Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Synthesis of RRHRH-PAMAM G2
2.2. The Titration of RRHRH-PAMAM G2
2.3. The Complex Test of RRHRH-PAMAM G2
2.4. The Characterization of Complexes
2.5. Intracellular Uptake
2.6. The Transfection
2.7. The Cytotoxicity
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the PAMAM G2 Derivatives
3.3. Titration
3.4. Gel Retardation
3.5. Size and Zeta Potential Measurement
3.6. FE-SEM
3.7. Cell Uptake
3.8. Transfection
3.9. Cytotoxicity Assay In Vitro
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamura, R.; Toda, M. Historic Overview of Genetic Engineering Technologies for Human Gene Therapy. Neurol. Med.-Chir. 2020, 60, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Piperno, A.; Sciortino, M.T.; Giusto, E.; Montesi, M.; Panseri, S.; Scala, A. Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles. Int. J. Nanomed. 2021, 16, 5981–6002. [Google Scholar] [CrossRef] [PubMed]
- Bulaklak, K.; Gersbach, C.A. The once and future gene therapy. Nat. Commun. 2020, 11, 5820. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.K.; Cerundolo, V. Gene therapy meets vaccine development. Trends Biotechnol. 2004, 22, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Bunnell, B.A.; Morgan, R.A. Gene therapy for infectious diseases. Clin. Microbiol. Rev. 1998, 11, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Belete, T.M. The Current Status of Gene Therapy for the Treatment of Cancer. Biol.-Targets Ther. 2021, 15, 67–77. [Google Scholar] [CrossRef]
- Zanten, J.V.; Meer, B.D.-V.D.; Audouy, S.; Kok, R.J.; Leij, L.D. A nonviral carrier for targeted gene delivery to tumor cells. Cancer Gene Ther. 2004, 11, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, L.M.; Jin, Y.; Qi, C.; Li, Q.L.; Zhang, Y.T.; Jiang, X.L.; Wang, G.B.; Wang, Z.; Wang, L. Cell-Targeting Cationic Gene Delivery System Based on a Modular Design Rationale. ACS Appl. Mater. Interfaces 2016, 8, 14200–14210. [Google Scholar] [CrossRef]
- Meyer, R.A.; Neshat, S.Y.; Green, J.J.; Santos, J.L.; Tuesca, A.D. Targeting strategies for mRNA delivery. Mater. Today Adv. 2022, 14, 100240. [Google Scholar] [CrossRef]
- Schatzlein, A.G. Targeting of synthetic gene delivery systems. J. Biomed. Biotechnol. 2003, 2003, 149–158. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 2020, 15, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.C.; Atochina-Vasserman, E.N.; Maurya, D.S.; Sahoo, D.; Ona, N.; Reagan, E.K.; Ni, H.P.; Weissman, D.; Percec, V. Targeted and Equally Distributed Delivery of mRNA to Organs with Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers. J. Am. Chem. Soc. 2023, 145, 18760–18766. [Google Scholar] [CrossRef]
- Le Guen, Y.T.; Pichon, C.; Guegan, P.; Pluchon, K.; Haute, T.; Quemener, S.; Ropars, J.; Midoux, P.; Le Gall, T.; Montier, T. DNA nuclear targeting sequences for enhanced non-viral gene transfer: An in vitro and in vivo study. Mol. Ther.-Nucleic Acids 2021, 24, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Faria, R.; Boisguerin, P.; Sousa, A.; Costa, D. Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.H.; Lim, K.I. Recent Advances in Mitochondria-Targeted Gene Delivery. Molecules 2018, 23, 2316. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, N.; Numata, K. Rational Designs at the Forefront of Mitochondria-Targeted Gene Delivery: Recent Progress and Future Perspectives. ACS Biomater. Sci. Eng. 2022, 8, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Koilkonda, R.D.; Chou, T.H.; Porciatti, V.; Ozdemir, S.S.; Chiodo, V.; Boye, S.L.; Boye, S.E.; Hauswirth, W.W.; Lewin, A.S.; et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc. Natl. Acad. Sci. USA 2012, 109, E1238–E1247. [Google Scholar] [CrossRef]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef]
- Wang, C.; Pan, C.; Yong, H.; Wang, F.; Bo, T.; Zhao, Y.; Ma, B.; He, W.; Li, M. Emerging non-viral vectors for gene delivery. J. Nanobiotechnol. 2023, 21, 272. [Google Scholar] [CrossRef]
- Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapy—An overview. J. Clin. Diagn. Res. 2015, 9, GE01–GE06. [Google Scholar] [CrossRef]
- Saranya, N.; Moorthi, A.; Saravanan, S.; Devi, M.P.; Selvamurugan, N. Chitosan and its derivatives for gene delivery. Int. J. Biol. Macromol. 2011, 48, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Taranejoo, S.; Liu, J.; Verma, P.; Hourigan, K. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J. Appl. Polym. Sci. 2015, 132, 42096. [Google Scholar] [CrossRef]
- Abedi-Gaballu, F.; Dehghan, G.; Ghaffari, M.; Yekta, R.; Abbaspour-Ravasjani, S.; Baradaran, B.; Dolatabadi, J.E.N.; Hamblin, M.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today 2018, 12, 177–190. [Google Scholar] [CrossRef]
- Fu, F.F.; Zhou, B.Q.; Ouyang, Z.J.; Wu, Y.L.; Zhu, J.Y.; Shen, M.W.; Xia, J.D.; Shi, X.Y. Multifunctional Cholesterol-modified Dendrimers for Targeted Drug Delivery to Cancer Cells Expressing Folate Receptors. Chin. J. Polym. Sci. 2019, 37, 129–135. [Google Scholar] [CrossRef]
- Lee, S.; Son, S.J.; Song, S.J.; Ha, T.H.; Choi, J.S. Polyamidoamine (PAMAM) Dendrimers Modified with Cathepsin-B Cleavable Oligopeptides for Enhanced Gene Delivery. Polymers 2017, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Thuy, L.T.; Mallick, S.; Choi, J.S. Polyamidoamine (PAMAM) dendrimers modified with short oligopeptides for early endosomal escape and enhanced gene delivery. Int. J. Pharm. 2015, 492, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.S.; Bae, Y.M.; Kim, J.Y.; Han, J.; Ko, K.S.; Choi, J.S. Amino acid-modified bioreducible poly(amidoamine) dendrimers: Synthesis, characterization and In vitro evaluation. Macromol. Res. 2012, 20, 1156–1162. [Google Scholar] [CrossRef]
- Park, J.H.; Park, J.S.; Choi, J.S. Basic amino acid-conjugated polyamidoamine dendrimers with enhanced gene transfection efficiency. Macromol. Res. 2014, 22, 500–508. [Google Scholar] [CrossRef]
- Yang, B.S.; Mallick, S.; Kwon, Y.E.; Kim, Y.J.; Kim, G.H.; Choi, J.S. PAMAM Dendrimer Conjugated with Cell-penetrating Peptide-derived Oligopeptides for Enhanced Cell Uptake and Gene Delivery. Bull. Korean Chem. Soc. 2015, 36, 2477–2483. [Google Scholar] [CrossRef]
- Lee, J.; Jung, J.; Kim, Y.J.; Lee, E.; Choi, J.S. Gene delivery of PAMAM dendrimer conjugated with the nuclear localization signal peptide originated from fibroblast growth factor 3. Int. J. Pharm. 2014, 459, 10–18. [Google Scholar] [CrossRef]
- Yu, G.S.; Bae, Y.M.; Choi, H.; Kong, B.; Choi, I.S.; Choi, J.S. Synthesis of PAMAM Dendrimer Derivatives with Enhanced Buffering Capacity and Remarkable Gene Transfection Efficiency. Bioconjugate Chem. 2011, 22, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Thuy, L.T.; Choi, M.; Lee, M.; Choi, J.S. Preparation and characterization of polyamidoamine dendrimers conjugated with cholesteryl-dipeptide as gene carriers in HeLa cells. J. Biomater. Sci. Polym. Ed. 2022, 33, 976–994. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kwon, Y.E.; Edwards, S.D.; Guim, H.; Jeong, K.J. Improved biocompatibility of dendrimer-based gene delivery by histidine-modified nuclear localization signals. Int. J. Pharm. 2023, 644, 123299. [Google Scholar] [CrossRef] [PubMed]
- Bayele, H.K.; Sakthivel, T.; O’Donell, M.; Pasi, K.J.; Wilderspin, A.F.; Lee, C.A.; Toth, I.; Florence, A.T. Versatile peptide dendrimers for nucleic acid delivery. J. Pharm. Sci. 2005, 94, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Hadianamrei, R.; Zhao, X.B. Current state of the art in peptide-based gene delivery. J. Control. Release 2022, 343, 600–619. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.S.; Sung, M.; Bolewska-Pedyczak, E.; Gariepy, J. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Biochemistry 2006, 45, 1116–1127. [Google Scholar] [CrossRef]
- Thapa, R.K.; Sullivan, M.O. Gene delivery by peptide-assisted transport. Curr. Opin. Biomed. Eng. 2018, 7, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Urandur, S.; Sullivan, M.O. Peptide-Based Vectors: A Biomolecular Engineering Strategy for Gene Delivery. Annu. Rev. Chem. Biomol. 2023, 14, 243–264. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Q.; Wu, F.; Dai, J.; Ding, D.F.; Wu, J.; Lou, X.D.; Xia, F. Peptide-based nanomaterials for gene therapy. Nanoscale Adv. 2021, 3, 302–310. [Google Scholar] [CrossRef]
- Yan, X.; Lin, L.; Li, S.; Wang, W.; Chen, B.; Jiang, S.; Liu, S.; Ma, X.; Yu, X. Arginine-rich peptide based nanoparticles with bridge-like structure: Enhanced cell penetration and tumor therapy effect. Chem. Eng. J. 2020, 395, 125171. [Google Scholar] [CrossRef]
- Schmidt, N.; Mishra, A.; Lai, G.H.; Wong, G.C.L. Arginine-rich cell-penetrating peptides. FEBS Lett. 2010, 584, 1806–1813. [Google Scholar] [CrossRef] [PubMed]
- Bacalum, M.; Janosi, L.; Zorila, F.; Tepes, A.M.; Ionescu, C.; Bogdan, E.; Hadade, N.; Craciun, L.; Grosu, I.; Turcu, I.; et al. Modulating short tryptophan- and arginine-rich peptides activity by substitution with histidine. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2017, 1861, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.M.; He, Q.J.; Liu, J.N.; Chen, Y.; Ma, M.; Zhang, L.L.; Shi, J.L. Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated Monodisperse Mesoporous Silica Nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725. [Google Scholar] [CrossRef] [PubMed]
- Degors, I.M.S.; Wang, C.; Rehman, Z.U.; Zuhorn, I.S. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors. Acc. Chem. Res. 2019, 52, 1750–1760. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Kim, M.; Kim, G.; Choi, J.S.; Lee, M. Brain gene delivery using histidine and arginine-modified dendrimers for ischemic stroke therapy. J. Control. Release 2021, 330, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Younjin, K.; Joon Sig, C. Synthesis and Characterization of KKRK Peptide-PAMAM Dendrimer G2 Conjugates as Gene Carriers. Polymer 2022, 46, 113–121. [Google Scholar]
Polyplexes (Polymer/pCN-Luci) | Size (nm) | PDI a | Zeta Potential (mV) |
---|---|---|---|
PEI | 110.87 ± 0.76 | 0.125 ± 0.006 | 47.6 ± 1.34 |
PAMAM G2 | 1104.33 ± 59.33 | 0.649 ± 0.082 | 26.77 ± 0.68 |
RRHRH-PAMAM G2 (8) | 81.22 ± 0.70 | 0.146 ± 0.006 | 17.60 ± 0.22 |
RRHRH-PAMAM G2 (12) | 77.90 ± 1.32 | 0.189 ± 0.011 | 26.23 ± 1.84 |
RRHRH-PAMAM G2 (16) | 88.40 ± 1.34 | 0.219 ± 0.015 | 23.27 ± 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Thuy, L.T.; Lee, J.; Choi, J.S. Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro. Molecules 2023, 28, 7644. https://doi.org/10.3390/molecules28227644
Kim S, Thuy LT, Lee J, Choi JS. Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro. Molecules. 2023; 28(22):7644. https://doi.org/10.3390/molecules28227644
Chicago/Turabian StyleKim, Seongyeon, Le Thi Thuy, Jeil Lee, and Joon Sig Choi. 2023. "Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro" Molecules 28, no. 22: 7644. https://doi.org/10.3390/molecules28227644
APA StyleKim, S., Thuy, L. T., Lee, J., & Choi, J. S. (2023). Second-Generation Polyamidoamine Dendrimer Conjugated with Oligopeptides Can Enhance Plasmid DNA Delivery In Vitro. Molecules, 28(22), 7644. https://doi.org/10.3390/molecules28227644