Enantiomeric Complexes Based on Ruthenium(III) and 2,2′-Biimidazole: X-ray Structure and Magnetic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of the Complexes
2.2. Description of the Crystal Structures
2.3. Hirshfeld Surface Analysis
2.4. Magnetic Properties
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Complexes
3.2.1. Synthesis of Compound 1
3.2.2. Synthesis of Compound 2
3.3. X-ray Data Collection and Structure Refinement
3.4. Physical Measurements
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgins, S. Regarding ruthenium. Nat. Chem. 2010, 2, 1100. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, S.P.; Gründler, K.; Frias, C.; Wagner, L.; Prokop, A.; Meggers, E. Discovery of a strongly apoptotic ruthenium complex through combinatorial coordination chemistry. Dalton Trans. 2010, 39, 8177–8182. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Tamaki, Y.; Yui, T.; Koike, K.; Ishitani, O. New Light-Harvesting Molecular Systems Constructed with a Ru(II) Complex and a Linear-Shaped Re(I) Oligomer. J. Am. Chem. Soc. 2010, 132, 11743–11752. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 2012, 4, 418–423. [Google Scholar] [CrossRef]
- Bruneau, C.; Achard, M. Allylic ruthenium(IV) complexes in catalysis. Coord. Chem. Rev. 2012, 256, 525–536. [Google Scholar] [CrossRef]
- Adhireksan, Z.; Davey, G.E.; Campomanes, P.; Groessl, M.; Clavel, C.M.; Yu, H.; Nazarov, A.A.; Yeo, C.H.F.; Ang, W.H.; Dröge, P.; et al. Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity. Nat. Commun. 2014, 5, 346. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Collins, J.G.; Keene, F.R. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev. 2015, 44, 2529–2542. [Google Scholar] [CrossRef]
- Mari, C.; Pierroz, V.; Ferrari, S.; Gasser, G. Combination of Ru(II) complexes and light: New frontiers in cancer therapy. Chem. Sci. 2015, 6, 2660–2686. [Google Scholar] [CrossRef]
- Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z.-S. The development of anticancer ruthenium(II) complexes: From single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017, 46, 5771–5804. [Google Scholar] [CrossRef]
- Nathan, S.R.; Pino, N.W.; Arduino, D.M.; Perocchi, F.; MacMillan, S.N.; Wilson, J.J. Synthetic Methods for the Preparation of a Functional Analogue of Ru360, a Potent Inhibitor of Mitochondrial Calcium Uptake. Inorg. Chem. 2017, 56, 3123–3126. [Google Scholar] [CrossRef]
- Simović, A.R.; Masnikosa, R.; Bratsos, I.; Alessio, E. Chemistry and reactivity of ruthenium(II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coord. Chem. Rev. 2019, 398, 113011. [Google Scholar] [CrossRef]
- Orts-Arroyo, M.; Castro, I.; Lloret, F.; Martínez-Lillo, J. Molecular Self-Assembly in a Family of Oxo-Bridged Dinuclear Ruthenium(IV) Systems. Cryst. Growth Des. 2020, 20, 2044–2056. [Google Scholar] [CrossRef]
- Hafeez, J.; Bilal, M.; Rasool, N.; Hafeez, U.; Shah, S.A.A.; Imran, S.; Zakaria, Z.A. Synthesis of ruthenium complexes and their catalytic applications: A review. Arab. J. Chem. 2022, 15, 104165. [Google Scholar] [CrossRef]
- Lentz, F.; Drescher, A.; Lindauer, A.; Henke, M.; Hilger, R.A.; Hartinger, C.G.; Scheulen, M.E.; Dittrich, C.; Keppler, B.K.; Jaehde, U. Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anticancer Drugs. 2009, 20, 97–103. [Google Scholar] [CrossRef]
- Riccardi, C.; Musumeci, D.; Trifuoggi, M.; Irace, C.; Paduano, L.; Montesarchio, D. Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals 2019, 12, 146. [Google Scholar] [CrossRef]
- Alessio, E.; Messori, L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995. [Google Scholar] [CrossRef] [PubMed]
- Shutkov, I.A.; Okulova, Y.N.; Tyurin, V.Y.; Sokolova, E.V.; Babkov, D.A.; Spasov, A.A.; Gracheva, Y.A.; Schmidt, C.; Kirsanov, K.I.; Shtil, A.A. Ru(III) Complexes with Lonidamine-Modified Ligands. Int. J. Mol. Sci. 2021, 22, 13468. [Google Scholar] [CrossRef]
- Monro, S.; Colon, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119, 797–828. [Google Scholar] [CrossRef] [PubMed]
- Sumrra, S.H.; Zafar, W.; Javed, H.; Zafar, M.; Hussain, M.Z.; Imran, M.; Nadeem, M.A. Facile synthesis, spectroscopic evaluation and antimicrobial screening of metal endowed triazole compounds. Biometals 2021, 34, 1329–1351. [Google Scholar] [CrossRef]
- Hanif, M.; Chohan, Z.H. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 104, 468–476. [Google Scholar] [CrossRef]
- Noreen, S.; Sumrra, S.H. Aminothiazole-Linked Metal Chelates: Synthesis, Density Functional Theory, and Antimicrobial Studies with Antioxidant Correlations. ACS Omega 2021, 48, 33085–33099. [Google Scholar] [CrossRef]
- Orts-Arroyo, M.; Moliner, N.; Lloret, F.; Martínez-Lillo, J. Ferromagnetic Coupling and Single-Ion Magnet Phenomenon in Mononuclear Ruthenium(III) Complexes Based on Guanine Nucleobase. Magnetochemistry 2022, 8, 93. [Google Scholar] [CrossRef]
- Wu, S.-Q.; Miyazaki, Y.; Nakano, M.; Su, S.-Q.; Yao, Z.S.; Kou, H.-Z.; Sato, O. Slow Magnetic Relaxation in a Mononuclear Ruthenium(III) Complex. Chem. Eur. J. 2017, 23, 10028–10033. [Google Scholar] [CrossRef]
- Armentano, D.; Martínez-Lillo, J. Hexachlororhenate(IV) salts of ruthenium(III) cations: X-ray structure and magnetic properties. Inorg. Chim. Acta 2012, 380, 118–124. [Google Scholar] [CrossRef]
- Majumdar, P.; Kamar, K.K.; Castiñeiras, A.; Goswami, S. Unusual binding mode of the biimidazolate bridging ligand in two novel heteropolynuclear complexes with an M2Ag2 [M = Ru(II) or Os(II)] core. Chem. Commun. 2001, 1292–1293. [Google Scholar] [CrossRef]
- Kamar, K.K.; Falvello, L.R.; Fanwick, P.E.; Kim, J.; Goswami, S. Designed synthesis of a multimetallic system having Ru4Cu2 core using trimetallic coordination of 2,2′-biimidazolate ion. Dalton Trans. 2004, 1827–1831. [Google Scholar] [CrossRef]
- Martínez-Lillo, J.; Armentano, D.; De Munno, G.; Marino, N.; Lloret, F.; Julve, M.; Faus, J. A self-assembled tetrameric water cluster stabilized by the hexachlororhenate(IV) anion and diprotonated 2,2′-biimidazole: X-ray structure and magnetic properties. CrystEngComm 2008, 10, 1284–1287. [Google Scholar] [CrossRef]
- Yang, L.-F.; Cao, M.-L.; Mo, H.-J.; Hao, H.-G.; Wu, J.-J.; Zhang, J.-P.; Ye, B.-H. pH-Dependent formation of (6,3) and (10,3) hydrogen-bonded networks based on [Ru(H2biim)3]SO4: Polymorphs and topological isomers. CrystEngComm 2009, 11, 1114–1121. [Google Scholar] [CrossRef]
- Martínez-Lillo, J.; Pedersen, A.H.; Faus, J.; Julve, M.; Brechin, E.K. Effect of Protonated Organic Cations and Anion−π Interactions on the Magnetic Behavior of Hexabromorhenate(IV) Salts. Cryst. Growth Des. 2015, 15, 2598–2601. [Google Scholar] [CrossRef]
- Pedersen, A.H.; Julve, M.; Brechin, E.K.; Martínez-Lillo, J. Self-assembly of the tetrachlorido(oxalato)rhenate(IV) anion with protonated organic cations: X-ray structures and magnetic properties. CrystEngComm 2017, 19, 503–510. [Google Scholar] [CrossRef]
- Majumdar, P.; Peng, S.-M.; Goswami, S. Biimidazole complexes of ML22+ [M = Ru or Os, L = 2-(phenylazo)-pyridine]. Synthesis, structure and redox properties of mono- and di-nuclear complexes. J. Chem. Soc. Dalton Trans. 1998, 1569–1574. [Google Scholar] [CrossRef]
- Okamura, M.; Yoshida, M.; Kuga, R.; Sakai, K.; Kondo, M.; Masaoka, S. A mononuclear ruthenium complex showing multiple proton-coupled electron transfer toward multi-electron transfer reactions. Dalton Trans. 2012, 41, 13081–13089. [Google Scholar] [CrossRef]
- Derossi, S.; Adams, H.; Ward, M.D. Hydrogen-bonded assemblies of ruthenium(II)-biimidazole complex cations and cyanometallate anions: Structures and photophysics. Dalton Trans. 2007, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Heussner, K.; Peutinger, K.; Rockstroh, N.; Nye, L.C.; Ivanovic-Burmazovic, I.; Rau, S.; Streb, C. Solution and solid-state interactions in a supramolecular ruthenium photosensitizer–polyoxometalate aggregate. Chem. Commun. 2011, 47, 6852–6854. [Google Scholar] [CrossRef]
- Pannwitz, A.; Poirier, S.; Belanger-Desmarais, N.; Prescimone, A.; Wenger, O.S.; Reber, C. Controlling Second Coordination Sphere Effects in Luminescent Ruthenium Complexes by Means of External Pressure. Chem. Eur. J. 2018, 24, 7830–7833. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Hu, S.; Liu, J.; Ji, L. Synthesis, characterization, antiproliferative and anti-metastatic properties of two ruthenium–DMSO complexes containing 2,2′-biimidazole. Eur. J. Med. Chem. 2011, 46, 1555–1563. [Google Scholar] [CrossRef]
- Gilewska, A.; Masternak, J.; Kazimierczuk, K.; Turlej, E.; Wietrzyk, J.; Barszcz, B. Similarities and differences in d6 low-spin ruthenium, rhodium and iridium half-sandwich complexes: Synthesis, structure, cytotoxicity and interaction with biological targets. J. Biol. Inorg. Chem. 2019, 24, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, M.; Iida, C.; Saitoh, T.; Suda, T.; Miyasato, Y. One-dimensional Tube-like {51262}n Water Clusters Stabilized in a Molecular Nanoporous Framework. Chem. Lett. 2010, 39, 186–187. [Google Scholar] [CrossRef]
- Kundu, T.; Mobin, S.M.; Lahiri, G.K. Paramagnetic ruthenium-biimidazole derivatives [(acac)2RuIII(LHn)]m, n/m = 2/+, 1/0, 0/−. Synthesis, structures, solution properties and anion receptor features in solution state. Dalton Trans. 2010, 39, 4232–4242. [Google Scholar] [CrossRef]
- Tan, Y.-H.; Yang, L.-F.; Cao, M.-L.; Wu, J.-J.; Ye, B.-H. Liquid-assisted solid-state reaction: Assembly of (6,3) and (10,3) hydrogen-bonded networks based on [M(Hbiim)3] by oxidation of [M(H2biim)3]2+ complexes in the presence of acetate anions. CrystEngComm 2011, 13, 4512–4518. [Google Scholar] [CrossRef]
- Albanell-Fernández, M.; Oltra, S.S.; Orts-Arroyo, M.; Ibarrola-Villava, M.; Carrasco, F.; Jiménez-Martí, E.; Cervantes, A.; Castro, I.; Martínez-Lillo, J.; Ribas, G. RUNAT-BI: A Ruthenium(III) Complex as a Selective Anti-Tumor Drug Candidate against Highly Aggressive Cancer Cell Lines. Cancers 2023, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S. Determination of absolute configuration using X-ray diffraction. Tetrahedron Asymmetry 2017, 28, 1304–1313. [Google Scholar] [CrossRef]
- Orts-Arroyo, M.; Gutiérrez, F.; Gil-Tebar, A.; Ibarrola-Villava, M.; Jiménez-Martí, E.; Silvestre-Llora, A.; Castro, I.; Ribas, G.; Martínez-Lillo, J. A novel adenine-based diruthenium(III) complex: Synthesis, crystal structure, electrochemical properties and evaluation of the anticancer activity. J. Inorg. Biochem. 2022, 232, 111812. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 17; University of Western Australia: Crawley, WA, Australia, 2017. [Google Scholar]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bu, R.; Gou, R.-J.; Zhang, C. Hirshfeld Surface Method and Its Application in Energetic Crystals. Cryst. Growth Des. 2021, 21, 6619–6634. [Google Scholar] [CrossRef]
- Yeung, W.F.; Man, W.-L.; Wong, W.-T.; Lau, T.-C.; Gao, S. Ferromagnetic Ordering in a Diamond-Like Cyano-Bridged MnIIRuIII Bimetallic Coordination Polymer. Angew. Chem. Int. Ed. 2001, 40, 3031–3033. [Google Scholar] [CrossRef]
- Toma, L.M.; Toma, L.D.; Delgado, F.S.; Ruiz-Pérez, C.; Sletten, J.; Cano, J.; Clemente-Juan, J.M.; Lloret, F.; Julve, M. Trans-dicyanobis(acetylacetonato)ruthenate(III) as a precursor to build novel cyanide-bridged RuIII–MII bimetallic compounds [M = Co and Ni]. Coord. Chem. Rev. 2006, 250, 2176–2193. [Google Scholar] [CrossRef]
- Palacios, M.A.; Mota, A.J.; Ruiz, J.; Hänninen, M.M.; Sillanpää, R.; Colacio, E. Diphenoxo-Bridged NiIILnIII Dinuclear Complexes as Platforms for Heterotrimetallic (LnIIINiII)2RuIII Systems with a High-Magnetic-Moment Ground State: Synthesis, Structure, and Magnetic Properties. Inorg. Chem. 2012, 51, 7010–7012. [Google Scholar] [CrossRef]
- Pacheco, M.; Cuevas, A.; González-Platas, J.; Lloret, F.; Julve, M.; Kremer, C. The crystal structure and magnetic properties of 3-pyridinecarboxylate-bridged Re(II)M(II) complexes (M = Cu, Ni, Co and Mn). Dalton Trans. 2015, 44, 11636–11648. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Kahn, O. Molecular Magnetism; Courier Dover Publications: Mineola, NY, USA, 2021; ISBN 0486837424. [Google Scholar]
- Cromer, D.T.; Ryan, R.R.; Storm, C.B. Structure of 2,2′-biimidazole. Acta Cryst. 1987, C43, 1435–1437. [Google Scholar] [CrossRef]
- Bruker Analytical X-ray Instruments; SHELXTL-2013/4; Systems, Inc.: Madison, WI, USA, 2013.
- Crystal Impact GbR, CRYSTAL IMPACT; Diamond 4.5.0; H. Putz & K. Brandenburg GbR: Bonn, Germany, 2018.
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
Compound | 1 | 2 |
---|---|---|
CIF | 2286941 | 2286942 |
Formula | C12H12N8O4Cl3Ru | C24H24N16O4Cl6Ru2 |
Fw/g mol−1 | 539.72 | 1015.43 |
Temperature/K | 120(2) | 120(2) |
Crystal system | monoclinic | monoclinic |
Space group | C2 | P21 |
a/Å | 7.199(1) | 13.457(1) |
b/Å | 12.342(1) | 11.317(1) |
c/Å | 11.571(1) | 13.749(1) |
α/° | 90 | 90 |
β/° | 103.28(1) | 115.56(1) |
γ/° | 90 | 90 |
V/Å3 | 1000.52(14) | 1889.10(1) |
Z | 2 | 2 |
Dc/g cm−3 | 1.792 | 1.785 |
μ(Mo-Kα)/mm−1 | 1.221 | 1.279 |
F(000) | 534 | 1004 |
Goodness-of-fit on F2 | 1.126 | 1.060 |
R1 [I > 2σ(I)]/all data | 0.0448/0.0516 | 0.0413/0.0420 |
wR2 [I > 2σ(I)]/all data | 0.0859/0.0899 | 0.1269/0.1281 |
Abs. structure (Flack) | 0.01(2) | 0.50(2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orts-Arroyo, M.; Monfort, J.; Moliner, N.; Martínez-Lillo, J. Enantiomeric Complexes Based on Ruthenium(III) and 2,2′-Biimidazole: X-ray Structure and Magnetic Properties. Molecules 2023, 28, 7213. https://doi.org/10.3390/molecules28207213
Orts-Arroyo M, Monfort J, Moliner N, Martínez-Lillo J. Enantiomeric Complexes Based on Ruthenium(III) and 2,2′-Biimidazole: X-ray Structure and Magnetic Properties. Molecules. 2023; 28(20):7213. https://doi.org/10.3390/molecules28207213
Chicago/Turabian StyleOrts-Arroyo, Marta, Joel Monfort, Nicolás Moliner, and José Martínez-Lillo. 2023. "Enantiomeric Complexes Based on Ruthenium(III) and 2,2′-Biimidazole: X-ray Structure and Magnetic Properties" Molecules 28, no. 20: 7213. https://doi.org/10.3390/molecules28207213
APA StyleOrts-Arroyo, M., Monfort, J., Moliner, N., & Martínez-Lillo, J. (2023). Enantiomeric Complexes Based on Ruthenium(III) and 2,2′-Biimidazole: X-ray Structure and Magnetic Properties. Molecules, 28(20), 7213. https://doi.org/10.3390/molecules28207213