Photo-Fenton and TiO2 Photocatalytic Inactivation of Model Microorganisms under UV-A; Comparative Efficacy and Optimization
Abstract
:1. Introduction
2. Results
2.1. Comparative Assessment of Homogeneous and Heterogeneous Photocatalysis for the Inactivation of Model Microorganisms
2.2. Heterogeneous Photocatalysis Optimization
2.3. Comparative Assessment of Homogeneous and Optimized Heteogeneous Photocatalysis for the Inactivation of Model Microorganisms
3. Discussion
4. Materials and Methods
4.1. Microorganisms and Culture Conditions
4.2. Chemical Reagents
4.3. Photocatalytic Inactivation
4.4. Estimation of Photocatalytic Inactivation Efficiency
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fanourakis, S.K.; Peña-Bahamonde, J.; Bandara, P.C.; Rodrigues, D.F. Nano-Based Adsorbent and Photocatalyst Use for Pharmaceutical Contaminant Removal during Indirect Potable Water Reuse. NPJ Clean Water 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Ajiboye, T.O.; Babalola, S.O.; Onwudiwe, D.C. Photocatalytic Inactivation as a Method of Elimination of E. Coli from Drinking Water. Appl. Sci. 2021, 11, 1313. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef] [PubMed]
- Poulopoulos, S.G.; Yerkinova, A.; Ulykbanova, G.; Inglezakis, V.J. Photocatalytic Treatment of Organic Pollutants in a Synthetic Wastewater Using UV Light and Combinations of TiO2, H2O2 and Fe(III). PLoS ONE 2019, 14, 1–20. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic Activity Improvement and Application of UV-TiO2 Photocatalysis in Textile Wastewater Treatment: A Review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Hodaifa, G.; Agabo García, C.; Borja, R. Study of Catalysts’ Influence on Photocatalysis/Photodegradation of Olive Oil Mill Wastewater. Determination of the Optimum Working Conditions. Catalysts 2020, 10, 554. [Google Scholar] [CrossRef]
- Murcia Mesa, J.J.; Hernández Niño, J.S.; González, W.; Rojas, H.; Hidalgo, M.C.; Navío, J.A. Photocatalytic Treatment of Stained Wastewater Coming from Handicraft Factories. A Case Study at the Pilot Plant Level. Water (Basel) 2021, 13, 2705. [Google Scholar] [CrossRef]
- Antonopoulou, M. Homogeneous and Heterogeneous Photocatalysis for the Treatment of Pharmaceutical Industry Wastewaters: A Review. Toxics 2022, 10, 539. [Google Scholar] [CrossRef]
- Sagadevan, S.; Fatimah, I.; Egbosiuba, T.C.; Alshahateet, S.F.; Lett, J.A.; Weldegebrieal, G.K.; Le, M.-V.; Johan, M.R. Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater. Bull. Chem. React. Eng. Catal. 2022, 17, 430–450. [Google Scholar] [CrossRef]
- Mehta, M.; Chopra, L.; Manikanika. Applications of Nano Photocatalysts in the Degradation of Biomedical Waste: A Short Review. Mater. Today Proc. 2022, 68, 695–700. [Google Scholar] [CrossRef]
- Tsoumachidou, S.; Berberidou, C.; Kitsiou, V.; Poulios, I. Photocatalytic Oxidation of Simulated and Real Hazardous Medical Wastewater: Decolorization, Mineralization and Toxicity Evaluation. J. Chem. Technol. Biotechnol. 2021, 96, 3207–3215. [Google Scholar] [CrossRef]
- Berberidou, C.; Paspaltsis, I.; Pavlidou, E.; Sklaviadis, T.; Poulios, I. Heterogenous Photocatalytic Inactivation of B. Stearothermophilus Endospores in Aqueous Suspensions under Artificial and Solar Irradiation. Appl. Catal. B 2012, 125, 375–382. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Chaudhuri, M. Photocatalytic Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution Using UV/TiO2 and UV/H2O2/TiO2 Photocatalysis. Desalination 2010, 252, 46–52. [Google Scholar] [CrossRef]
- Soboleva, N.M.; Saprykina, M.N.; Kosinova, V.N.; Nosonovich, A.A.; Goncharuk, V.V. Inactivation of Candida Albicans in the Photo-Fenton System. J. Water Chem. Technol. 2012, 34, 69–102. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, W.; Mao, Y.; Sun, Q.; Zhang, P.; Ke, Q.; Dai, C.; Zhao, M.; Yu, H. Study of the Degradation of Trimethoprim Using Photo-Fenton Oxidation Technology. Water (Basel) 2019, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Fazilati, M. Photocatalytic Degradation of Amoxicillin, Cephalexin, and Tetracycline from Aqueous Solution: Comparison of Efficiency in the Usage of TiO2, ZnO, or GO-Fe3O4 Nanoparticles. Desalination Water Treat. 2019, 169, 222–231. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Giraldo-Aguirre, A.L.; Silva-Agredo, J.; Flórez-Acosta, O.A.; Torres-Palma, R.A. Removal of Antibiotic Cloxacillin by Means of Electrochemical Oxidation, TiO2 Photocatalysis, and Photo-Fenton Processes: Analysis of Degradation Pathways and Effect of the Water Matrix on the Elimination of Antimicrobial Activity. Environ. Sci. Pollut. Res. 2017, 24, 6339–6352. [Google Scholar] [CrossRef]
- Massoud, A.; Derbalah, A.; El-Mehasseb, I.; Allah, M.S.; Ahmed, M.S.; Albrakati, A.; Elmahallawy, E.K. Photocatalytic Detoxification of Some Insecticides in Aqueous Media Using TiO2 Nanocatalyst. Int. J. Environ. Res. Public Health 2021, 18, 9278. [Google Scholar] [CrossRef]
- Berberidou, C.; Kitsiou, V.; Lambropoulou, D.A.; Michailidou, D.; Kouras, A.; Poulios, I. Decomposition and Detoxification of the Insecticide Thiacloprid by TiO 2 -mediated Photocatalysis: Kinetics, Intermediate Products and Transformation Pathways. J. Chem. Technol. Biotechnol. 2019, 94, 2475–2486. [Google Scholar] [CrossRef]
- Midik Ertosun, F.; Cellat, K.; Eren, O.; Gül, Ş.; Kuşvuran, E.; Şen, F. Comparison of Nanoscale Zero-Valent Iron, Fenton, and Photo-Fenton Processes for Degradation of Pesticide 2,4-Dichlorophenoxyacetic Acid in Aqueous Solution. SN Appl. Sci. 2019, 1, 1491. [Google Scholar] [CrossRef]
- Creţescu, I.; Lutic, D. Advanced Removal of Crystal Violet Dye from Aqueous Solutions by Photocatalysis Using Commercial Products Containing Titanium Dioxide. Comptes Rendus. Chim. 2022, 25, 39–50. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jellali, S.; Hamed, N.B.H.; el Jery, A.; Khezami, L.; Assadi, A.A.; Amrane, A. Photocatalytic Treatment of Wastewater Containing Simultaneous Organic and Inorganic Pollution: Competition and Operating Parameters Effects. Catalysts 2021, 11, 855. [Google Scholar] [CrossRef]
- Patel, S.K.; Patel, S.G.; Patel, G.V. Degradation of Reactive Dye in Aqueous Solution by Fenton, Photo-Fenton Process and Combination Process with Activated Charcoal and TiO2. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2020, 90, 579–591. [Google Scholar] [CrossRef]
- Suhan, M.B.K.; Mahtab, S.M.T.; Aziz, W.; Akter, S.; Islam, M.S. Sudan Black B Dye Degradation in Aqueous Solution by Fenton Oxidation Process: Kinetics and Cost Analysis. Case Stud. Chem. Environ. Eng. 2021, 4, 100126. [Google Scholar] [CrossRef]
- Elgohary, E.A.; Mohamed, Y.M.A.; el Nazer, H.A.; Baaloudj, O.; Alyami, M.S.S.; el Jery, A.; Assadi, A.A.; Amrane, A. A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts 2021, 11, 1498. [Google Scholar] [CrossRef]
- Bandala, E.R.; Perez, R.; Lee, A.E.V.; Sanchez-Salas, J.L.; Quiroz, A.M.; Mendez-Rojas, M.A. Bacillus Subtilis spore inactivation in water using photo-assisted Fenton reaction. Sustain. Environ. Res. 2011, 21, 285–290. [Google Scholar]
- Lee, S.-H.; Pumprueg, S.; Moudgil, B.; Sigmund, W. Inactivation of Bacterial Endospores by Photocatalytic Nanocomposites. Colloids Surf. B Biointerfaces 2005, 40, 93–98. [Google Scholar] [CrossRef]
- Kim, C.; Choi, M.; Jang, J. Nitrogen-Doped SiO2/TiO2 Core/Shell Nanoparticles as Highly Efficient Visible Light Photocatalyst. Catal. Commun. 2010, 11, 378–382. [Google Scholar] [CrossRef]
- Habibi-Yangjeh, A.; Asadzadeh-Khaneghah, S.; Feizpoor, S.; Rouhi, A. Review on Heterogeneous Photocatalytic Disinfection of Waterborne, Airborne, and Foodborne Viruses: Can We Win against Pathogenic Viruses? J. Colloid. Interface Sci. 2020, 580, 503–514. [Google Scholar] [CrossRef]
- Lanrewaju, A.A.; Enitan-Folami, A.M.; Sabiu, S.; Swalaha, F.M. A Review on Disinfection Methods for Inactivation of Waterborne Viruses. Front Microbiol. 2022, 13, 1–19. [Google Scholar] [CrossRef]
- Ripolles-Avila, C.; Martinez-Garcia, M.; Hascoët, A.-S.; Rodríguez-Jerez, J.J. Bactericidal Efficacy of UV Activated TiO 2 Nanoparticles against Gram-Positive and Gram-Negative Bacteria on Suspension. CyTA—J. Food 2019, 17, 408–418. [Google Scholar] [CrossRef]
- Carré, G.; Hamon, E.; Ennahar, S.; Estner, M.; Lett, M.-C.; Horvatovich, P.; Gies, J.-P.; Keller, V.; Keller, N.; Andre, P. TiO 2 Photocatalysis Damages Lipids and Proteins in Escherichia Coli. Appl. Environ. Microbiol. 2014, 80, 2573–2581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.-S.; Lee, J.-I.; Kang, D.-H. TiO2-Based Photocatalyst Generated Reactive Oxygen Species Cause Cell Membrane Disruption of Staphylococcus Aureus and Escherichia Coli O157:H7. Food Microbiol. 2023, 109, 104119. [Google Scholar] [CrossRef]
- Bono, N.; Ponti, F.; Punta, C.; Candiani, G. Effect of UV Irradiation and TiO2-Photocatalysis on Airborne Bacteria and Viruses: An Overview. Materials 2021, 14, 1075. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, S. Analogies and Differences among Bacterial and Viral Disinfection by the Photo-Fenton Process at Neutral PH: A Mini Review. Environ. Sci. Pollut. Res. 2018, 25, 27676–27692. [Google Scholar] [CrossRef]
- Cho, M.; Chung, H.; Choi, W.; Yoon, J. Different Inactivation Behaviors of MS2 Phage and Escherichia Coli in TiO 2 Photocatalytic Disinfection. Appl. Environ. Microbiol. 2005, 71, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Khani, M.; Amin, N.A.S.; Hosseini, S.N.; Heidarrezaei, M. Kinetics Study of the Photocatalytic Inactivation of Escherichia Coli. Int. J. Nano Biomater. 2016, 6, 139–150. [Google Scholar] [CrossRef]
- Giannakis, S.; Liu, S.; Carratalà, A.; Rtimi, S.; Talebi Amiri, M.; Bensimon, M.; Pulgarin, C. Iron Oxide-Mediated Semiconductor Photocatalysis vs. Heterogeneous Photo-Fenton Treatment of Viruses in Wastewater. Impact of the Oxide Particle Size. J. Hazard. Mater. 2017, 339, 223–231. [Google Scholar] [CrossRef]
- Rodrigues-Silva, C.; Miranda, S.M.; Lopes, F.V.S.; Silva, M.; Dezotti, M.; Silva, A.M.T.; Faria, J.L.; Boaventura, R.A.R.; Vilar, V.J.P.; Pinto, E. Bacteria and Fungi Inactivation by Photocatalysis under UVA Irradiation: Liquid and Gas Phase. Environ. Sci. Pollut. Res. 2017, 24, 6372–6381. [Google Scholar] [CrossRef]
- Hitkova, H.; Stoyanova, A.; Ivanova, N.; Sredkova, M.; Popova, V.; Iordanova, R.; Bachvarova-Nedelcheva, A. Study of antibacterial activity of nonhydrolytic synthesized TiO2 against E. coli, P. aeruginosa and S. aureus . Beilstein J. Nanotechnol. 2012, 4, 9–17. [Google Scholar]
- Armon, R.; Narkis, N.; Neeman, I. Photocatalytic Inactivation of Different Bacteria and Bacteriophages in Drinking Water at Different TiO2 Concentration With or Without Exposure to O2. J. Adv. Oxid. Technol. 2017, 3, 145–150. [Google Scholar] [CrossRef]
- Chartier, Y. Safe Management of Wastes from Health-Care Activities; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Hong, J.; Zhan, S.; Yu, Z.; Hong, J.; Qi, C. Life-Cycle Environmental and Economic Assessment of Medical Waste Treatment. J. Clean Prod. 2018, 174, 65–73. [Google Scholar] [CrossRef]
- Klangsin, P.; Harding, A.K. Medical Waste Treatment and Disposal Methods Used by Hospitals in Oregon, Washington, and Idaho. J. Air Waste Manag. Assoc. 1998, 48, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Windfeld, E.S.; Brooks, M.S.-L. Medical Waste Management—A Review. J. Environ. Manag. 2015, 163, 98–108. [Google Scholar] [CrossRef]
- Ormsby, A.A. Electro-Thermal Deactivation: One Approach to Comprehensive Medical Waste Management. Med. Waste Anal. 1993, 2, 15–16. [Google Scholar]
- Lee, B.-K.; Ellenbecker, M.J.; Moure-Ersaso, R. Alternatives for Treatment and Disposal Cost Reduction of Regulated Medical Wastes. Waste Manag. 2004, 24, 143–151. [Google Scholar] [CrossRef]
- Trunk, T.; Khalil, H.S.; Leo, J.C. Bacterial Autoaggregation. AIMS Microbiol. 2018, 4, 140–164. [Google Scholar] [CrossRef]
- Haaber, J.; Cohn, M.T.; Frees, D.; Andersen, T.J.; Ingmer, H. Planktonic Aggregates of Staphylococcus Aureus Protect against Common Antibiotics. PLoS ONE 2012, 7, e41075. [Google Scholar] [CrossRef]
- Gogniat, G.; Thyssen, M.; Denis, M.; Pulgarin, C.; Dukan, S. The Bactericidal Effect of TiO2 Photocatalysis Involves Adsorption onto Catalyst and the Loss of Membrane Integrity. FEMS Microbiol Lett. 2006, 258, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Adán, C.; Magnet, A.; Fenoy, S.; Pablos, C.; del Águila, C.; Marugán, J. Concomitant Inactivation of Acanthamoeba Spp. and Escherichia Coli Using Suspended and Immobilized TiO2. Water Res. 2018, 144, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Laxma Reddy, P.V.; Kavitha, B.; Kumar Reddy, P.A.; Kim, K.-H. TiO 2 -Based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review. Environ. Res. 2017, 154, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Lonnen, J.; Kilvington, S.; Kehoe, S.C.; Al-Touati, F.; McGuigan, K.G. Solar and Photocatalytic Disinfection of Protozoan, Fungal and Bacterial Microbes in Drinking Water. Water Res. 2005, 39, 877–883. [Google Scholar] [CrossRef]
- Tsai, T.-M.; Chang, H.-H.; Chang, K.-C.; Liu, Y.-L.; Tseng, C.-C. A Comparative Study of the Bactericidal Effect of Photocatalytic Oxidation by TiO2 on Antibiotic-Resistant and Antibiotic-Sensitive Bacteria. J. Chem. Technol. Biotechnol. 2010, 85, 1642–1653. [Google Scholar] [CrossRef]
- Rao, G.; Brastad, K.S.; Zhang, Q.; Robinson, R.; He, Z.; Li, Y. Enhanced Disinfection of Escherichia Coli and Bacteriophage MS2 in Water Using a Copper and Silver Loaded Titanium Dioxide Nanowire Membrane. Front Environ. Sci. Eng. 2016, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, M.; Massard, C.; Veisseire, P.; Camares, O.; Awitor, K.O. Environmental Toxicity and Antimicrobial Efficiency of Titanium Dioxide Nanoparticles in Suspension. J. Biomater. Nanobiotechnol. 2015, 06, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.; Singh, R.P.; Pandey, A.; Pandey, A. Photocatalytic Antibacterial Performance of TiO 2 and Ag-Doped TiO 2 against S. Aureus . P. Aeruginosa and E. Coli. Beilstein J. Nanotechnol. 2013, 4, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, K.P.; Chaberny, I.F.; Massholder, K.; Stickler, M.; Benz, V.W.; Sonntag, H.-G.; Erdinger, L. Disinfection of Surfaces by Photocatalytic Oxidation with Titanium Dioxide and UVA Light. Chemosphere 2003, 53, 71–77. [Google Scholar] [CrossRef]
- Mitoraj, D.; Jańczyk, A.; Strus, M.; Kisch, H.; Stochel, G.; Heczko, P.B.; Macyk, W. Visible Light Inactivation of Bacteria and Fungi by Modified Titanium Dioxide. Photochem. Photobiol. Sci. 2007, 6, 642–648. [Google Scholar] [CrossRef]
- Dunlop, P.S.M.; Sheeran, C.P.; Byrne, J.A.; McMahon, M.A.S.; Boyle, M.A.; McGuigan, K.G. Inactivation of Clinically Relevant Pathogens by Photocatalytic Coatings. J. Photochem. Photobiol. A Chem. 2010, 216, 303–310. [Google Scholar] [CrossRef]
- Kokkinos, P.; Venieri, D.; Mantzavinos, D. Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review. Food Environ. Virol. 2021, 13, 283–302. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO 2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An Overview of Homogeneous and Heterogeneous Photocatalysis Applications for the Removal of Pharmaceutical Compounds from Real or Synthetic Hospital Wastewaters under Lab or Pilot Scale. Sci. Total Environ. 2021, 765, 144163. [Google Scholar] [CrossRef] [PubMed]
- Adish Kumar, S.; Sree lekshmi, G.S.; Rajesh Banu, J.; Tae Yeom, I. Synergistic Degradation of Hospital Wastewater by Solar/TiO2/Fe2+/H2O2 Process. Water Qual. Res. J. 2014, 49, 223–233. [Google Scholar] [CrossRef]
- Aranciaga Pajuelo, R.B.; Vargas López, J.P.; Castañeda Olivera, C.A.; Jave Nakayo, J.L.; Benites Alfaro, E.G.; Cabrera Carranza, C.F. Inactivation of Antibiotic Resistant Bacteria in Hospital Wastewater by TiO2/H2O2 Photocatalysis. Chem. Eng. Trans. 2021, 86, 853–858. [Google Scholar] [CrossRef]
- Bacconi, A.; Richmond, G.S.; Baroldi, M.A.; Laffler, T.G.; Blyn, L.B.; Carolan, H.E.; Frinder, M.R.; Toleno, D.M.; Metzgar, D.; Gutierrez, J.R.; et al. Improved Sensitivity for Molecular Detection of Bacterial and Candida Infections in Blood. J. Clin. Microbiol. 2014, 52, 3164–3174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maaroufi, Y.; Heymans, C.; de Bruyne, J.-M.; Duchateau, V.; Rodriguez-Villalobos, H.; Aoun, M.; Crokaert, F. Rapid Detection of Candida Albicans in Clinical Blood Samples by Using a TaqMan-Based PCR Assay. J. Clin. Microbiol. 2003, 41, 3293–3298. [Google Scholar] [CrossRef]
$ Microorganism 1 | TiO2 0.1 g/L | TiO2 0.5 g/L | TiO2 1 g/L | TiO2 + H2O2 100 mg/L | TiO2 + H2O2 500 mg/L | TiO2 + H2O2 1000 mg/L |
---|---|---|---|---|---|---|
Bacillus stearothermophilus spores | 180 min (3.1 ± 0.7) | 300 min (3.0 ± 0.6) | 300 min (2.6 ± 0.5) | 180 min (2.7 ± 0.3) | 60 min (3.8 ± 0.1) | 60 min (5.0 ± 0.1) |
Staphylococcus aureus | 30 min (5.0 ± 0.2) | 30 min 2 (4.8 ± 0.3)30 min 2 (4.8 ± 0.3) | 60 min (4.6 ± 0.3) | 15 min (5.1 ± 0.0) | 5 min (5.0 ± 0.0) | 5 min (5.1 ± 0.1) |
MS2 | 15 min (4.4 ± 1.1) | 15 min 2 (4.4 ± 1.1) | 15 min (2.7 ± 0.1) | 5 min (5.0 ± 0.0) | 5 min (5.0 ± 0.0) | 5 min (5.0 ± 0.0) |
Escherichia coli | 30 min (5.0 ± 0.1) | 5 min (5.0 ± 0.1) | 15 min (5.0 ± 0.1) | 2 min (5.0 ± 0.0) | 2 min (5.0 ± 0.0) | 2 min (5.0 ± 0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanata, E.; Paspaltsis, I.; Sotiriadis, S.; Berberidou, C.; Tsoumachidou, S.; Dafou, D.; Xanthopoulos, K.; Arsenakis, M.; Arsenakis, A.; Poulios, I.; et al. Photo-Fenton and TiO2 Photocatalytic Inactivation of Model Microorganisms under UV-A; Comparative Efficacy and Optimization. Molecules 2023, 28, 1199. https://doi.org/10.3390/molecules28031199
Kanata E, Paspaltsis I, Sotiriadis S, Berberidou C, Tsoumachidou S, Dafou D, Xanthopoulos K, Arsenakis M, Arsenakis A, Poulios I, et al. Photo-Fenton and TiO2 Photocatalytic Inactivation of Model Microorganisms under UV-A; Comparative Efficacy and Optimization. Molecules. 2023; 28(3):1199. https://doi.org/10.3390/molecules28031199
Chicago/Turabian StyleKanata, Eirini, Ioannis Paspaltsis, Sotiris Sotiriadis, Chrysanthi Berberidou, Sophia Tsoumachidou, Dimitra Dafou, Konstantinos Xanthopoulos, Minas Arsenakis, Athanasios Arsenakis, Ioannis Poulios, and et al. 2023. "Photo-Fenton and TiO2 Photocatalytic Inactivation of Model Microorganisms under UV-A; Comparative Efficacy and Optimization" Molecules 28, no. 3: 1199. https://doi.org/10.3390/molecules28031199
APA StyleKanata, E., Paspaltsis, I., Sotiriadis, S., Berberidou, C., Tsoumachidou, S., Dafou, D., Xanthopoulos, K., Arsenakis, M., Arsenakis, A., Poulios, I., & Sklaviadis, T. (2023). Photo-Fenton and TiO2 Photocatalytic Inactivation of Model Microorganisms under UV-A; Comparative Efficacy and Optimization. Molecules, 28(3), 1199. https://doi.org/10.3390/molecules28031199