Computational Modeling of Gold Nanoparticle Interacting with Molecules of Pharmaceutical Interest in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Interation Energy ΔEint
2.2. The Hardness of the Aun Nanoparticles in the Metallic Sphere Approximation
2.3. The Model of the Interaction Energy in Water
2.4. The Model of Reaction Energy in Water
2.5. Biomolecules’ Hardness and Chemical Potential in Water Medium
2.6. Ligand Exchange Energies
2.7. Model for Small Radius of the AuNPs
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. [Google Scholar] [CrossRef] [PubMed]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Intern. J. Nanomed. 2020, 15, 9823–9857. [Google Scholar] [CrossRef] [PubMed]
- Alle, M.; Sharma, G.; Lee, S.H.; Kim, J.C. Next-generation engineered nanogold for multimodal cancer therapy and imaging: A clinical perspectives. J. Nanobiotechnol. 2022, 20, 222. [Google Scholar] [CrossRef]
- Li, W.; Cao, Z.; Liu, R.; Liu, L.; Li, H.; Li, X.; Chen, Y.; Lu, C.h.; Liu, Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4222–4233. [Google Scholar] [CrossRef]
- Chen, X.; Li, Q.W.; Wang, X.M. Precious Metals for Biomedical Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 163–176. [Google Scholar]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Xi, W.; Shrestha, B.K.; Haes, A.J. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal. Chem. 2018, 90, 128–143. [Google Scholar] [CrossRef]
- Leff, D.V.; Ohara, P.C.; Heath, J.R.; Gelbart, W.M. Thermodynamic Control of Gold Nanocrystal Size: Experiment and Theory. J. Phys. Chem. 1995, 99, 7036–7041. [Google Scholar] [CrossRef]
- Thambiliyagodage, C. Ligand exchange reactions and PEG stabilization of gold nanoparticles. Curr. Res. Green Sustain. Chem. 2022, 5, 100245. [Google Scholar] [CrossRef]
- Dinkel, R.; Braunschweig, B.; Peukert, W. Fast and Slow Ligand Exchange at the Surface of Colloidal Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 1673–1682. [Google Scholar] [CrossRef]
- Park, J.W.; Shumaker-Parry, J.S. Strong Resistance of Citrate Anions on Metal Nanoparticles to Desorption under Thiol Functionalization. ACS Nano 2015, 9, 1665–1682. [Google Scholar] [CrossRef] [PubMed]
- Loskutov, A.I.; Uryupina, O.Y.; Vysotskii, V.V.; Roldughin, V.I. Surface Faceting of Gold Nanoparticles and Adsorption of Organic Macromolecules. Colloid J. 2009, 71, 668–671. [Google Scholar] [CrossRef]
- Spinke, J.; Liley, M.; Guder, H.; Angermaier, L.; Knoll, W. Molecular Recognition at Self-Assembled Monolayers: The Construction of Multicomponent Multilayers. Langmuir 1993, 9, 1821–1825. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Łaszcz, M.; Leś, A.; Kubiszewski, M.; Kuziak, K.; Sidoryk, K.; Stolarczyk, K. Design and Molecular Modeling of Abiraterone-Functionalized Gold Nanoparticles. Nanomaterials 2018, 8, 641. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Leś, A.; Łaszcz, M.; Kubiszewski, M.; Strzempek, W.; Menaszek, E.; Fusaro, M.; Sidoryk, K.; Stolarczyk, K. The ligand exchange of citrates to thioabiraterone on gold nanoparticles for prostate cancer therapy. Int. J. Pharm. 2020, 583, 119319. [Google Scholar] [CrossRef] [PubMed]
- Sidoryk, K.; Michalak, O.; Kubiszewski, M.; Leś, A.; Cybulski, M.; Stolarczyk, E.U.; Doubsky, J. Synthesis of Thiol Derivatives of Biological Active Compounds for Nanotechnology Application. Molecules 2020, 25, 3470. [Google Scholar] [CrossRef]
- Stolarczyk, E.U.; Sidoryk, K.; Cybulski, M.; Kubiszewski, M.; Stolarczyk, K. Design of Therapeutic Self-Assembled Monolayers of Thiolated Abiraterone. Nanomaterials 2018, 8, 1018. [Google Scholar] [CrossRef] [PubMed]
- Gazquez, J.L.; Mendez, F. The Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint. J. Phys. Chem. 1994, 98, 4591–4593. [Google Scholar] [CrossRef]
- Gazquez, J.L.; Mendez, F. Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint. J. Am. Chem. Soc. 1994, 116, 9298–9301. [Google Scholar]
- Dubois, L.H.; Zegarski, B.R.; Nuzzo, R.G. Fundamental studies of the interactions of adsorbates on organic surfaces. Proc. Nat. Acad. Sci. USA 1987, 84, 4739–4742. [Google Scholar] [CrossRef]
- Parkanyi, C. Theoretical Organic Chemistry (Theoretical and Computational Chemistry); Elsevier: New York, NY, USA, 1998; Volume 5. [Google Scholar]
- Dinkel, R.; Peukert, W.; Braunschweig, B. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles. J. Phys. Condens. Matter 2017, 29, 133002. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, R.G.; Zegarski, B.R.; Dubois, L.H. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc. 1987, 109, 733–740. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Zhou, Z.; Steigerwald, M.; Hybertsen, M.; Brus, L.; Freisner, R. Electronic Structure of Tubular Aromatic Molecules Derived from the Metallic (5,5) Armchair Single Wall Carbon Nanotube. J. Am. Chem. Soc. 2004, 126, 3597–3607. [Google Scholar] [CrossRef] [PubMed]
- Kohn, W.; Becke, A.D.; Parr, R.G. Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100, 12974–12980. [Google Scholar] [CrossRef]
- Al-Johani, H.; Hamad, E.A.; Jedidi, A.; Widdifield, C.M.; Viger-Gravel, J.; Sangaru, S.S.; Gajan, D.; Anjum, D.H.; Ould-Chikh, S.; Hedhili, M.N.; et al. The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nat. Chem. 2017, 9, 890–895. [Google Scholar] [CrossRef]
- Wei, H.; Leng, W.; Song, J.; Liu, C.h.; Willner, M.R.; Huang, Q.; Zhou, W.; Vikesland, P.J. Real-Time Monitoring of Ligand Exchange Kinetics on Gold Nanoparticle Surfaces Enabled by Hot Spot-Normalized Surface- Enhanced Raman Scattering. Environ. Sci. Technol. 2019, 53, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Kassam, A.; Bremner, G.; Clark, B.; Ulibarri, G.; Lennox, R.B. Place Exchange Reactions of Alkyl Thiols on Gold Nanoparticles. J. Am. Chem. Soc. 2006, 128, 3476–3477. [Google Scholar] [CrossRef]
- Hostetler, M.J.; Templeton, A.C.; Murray, R.W. Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langmuir 1999, 15, 3782–3789. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
Ligand (1) A | eV | eV |
---|---|---|
octanethiol | −1.92 | 5.42 |
butanethiol | −1.91 | 5.43 |
12-mercaptododecanoic acid methylester | −2.20 | 4.86 |
ethanethiol | −1.91 | 5.47 |
methanethiol | −1.96 | 5.42 |
citrate(COO−)3 | −1.56 | 6.95 |
ethanethiogenistein | −3.32 | 2.83 |
thioabiraterone | −3.10 | 3.57 |
thiogenistein | −3.41 | 3.03 |
acetate | −2.32 | 6.79 |
citrate(COO−)2 (-H-) | −2.66 | 6.00 |
citrate(COO−)2 (--H) | −2.55 | 6.55 |
citrate(COO−)1 (-HH) | −3.19 | 6.03 |
citrate(COO−)1 (H–H) | −3.25 | 6.50 |
ΔE (r) (1) | |||
---|---|---|---|
Ligand (2) | Upper Limit | Closest Au–Au Distance | Comparison with DFT Calculations (3) |
r = ∞ | r = 2.88, in Å | ||
octanethiol | −31.6 | −37.1 | |
butanethiol | −31.5 | −37.2 | |
ethanethiol | −31.4 | −37.1 | |
methanethiol | −30.9 | −36.6 | |
12-mercaptododecanoic acid methylester | −30.2 | −35.3 | |
citrate COO3− | −29.4 | −36.8 | |
thioethanegenistein | −24.4 | −26.9 | −32.4 a; −10.1 b |
thioabiraterone | −23.0 | −27.6 | −46 c |
thiogenistein (TGE) | −21.2 | −25.1 | −9.3 b |
acetate | −20.2 | −28.8 | −19.4 to −17.1 c,d |
citrate COO2− (-H-) | −18.5 | −27.0 | |
citrate COO2− (--H) | −18.3 | −27.1 | |
citrate COO1− (-HH) | −12.8 | −22.1 | |
citrate COO1− (H–H) | −11.3 | −21.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusaro, M.; Leś, A.; Stolarczyk, E.U.; Stolarczyk, K. Computational Modeling of Gold Nanoparticle Interacting with Molecules of Pharmaceutical Interest in Water. Molecules 2023, 28, 7167. https://doi.org/10.3390/molecules28207167
Fusaro M, Leś A, Stolarczyk EU, Stolarczyk K. Computational Modeling of Gold Nanoparticle Interacting with Molecules of Pharmaceutical Interest in Water. Molecules. 2023; 28(20):7167. https://doi.org/10.3390/molecules28207167
Chicago/Turabian StyleFusaro, Massimo, Andrzej Leś, Elżbieta U. Stolarczyk, and Krzysztof Stolarczyk. 2023. "Computational Modeling of Gold Nanoparticle Interacting with Molecules of Pharmaceutical Interest in Water" Molecules 28, no. 20: 7167. https://doi.org/10.3390/molecules28207167
APA StyleFusaro, M., Leś, A., Stolarczyk, E. U., & Stolarczyk, K. (2023). Computational Modeling of Gold Nanoparticle Interacting with Molecules of Pharmaceutical Interest in Water. Molecules, 28(20), 7167. https://doi.org/10.3390/molecules28207167