Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC–HRMS- In Vitro Antioxidant and Enzyme Inhibitory Activities
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.2. Total Phenolic (TPC)/Flavonoid (TFC) Content and Antioxidant Activity Results
2.3. Enzyme Inhibitory Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction
4.3. Isolation of Phenolic Compounds
4.4. UHPLC–HRMS Analysis of Phenolic Compounds
4.5. Total Phenolic Content (TPC)
4.6. Total Flavonoid Content (TFC)
4.7. Radical Scavenging Activity
4.7.1. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Diammonium Salt (ABTS) Assay
4.7.2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
4.8. Reducing Power FRAP and CUPRAC Assays
4.9. Total Antioxidant Capacity and Metal Chelating Activity
4.10. Enzyme Inhibitory Activities
4.11. Expression of Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, S.A.S.; Agra, M.d.F.; Tavares, J.F.; da-Cunha, E.V.L.; Barbosa-Filho, J.M.; Silva, M.S.d. Flavanones from aerial parts of Cordia globosa (Jacq.) Kunth, Boraginaceae. Rev. Bras. Farmacogn. 2010, 20, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Dresler, S.; Szymczak, G.; Wójcik, M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol. 2017, 55, 691–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orfanou, I.M.; Damianakos, H.; Bazos, I.; Graikou, K.; Chinou, I. Pyrrolizidine Alkaloids from Onosma kaheirei Teppner (Boraginaceae). Rec. Nat. Prod. 2016, 10, 221. [Google Scholar]
- Damianakos, H.; Jeziorek, M.; Sykłowska-Baranek, K.; Buchwald, W.; Pietrosiuk, A.; Chinou, I. Pyrrolizidine alkaloids from Cynoglossum columnae Ten. (Boraginaceae). Phytochem. Lett. 2016, 15, 234–237. [Google Scholar] [CrossRef]
- Fayed, M.A.A. Heliotropium; a genus rich in pyrrolizidine alkaloids: A systematic review following its phytochemistry and pharmacology. Phytomedicine Plus 2021, 1, 100036. [Google Scholar] [CrossRef]
- Goyal, N.; Sharma, K.S. Bioactive phytoconstituents and plant extracts from genus Heliotropium. Int. J. Green Pharm. 2014, 8, 217. [Google Scholar] [CrossRef]
- Modak, B.; Rojas, M.; Torres, R.; Rodilla, J.; Luebert, F. Antioxidant Activity Of A New Aromatic Geranyl Derivative of The Resinous Exudates From Heliotropium glutinosum Phil. Molecules 2007, 12, 1057–1063. [Google Scholar] [CrossRef]
- Ghori, M.K.; Ghaffari, M.A.; Nawaz, S.; Manzoor, M.; Aziz, M.; Sarwer, W. Ethnopharmacological, Phytochemical and Pharmacognostic Potential of Genus Heliotropium L. Turk. J. Pharm. Sci. 2016, 13, 143–168. [Google Scholar] [CrossRef]
- Nunes, A.T.; Cabral, D.L.V.; Amorim, E.L.C.; Santos, M.V.E.; dos Albuquerque, U.P. Plants used to feed ruminants in semi-arid Brazil: A study of nutritional composition guided by local ecological knowledge. J. Arid. Environ. 2016, 135, 96–103. [Google Scholar] [CrossRef]
- Turner, B.L.; Williams, J. Heliotropium procumbens (Boraginaceae): Native or Adventive in the USA. Phytologia 2010, 92, 2. [Google Scholar]
- Ganos, C.; Aligiannis, N.; Chinou, I.; Naziris, N.; Chountoulesi, M.; Mroczek, T.; Graikou, K. Rindera graeca (Boraginaceae) phytochemical profile and biological activities. Molecules 2020, 25, 3625. [Google Scholar] [CrossRef] [PubMed]
- Varvouni, E.-F.; Zengin, G.; Graikou, K.; Ganos, C.; Mroczek, T.; Chinou, I. Phytochemical analysis and biological evaluation of the aerial parts from Symphytum anatolicum Boiss. and Cynoglottis Barrelieri (All.) Vural & Kit Tan (Boraginaceae). Biochem. Syst. Ecol. 2020, 92, 104128. [Google Scholar] [CrossRef]
- Varvouni, E.-F.; Zengin, G.; Graikou, K.; Ganos, C.; Mroczek, T.; Chinou, I. Chemical profile and biological properties of the endemic Turkish species Phyllocara aucheri. S. Afr. J. Bot. 2021, 137, 340–344. [Google Scholar] [CrossRef]
- Graikou, K.; Damianakos, H.; Ganos, C.; Sykłowska-Baranek, K.; Jeziorek, M.; Pietrosiuk, A.; Roussakis, C.; Chinou, I. Chemical Profile and Screening of Bioactive Metabolites of Rindera graeca (A. DC.) Bois. & Heldr. (Boraginaceae) In Vitro Cultures. Plants 2021, 10, 834. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.; Serró, R.F. Isolation and identification of O-α-d-galactopyranosyl-myo-inositol and of myo-inositol from juice of the sugar beet (Beta vulgaris). J. Am. Chem. Soc. 1953, 75, 1040–1042. [Google Scholar] [CrossRef]
- Fayed, M.A.A.; Abouelela, M.E.; Refaey, M.S. Heliotropium ramosissimum metabolic profiling, in silico and in vitro evaluation with potent selective cytotoxicity against colorectal carcinoma. Sci. Rep. 2022, 12, 12539. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.; Ahemad, S.; Saleem, H.; Saleem, M.; Zengin, G.; Abdallah, H.H.; Tousif, M.I.; Ahemad, N.; Fawzi Mahomoodally, M. RP-UHPLC-MS Chemical Profiling, Biological and in Silico Docking studies to Unravel the therapeutic potential of Heliotropium crispum Desf. As A Novel Source of Neuroprotective Bioactive Compounds. Biomolecules 2021, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, A.; Sarfraz, R.A.; Ashraf, A.; Adil, S. Phenolic composition and biological (anti diabetic and antioxidant) activities of different solvent extracts of an endemic plant (Heliotropium strigosum). J. Chil. Chem. Soc. 2016, 61, 2903–2906. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elgawad, A.M.; Elshamy, A.I.; Al-Rowaily, S.L.; El-Amier, Y.A. Habitat affects the chemical profile, allelopathy, and antioxidant properties of essential oils and phenolic enriched extracts of the invasive plant Heliotropium curassavicum. Plants 2019, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Gören, A.C.; Tümen, G.; Çelik, A.; Çıkrıkçı, S. Fatty acid composition of Heliotropium species (Boraginaceae): A first chemical report on the new species H. thermophilum. Nat. Prod. Commun. 2008, 3, 1934578X0800301030. [Google Scholar] [CrossRef] [Green Version]
- FoodB. Available online: www.foodb.com (accessed on 10 October 2022).
- He, J.; Feng, Y.; Ouyang, H.; Yu, B.; Chang, Y.; Pan, G.; Dong, G.; Wang, T.; Gao, X. A Sensitive LC–MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from Mulberry leaves. J. Pharm. Biomed. Anal. 2013, 84, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; He, W.; Xiang, C.; Han, J.; Wu, L.; Guo, D.; Ye, M. Qualitative and quantitative analyses of flavonoids in spirodela polyrrhiza by high-performance liquid chromatography coupled with Mass Spectrometry: Chemical Analysis for Spirodela polyrrhiza by LC/MS. Phytochem. Anal. 2011, 22, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Liu, H.; Lin, L. Simultaneous determination of vitexin and isovitexin in rat plasma after oral administration of Santalum album L. leaves extract by liquid chromatography tandem mass spectrometry: Simultaneous determination of vitexin and isovitexin. Biomed. Chromatogr. 2013, 27, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Metlin. Available online: www.metlin.com (accessed on 10 October 2022).
- Wang, X.; Qian, Y.; Li, X.; Jia, X.; Yan, Z.; Han, M.; Qiao, M.; Ma, X.; Chu, Y.; Zhou, S.; et al. Rapid determination of rosmarinic acid and its two bioactive metabolites in the plasma of rats by LC–MS/MS and application to a pharmacokinetics study. Biomed. Chromatogr. 2021, 35, e4984. [Google Scholar] [CrossRef]
- Ghori, K.M.; Chaudhry, A.B.; Uzair, M.; Janbaz, K.; Sarwar, W.; Manzoor, M.; Hussain, S.; Qaisar, M.N.; Ghori, U.M. Antiglycation and Insecticidal Potential of Heliotropium strigosum Willd. J. Nat. Prod. Plant Res. 2016, 6, 1–7. [Google Scholar]
- Shahbaz, A.; Abbasi, B.A.; Iqbal, J.; Fatima, I.; Anber Zahra, S.; Kanwal, S.; Devkota, H.P.; Capasso, R.; Ahmad, A.; Mahmood, T. Chemical Composition of Gastrocotyle Hispida (Forssk.) Bunge and Heliotropium crispum Desf. and evaluation of their multiple in vitro biological potentials. Saudi J. Biol. Sci. 2021, 28, 6086–6096. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, S.; Kadıoğlu, A.; Sağlam, A.; Yaşar, A. Determination of phenolic acids and rutin in Heliotropium thermophilum by High-Performance Liquid Chromatography with Photodiode Array Detection. Instrum. Sci. Technol. 2017, 45, 35–48. [Google Scholar] [CrossRef]
- Rossi, F.; Jullian, V.; Pawlowiez, R.; Kumar-Roiné, S.; Haddad, M.; Darius, H.T. Protective effect of Heliotropium foertherianum (Boraginaceae) folk remedy and its active compound, rosmarinic acid, against a Pacific ciguatoxin. J. Ethnopharmacol. 2012, 143, 33–40. [Google Scholar] [CrossRef]
- dos Santos, G.L.D.; de Araújo, D.I.A.F.; Raimundo e Silva, J.P.; do Nascimento, Y.M.; de Souza, T.A.; Opretzka, L.C.F.; Villarreal, C.F.; Abreu, L.S.; dos Santos Junior, F.M.; de Melo, J.I.M.; et al. Sucrose Diester of Aryldihydronaphthalene-Type Lignan with Anti-inflammatory Activity from Heliotropium angiospermum. Rev. Brasil Farmacognosia 2022, 32, 734–740. [Google Scholar] [CrossRef]
- Kagan, J. Luteolin 7-glucoside, the flavonoid pigment of Heliotropium tenellum. Phytochemistry 1968, 7, 505–506. [Google Scholar] [CrossRef]
- Modak, B.; Torres, R.; Lissi, E.; Monache, F.D. Antioxidant capacity of flavonoids and a new aryl-phenol of the resinous exudate from Heliotropium sinuatum. Nat. Prod. Res. 2003, 17, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sahu, P.M.; Sharma, R.A. In vitro and in vivo Evaluation of Flavonoids from Heliotropium ellipticum Exudate for Antioxidant, Antineoplastic and Cytotoxic Activities II Indian. J. Pharm. Sci. 2017, 79, 939–947. [Google Scholar]
- Singh, B.; Sharma, R.A. Anti-Inflammatory and Antimicrobial Effects of Flavonoids from Heliotropium ellipticum Exudate. Curr. Bioact. Compnds 2016, 12, 123–131. [Google Scholar] [CrossRef]
- Fatima, S.F.; Ishtiaq, S.; Lashkar, M.O.; Ashour, M.L.; Elhady, S.S. Metabolic Profiling of Heliotropium crispum Aerial Parts Using HPLC and FTIR and In Vivo Evaluation of Its Anti-Ulcer Activity Using an Ethanol Induced Acute Gastric Ulcer Model. Metabolites 2022, 12, 750. [Google Scholar] [CrossRef] [PubMed]
- Sarikurkcu, C.; Zengin, G.; Aktumsek, A.; Ceylan, O.; Uysal, S. Screening of Possible In Vitro Neuroprotective, Skin Care, Antihyperglycemic, and Antioxidative Effects of Anchusa undulata L. subsp. hybrida (Ten.) Coutinho from Turkey and Its Fatty Acid Profile. Int. J. Food Prop. 2015, 18, 1491–1504. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 1999, 51, 91–94. [Google Scholar] [CrossRef]
- Murata, T.; Oyama, K.; Fujiyama, M.; Oobayashi, B.; Umehara, K.; Miyase, T.; Yoshizaki, F. Diastereomers of lithospermic acid and lithospermic acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia 2013, 91, 51–59. [Google Scholar] [CrossRef]
- Lin, L.-C.; Pai, Y.-F.; Tsai, T.-H. Isolation of Luteolin and Luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats. J. Agric. Food Chem. 2015, 63, 7700–7706. [Google Scholar] [CrossRef] [PubMed]
No | Retention Time | Identification | Chemical Structure | m/z | Ion Mode | MS2 | Ref. |
---|---|---|---|---|---|---|---|
1 | 0.39 | bis-hexoses | C12H22O11 | 341.1097 | [M-H]− | [15] | |
2 | 0.44 | malic acid | C4H6O5 | 133.0133 | [Μ-H]− | 115, 71 | [16] |
3 | 0.46 | isobergapten | C12H8O4 | 215.0327 | [M-H]− | 125, 157 | [17] |
4 | 0.77 | dimethoxy-hydroxybenzoic acid (syringic acid) | C9H10O5 | 197.0452 | [M-H]− | 179, 142, 135, 123, 114 | [18,19,20] |
5 | 0.8 | dihydroxybenzoic acid | C7H6O4 | 153.0186 | [M-H]− | 109 | [16] |
6 | 0.94 | cοumarate glucoside | C20H16O8 | 321.1020 | [M-H2O-H]− | 97 | [21] |
7 | 1.22 | hydroxybenzoic acid | C7H6O3 | 137.0235 | [M-H]− | 109, 93 | [16] |
8 | 1.65 | dihydroxy methoxy benzoic acid | C8H8O5 | 183.0294 | [M-H]− | 168, 141, 111 | [21] |
9 | 2.10 | caffeic acid | C9H8O4 | 179.0345 | [M-H]− | 179, 161, 135, 124 | [16] |
10 | 2.37 | vanilic acid glucoside | C14H18O9 | 329.0919 | [M-H]− | 97 | [21] |
11 | 3.97 | caffeoyl hexoside | C15H18O9 | 341.0917 | [Μ-H]− | 241, 150, 97 | [21] |
12 | 5.04 | cοumaric acid derivative | C15H16O4 | 305.1067 | [M+FA-H]− | 97 | [21] |
13 | 5.99 | trihydroxyflavone dihexoside (rutin) | C27H29O16 | 609.1475 | [Μ-H]− | 285 | [22] |
14 | 6.36 | luteolin-7-O-glucoside * | C21H20O11 | 447.0941 | [M-H]− | 285, 151, 96 | [23] |
15 | 6.47 | naringenin-7-O-glucoside | C21H22O10 | 479.1204 | [M+FA-H]− | 167, 153 | [24] |
16 | 6.63 | methyl-catechin | C16H16O6 | 303.0914 | [Μ-H]− | 97 | [25] |
17 | 6.76 | ferulic acid (or isomer) | C10H9O4 | 193.0502 | [Μ-H]− | 178, 161, 137 | [17] |
18 | 6.88 | trihydroxy-flavone hexoside | C21H20O10 | 431.0989 | [M-H]− | 268, 152, 109 | [24] |
19 | 7.04 | rosmarinic acid * | C18H16O8 | 359.0780 | [M-H]− | 197, 179, 161, 135, 72 | [26] |
20 | 7.23 | lithospermic acid * | C27H22O12 | 537.1051 | [Μ-H]− | 295, 185, 109 | [17,21] |
21 | 7.53 | salvianolic acid B | C36H30O16 | 717.1485 | [Μ-H]− | 609, 536, 362, 321, 279, 185, 109 | [17,25] |
22 | 7.89 | rosmarinic acid methyl ester | C19H18O8 | 373.0935 | [M-H]− | 197, 175, 171, 135, 72 | [26] |
23 | 7.92 | kaempferol | C15H10O6 | 285.0411 | [M-H]− | 267, 223, 189, 174 | [25] |
24 | 9.68 | 5,8,12-trihydroxy-9-octadecenoic-acid | C18H34O5 | 329.2339 | [M-H]− | 211, 171, 139, 99 | [25] |
Extracts | TPC (mg GAE/g Extract) | TFC (mg RE/g Extract) | DPPH (mg TE/g Extract) | ABTS (mg TE/g Extract) | CUPRAC (mg TE/g Extract) | FRAP (mg TE/g Extract) | Metal Chelating (mg EDTAE/g Extract) | Phosphomolybdenum (mmol TE/g Extract) |
---|---|---|---|---|---|---|---|---|
ME | 32.20 ± 0.22 | 0.70 ± 0.15 | 46.88 ± 0.64 | 68.31 ± 0.69 | 166.06 ± 4.29 | 79.17 ± 0.62 | 11.76 ± 1.12 | 1.74 ± 0.06 |
WE | 53.47 ± 0.52 | 12.39 ± 0.70 | 93.43 ± 0.11 | 131.48 ± 6.66 | 332.97 ± 3.52 | 167.58 ± 5.47 | 13.97 ± 0.06 | 1.81 ± 0.03 |
Extracts | AChE Inhibition (mg GALAE/g Extract) | BChE Inhibition (mg GALAE/g Extract) | Tyrosinase Inhibition (mg KAE/g Extract) | Amylase Inhibition (mmol ACAE/g Extract) | Glucosidase Inhibition (mmol ACAE/g Extract) |
---|---|---|---|---|---|
ME | na | 1.17 ± 0.25 | 25.05 ± 0.17 | 0.22 ± 0.01 | 1.97 ± 0.14 |
WE | 0.48 ± 0.04 | na | 8.82 ± 0.80 | 0.07 ± 0.01 | 2.08 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozntamar-Pouloglou, K.-M.; Cheilari, A.; Zengin, G.; Graikou, K.; Ganos, C.; Karikas, G.-A.; Chinou, I. Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC–HRMS- In Vitro Antioxidant and Enzyme Inhibitory Activities. Molecules 2023, 28, 1008. https://doi.org/10.3390/molecules28031008
Ozntamar-Pouloglou K-M, Cheilari A, Zengin G, Graikou K, Ganos C, Karikas G-A, Chinou I. Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC–HRMS- In Vitro Antioxidant and Enzyme Inhibitory Activities. Molecules. 2023; 28(3):1008. https://doi.org/10.3390/molecules28031008
Chicago/Turabian StyleOzntamar-Pouloglou, Kalliopi-Maria, Antigoni Cheilari, Gokhan Zengin, Konstantia Graikou, Christos Ganos, George-Albert Karikas, and Ioanna Chinou. 2023. "Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC–HRMS- In Vitro Antioxidant and Enzyme Inhibitory Activities" Molecules 28, no. 3: 1008. https://doi.org/10.3390/molecules28031008
APA StyleOzntamar-Pouloglou, K. -M., Cheilari, A., Zengin, G., Graikou, K., Ganos, C., Karikas, G. -A., & Chinou, I. (2023). Heliotropium procubens Mill: Taxonomic Significance and Characterization of Phenolic Compounds via UHPLC–HRMS- In Vitro Antioxidant and Enzyme Inhibitory Activities. Molecules, 28(3), 1008. https://doi.org/10.3390/molecules28031008