Synthesis of Mixed Chitin Esters via Acylation of Chitin in Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Mixed Chitin Esters with Stearoyl and Bulky Acyl Groups in DESs
3.3. Synthesis of Mixed Chitin Oleate Stearate in DES (Entry 10, Table 1)
3.4. Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuerch, C. Polysaccharides. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; Mark, H.F., Bilkales, N., Overberger, C.G., Eds.; John Wiley & Sons: New York, NY, USA, 1986; Volume 13, pp. 87–162. [Google Scholar]
- Song, E.H.; Shang, J.; Ratner, D.M. Polysaccharides. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 137–155. [Google Scholar]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Huang, G. Progress in Polysaccharide Derivatization and Properties. Mini Rev. Med. Chem. 2016, 16, 1244–1257. [Google Scholar] [CrossRef] [PubMed]
- Edgar, K.J.; Buchanan, C.M.; Debenham, J.S.; Rundquist, P.A.; Seiler, B.D.; Shelton, M.C.; Tindall, D. Advances in Cellulose Ester Performance and Application. Prog. Polym. Sci. 2001, 26, 1605–1688. [Google Scholar] [CrossRef]
- Kostag, M.; Gericke, M.; Heinze, T.; El Seoud, O.A. Twenty-Five Years of Cellulose Chemistry: Innovations in the Dissolution of the Biopolymer and its Transformation into Esters and Ethers. Cellulose 2019, 26, 139–184. [Google Scholar] [CrossRef]
- Sata, H.; Murayama, M.; Shimamoto, S. Properties and Applications of Cellulose Triacetate Film. Macromol. Symp. 2004, 208, 323–334. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Xia, Y.; Huang, S.; Wang, Y.; Qiu, Y. Preparation, Structure, and Properties of Melt Spun Cellulose Acetate Butyrate Fibers. Text. Res. J. 2018, 88, 1491–1504. [Google Scholar] [CrossRef]
- Sashiwa, H.; Aiba, S. Chemically Modified Chitin and Chitosan as Biomaterials. Prog. Polym. Sci. 2004, 29, 887–908. [Google Scholar] [CrossRef]
- Kurita, K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef]
- Nishi, N.; Noguchi, J.; Tokura, S.; Shiota, H. Studies on chitin I. Acetylation of chitin. Polym. J. 1979, 11, 27–32. [Google Scholar] [CrossRef]
- Kurita, K. Controlled Functionalization of the Polysaccharide Chitin. Prog. Polym. Sci. 2001, 26, 1921–1971. [Google Scholar] [CrossRef]
- Somorin, O.; Nishi, N.; Tokura, S.; Noguchi, J. Studies on chitin. II. Preparation of benzyl and benzoylchitins. Polym. J. 1979, 11, 391–396. [Google Scholar] [CrossRef]
- Kaifu, K.; Nishi, N.; Komai, T.; Seiichi, S.; Somorin, O. Studies on chitin. V. formylation, propionylation, and butyrylation of chitin. Polym. J. 1981, 13, 241–245. [Google Scholar] [CrossRef]
- Kaifu, K.; Nishi, N.; Komai, T. Preparation of hexanoyl, decanoyl, and dodecanoylchitin. J. Polym. Sci. Polym. Chem. 1981, 19, 2361–2363. [Google Scholar] [CrossRef]
- Nishi, N.; Ohnuma, H.; Nishimura, S.I.; Somorin, O.; Tokura, S. Studies on chitin VII. Preparations of p-substituted benzoylchitins. Polym. J. 1982, 14, 919–923. [Google Scholar] [CrossRef]
- Skołucka-Szary, K.; Ramięga, A.; Piaskowska, W.; Janicki, B.; Grala, M.; Rieske, P.; Stoczyńska-Fidelus, E.; Piaskowski, S. Chitin dipentanoate as the new technologically usable biomaterial. Mater. Sci. Eng. C 2015, 55, 50–60. [Google Scholar] [CrossRef]
- Skołucka-Szary, K.; Ramięga, A.; Piaskowska, W.; Janicki, B.; Grala, M.; Rieske, P.; Bartczak, Z.; Piaskowski, S. Synthesis and physicochemical characterization of chitin dihexanoate—A new biocompatible chitin derivative—In comparison to chitin dibutyrate. Mater. Sci. Eng. C 2016, 60, 489–502. [Google Scholar] [CrossRef]
- Zhong, T.; Wolcott, M.P.; Liu, H.; Wang, J. Propionylation-modified chitin with improved solubility in green ethanol/water binary solvents for sustainable film and coating applications. J. Clean. Prod. 2020, 250, 119458. [Google Scholar] [CrossRef]
- Sugimoto, M.; Kawahara, M.; Teramoto, Y.; Nishio, Y. Synthesis of acyl chitin derivatives and miscibility characterization of their blends with poly(ε-caprolactone). Carbohydr. Polym. 2010, 79, 948–954. [Google Scholar] [CrossRef]
- Hashiwaki, H.; Teramoto, Y.; Nishio, Y. Fabrication of thermoplastic ductile films of chitin butyrate/poly(e-caprolactone) blends and their cytocompatibility. Carbohydr. Polym. 2014, 114, 330–338. [Google Scholar] [CrossRef]
- Teramoto, Y.; Miyata, T.; Nishio, Y. Dual Mesomorphic Assemblage of Chitin normal Acylates and Rapid Enthalpy Relaxation of their Side Chains. Biomacromolecules 2006, 7, 190–198. [Google Scholar] [CrossRef]
- Hirayama, H.; Yoshida, J.; Yamamoto, K.; Kadokawa, J. Facile Acylation of α-Chitin in Ionic Liquid. Carbohydr. Polym. 2018, 200, 567–571. [Google Scholar] [CrossRef]
- Prasad, K.; Murakami, M.; Kaneko, Y.; Takada, A.; Nakamura, Y.; Kadokawa, J. Weak Gel of Chitin with Ionic Liquid, 1-Allyl-3-Methylimidazolium Bromide. Int. J. Biol. Macromol. 2009, 45, 221–225. [Google Scholar] [CrossRef]
- Kohori, K.; Hirayama, H.; Yamamoto, K.; Kadokawa, J. Synthesis of Mixed Chitin Esters with Long fatty and Bulky Acyl Substituents in Ionic Liquid. Int. J. Biol. Macromol. 2021, 190, 763–768. [Google Scholar] [CrossRef]
- Sharma, M.; Mukesh, C.; Mondal, D.; Prasad, K. Dissolution of α-chitin in deep eutectic solvents. RSC Adv. 2013, 3, 18149–18155. [Google Scholar] [CrossRef]
- Mukesh, C.; Mondal, D.; Sharma, M.; Prasad, K. Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydr. Polym. 2014, 103, 466–471. [Google Scholar] [CrossRef]
- Zhu, P.; Gu, Z.; Hong, S.; Lian, H. One-pot production of chitin with high purity from lobster shells using choline chloride-malonic acid deep eutectic solvent. Carbohydr. Polym. 2017, 177, 217–223. [Google Scholar] [CrossRef]
- Hong, S.; Yuan, Y.; Yang, Q.; Zhu, P.; Lian, H. Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydr. Polym. 2018, 201, 211–217. [Google Scholar] [CrossRef]
- Huang, W.-C.; Zhao, D.; Guo, N.; Xue, C.; Mao, X. Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. J. Agric. Food. Chem. 2018, 66, 11897–11901. [Google Scholar] [CrossRef]
- Saravana, P.S.; Ho, T.C.; Chae, S.J.; Cho, Y.J.; Park, J.S.; Lee, H.J.; Chun, B.S. Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydr. Polym. 2018, 195, 622–630. [Google Scholar] [CrossRef]
- Hong, S.; Yuan, Y.; Yang, Q.; Chen, L.; Deng, J.; Chen, W.; Lian, H.; Mota-Morales, J.D.; Liimatainen, H. Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction. Carbohydr. Polym. 2019, 220, 211–218. [Google Scholar] [CrossRef]
- Cao, S.L.; Gu, W.M.; Ou-Yang, W.D.; Chen, D.C.; Yang, B.Y.; Lai, L.H.; Wu, Y.D.; Liu, Y.J.; Zhu, J.; Chen, W.J.; et al. Preparation, characterization and application of rod-like chitin nanocrystal by using p-toluenesulfonic acid/choline chloride deep eutectic solvent as a hydrolytic media. Carbohydr. Polym. 2019, 213, 304–310. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, W.C.; Guo, N.; Zhang, S.; Xue, C.; Mao, X. Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers 2019, 11, 409. [Google Scholar] [CrossRef]
- Wang, J.; Teng, C.; Yan, L. Applications of deep eutectic solvents in the extraction, dissolution, and functional materials of chitin: Research progress and prospects. Green Chem. 2022, 24, 552–564. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Idenoue, S.; Yamamoto, K.; Kadokawa, J. Dissolution of Chitin in Deep Eutectic Solvents Composed of Imidazolium Ionic Liquids and Thiourea. ChemEngineering 2019, 3, 90. [Google Scholar] [CrossRef]
- Egi, Y.; Kadokawa, J. Facile and efficient acylation of chitin in deep eutectic solvents. Tetrahedron Green Chem 2023, 1, 100012. [Google Scholar] [CrossRef]
- Shigenobu, Y.; Nakashima, A.; Kadokawa, J. Synthesis of thermoplastic mixed chitin esters. Biomacromolecules 2023, 24, 5175–5182. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005, 38, 8272–8277. [Google Scholar] [CrossRef]
Entry | Stearoyl Chloride (Equiv.) (b) | Second Acyl Chloride (Equiv.) (b) | Yield (g) | Substituent Ratio (SR) (c) (Stearoyl:Second Acyl) |
---|---|---|---|---|
1 | 2 | benzoyl (18) | 0.136 | 1:0.41 |
2 | 10 | benzoyl (10) | 0.138 | 1:0.11 |
3 | 18 | benzoyl (2) | 0.163 | 1:0.08 |
4 | 10 | adamantoyl (10) | 0.102 | 1:0.16 |
5 | 18 | adamantoyl (2) | 0.157 | 1:0.01 |
6 | 10 | cinnamoyl (10) | 0.130 | 1:0.36 |
7 | 18 | cinnamoyl (2) | 0.156 | 1:0.03 |
8 | 10 | 1-naphthoyl (10) | 0.141 | 1:0.17 |
9 | 18 | 1-naphthoyl (2) | 0.117 | 1:0:03 |
10 | 10 | oleoyl (10) | 0.105 | 1:0.53 (DS (stearoyl) = 1.33, DS (oleoyl) = 0.70) (d) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egi, Y.; Kadokawa, J.-i. Synthesis of Mixed Chitin Esters via Acylation of Chitin in Deep Eutectic Solvents. Molecules 2023, 28, 8132. https://doi.org/10.3390/molecules28248132
Egi Y, Kadokawa J-i. Synthesis of Mixed Chitin Esters via Acylation of Chitin in Deep Eutectic Solvents. Molecules. 2023; 28(24):8132. https://doi.org/10.3390/molecules28248132
Chicago/Turabian StyleEgi, Yusuke, and Jun-ichi Kadokawa. 2023. "Synthesis of Mixed Chitin Esters via Acylation of Chitin in Deep Eutectic Solvents" Molecules 28, no. 24: 8132. https://doi.org/10.3390/molecules28248132
APA StyleEgi, Y., & Kadokawa, J. -i. (2023). Synthesis of Mixed Chitin Esters via Acylation of Chitin in Deep Eutectic Solvents. Molecules, 28(24), 8132. https://doi.org/10.3390/molecules28248132