.; Backonja, M.; Cohen, J.J.; Toro, D.D.; Feldman, E.; Iverson, D.J.; Perkins, B.; Russell, J.W.; Zochodne, D. Evidence-based guideline: Treatment of painful diabetic neuropathy. Neurology 2011, 76, 1758–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schifano, F. Misuse and Abuse of Pregabalin and Gabapentin: Cause for Concern? CNS Drugs 2014, 28, 491–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The Capsaicin Receptor: A Heat-Activated Ion Channel in the Pain Pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Mezey, É.; Toth, Z.E.; Cortright, D.N.; Arzubi, M.K.; Krause, J.E.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA 2000, 97, 3655–3660. [Google Scholar] [CrossRef]
- Premkumar, L.S.; Ahern, G.P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000, 408, 985–990. [Google Scholar] [CrossRef]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor. Science 2000, 288, 306–313. [Google Scholar] [CrossRef]
- Nozawa, Y.; Nishihara, K.; Yamamoto, A.; Nakano, M.; Ajioka, H.; Matsuura, N. Distribution and characterization of vanilloid receptors in the rat stomach. Neurosci. Lett. 2001, 309, 33–36. [Google Scholar] [CrossRef]
- Yiangou, Y.; Facer, P.; Dyer, N.H.C.; Chan, C.L.H.; Knowles, C.; Williams, N.S.; Anand, P. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 2001, 357, 1338–1339. [Google Scholar] [CrossRef]
- Birder, L.A.; Kanai, A.J.; de Groat, W.C.; Kiss, S.; Nealen, M.L.; Burke, N.E.; Dineley, K.E.; Watkins, S.; Reynolds, I.J.; Caterina, M.J. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA 2001, 98, 13396–13401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szallasi, A.; Appendino, G. Vanilloid Receptor TRPV1 Antagonists as the Next Generation of Painkillers. Are We Putting the Cart before the Horse? J. Med. Chem. 2004, 47, 2717–2723. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.D.; Yoon, H.C.; Kim, I.W.; Hyun, H.J. Novel Benzimidazole Derivatives and Pharmaceutical Composition Comprising the Same. KR. Patent 10/1,099,303, 27 January 2006. [Google Scholar]
- Slagt, V.F.; de Vries, A.H.M.; de Vries, J.G.; Kellogg, R.M. Practical Aspects of Carbon-Carbon Cross-Coupling Reactions Using Heteroarenes. Org. Process Res. Dev. 2010, 14, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Nelson, D.P.; Jensen, M.S.; Hoerrner, R.S.; Cai, D.; Larsen, R.D. Synthesis of 3-Pyridylboronic acid and its Pinacol Ester. Application of 3-Pyridylboronic acid in SUZUKI Coupling to Prepare 3-Pyridin-3-ylquinoline. Org. Synth. 2009, 11, 393-398–398. [Google Scholar]
- Zheng, X.; Hodgetts, K.J.; Brielmann, H.; Hutchison, A.; Burkamp, F.; Jones, A.B.; Blurton, B.; Clarkson, R.; Chandrasekhar, J.; Bakthavatchalam, R.; et al. From arylureas to biarylamides to aminoquinazolines: Discovery of a novel, potent TRPV1 antagonist. Bioorganic Med. Chem. Lett. 2006, 16, 5217–5221. [Google Scholar] [CrossRef] [PubMed]
- Bakthavatchalam, R.; Blum, C.A.; Brielmann, H.; Darrow, J.W.; De Lombaert, S.; Yoon, T.Y.; Zheng, X. Substituted Biphenyl-4-carboxylic acid Arylamide Analogues. U.S. Patent 10/539,860, 19 December 2003. [Google Scholar]
- Bakthavatchalam, R.; Caldwell, T.M.; Chenard, B.L.; De Lombaert, S.; Hodgetts, K.J. Substituted Quinolin-4-ylamine Analogues. U.S. Patent 7,488,740, 14 July 2004. [Google Scholar]
- Singer, A.W.; McElvain, S.M. Picolinic acid Hydrochloride. Org. Synth. 1940, 20, 79–80. [Google Scholar]
- Mukhopadhyay, S.; Chandalia, S.B. Kinetics of the Highly Selective Liquid-Phase Oxidation of Side Chain Alkyl Groups in 2-Methylpyrazine and Picolines by Selenium Dioxide. Org. Process Res. Dev. 1999, 3, 455–459. [Google Scholar] [CrossRef]
- Artamkina, G.A.; Grinfel’d, A.A.; Beletskaya, I.P. Air Oxidation of in situ Obtained Carbanions in KOH-DME-CROWN System. Tetrahedron Lett. 1984, 25, 4989–4992. [Google Scholar] [CrossRef]
- Achremowicz, L. A New Approach to the Oxiation of Methylquinolines with Selenium Dioxide. Synth. Commun. 1996, 26, 1681–1684. [Google Scholar] [CrossRef]
- Shrader, W.D.; Kolesnikov, A.; Burgess-Henry, J.; Rai, R.; Hendrix, J.; Hu, H.; Torkelson, S.; Ton, T.; Young, W.B.; Katz, B.A.; et al. Factor VIIa inhibitors: Gaining Selectivity within the Trypsin Family. Bioorg. Med. Chem. Lett. 2006, 16, 1596–1600. [Google Scholar] [CrossRef]
- Hranjec, M.; Grdiša, M.; Pavelic, K.; Boykin, D.W.; Karminski-Zamola, G. Synthesis and Antitumor Evaluation of Some new Substituted Amidino-benzimidazolyl-furyl-phenyl-acrylates and Naphtho[2,1-b]furan-carboxylates. IL Farmaco 2003, 58, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Eynde, J.J.V.; Delfosse, F.; Lor, P.; Haverbeke, Y.V. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone, a Mild Catalyst for the Formation of Carbon-Nitrogen Bonds. Tetrahedron 1995, 51, 5813–5818. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.D.; Yoon, H.C.; Kim, I.W.; Yoon, H.K.; Lee, B.G.; Lim, Y.M.; Choi, S.J. Novel Method of Preparing Benzoimidazole Derivatives. KR. Patent 1,320,752, 28 September 2011. [Google Scholar]
- Gary, B.; Ernest, J.M.; Renato, S.; Dominique, S. CXCR4 Chemokine Receptor Binding Compounds. U.S. Patent 7,291,631, 21 October 2004. [Google Scholar]
- Heirtzle, F.R.; Neuburger, M.; Zehnder, M.; Constable, E.C. Preparation and Characterization of Oligo-(2,2′-bipyridyl)pyrazines. Liebigs Ann. 1997, 2, 297–301. [Google Scholar] [CrossRef]
- Jones, R.M.; Lehmann, J.; Wong, A.S.; Hurst, D.; Young-Jun Shin, Y.J. Substituted Pyridinyl and Pyrimidinyl Derivatives as Modulators of Metabolism and Treatment of Disorders Related Thereto. U.S. Patent 2006/0155128, 13 July 2006. [Google Scholar]
- Frank, R.; Bahrenberg, G.; Christoph, T.; Lesch, B. Substituted Heteroaromatic Pyrazole-Containing Carboxamide and Urea Derivatives as Vanilloid Receptor Ligands. U.S. Patent 13/557,941, 25 July 2012. [Google Scholar]
- Habibi, M.; Bayat, Y.; Marandi, R.; Mehrdadsharif, A.A.; Salahi, S. One-pot Synthesis of 4H-Pyran-4-one Carboxaldehyde Derivatives by Using Selenium Dioxide as a Reusable Oxidant. Asian J. Chem. 2012, 24, 5239–5241. [Google Scholar]
- Trump, E.L.; Zhou, M.X. The Use of Selenium(IV) Oxide to Oxidize Aromatic Methyl Group. Trans. Kans. Acad. Sci. 1993, 96, 167–180. [Google Scholar] [CrossRef]
Entry | Reagents | Equivalent | Solvent | Amount of Solvent (V b) | Time (h) | Yield (%) |
---|---|---|---|---|---|---|
1 | KMnO4 | 8 | water | 10 | 10 | 26 |
2 | KMnO4 | 3.0 | pyridine | 4 | 4 | 48 |
3 | SeO2 | 1.6 | pyridine | 4 | 4 | 76 |
4 | SeO2 | 3.0 | pyridine | 4 | 3 | 90 |
Entry | Solvent | Amount of Solvent (V b) | Temperature (°C) | Time (h) | Yield (%) |
---|---|---|---|---|---|
1 | 1,4-Dioxane | 10 | 15 | 12 | 51 |
2 | 1,4-Dioxane | 10 | 25 | 5 | 65 |
3 | 1,4-Dioxane | 20 | 25 | 5 | 58 |
4 | THF | 10 | 15 | 12 | 52 |
5 | THF | 10 | 25 | 6 | 61 |
Entry | Solvent (10 V b) | Yield (%) | Entry | Solvent (10 V b) | Yield (%) |
---|---|---|---|---|---|
1 | 1,4-Dioxane | 60 | 6 | Ethanol | 28 |
2 | Xylene | 20 | 7 | Ethyl acetate | 35 |
3 | Toluene | 23 | 8 | Dichloroethane | 22 |
4 | Pyridine | 18 | 9 | Acetonitrile | 26 |
5 | THF | 50 | 10 | DMF c | 35 |
Entry | 1,4-Dioxane (V b) | SeO2 (eq) | Acid Catalysts | Yield (%) |
---|---|---|---|---|
1 | 5 | 1.1 | - | 10< |
2 | 5 | 1.4 | - | 22 |
3 | 5 | 2.0 | - | 10< |
4 | 10 | 2.0 | - | 36 |
5 | 10 | 3.0 | - | 60 |
6 | 10 | 4.0 | - | 39 |
7 | 10 | 3.0 | HNO3 | 69 |
8 | 10 | 3.0 | H2SO4 | 46 |
9 | 10 | 3.0 | AcOH | 10< |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, J.; Kim, H. Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation. Molecules 2023, 28, 836. https://doi.org/10.3390/molecules28020836
Lee J-H, Kim J, Kim H. Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation. Molecules. 2023; 28(2):836. https://doi.org/10.3390/molecules28020836
Chicago/Turabian StyleLee, Joon-Hwan, Jiduck Kim, and Hakwon Kim. 2023. "Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation" Molecules 28, no. 2: 836. https://doi.org/10.3390/molecules28020836
APA StyleLee, J. -H., Kim, J., & Kim, H. (2023). Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation. Molecules, 28(2), 836. https://doi.org/10.3390/molecules28020836