Phytochemical Compounds, Acute Toxicity, Anti-Inflammatory and Antioxidant Activities of Thymus leptobotrys Murb Essential Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Acute Toxicity
2.3. Anti-Inflammatory Activity
2.4. Antioxidant Activity
3. Material and Methods
3.1. Plant Material
3.2. Animals
3.3. Extraction of the Essential Oil
3.4. Chromatographic Analysis
3.5. Acute Oral Toxicity
3.6. Anti-Inflammatory Activity
3.7. Antioxidant Activity
3.7.1. DPPH Free Radical Scavenging
3.7.2. Trolox Equivalent Antioxidant Capacity (TEAC)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mouffouk, C.; Hambaba, L.; Haba, H.; Mouffouk, S.; Bensouici, C.; mouffouk, S.; Hachemi, M.; Khadraoui, H. Acute Toxicity and in Vivo Anti-Inflammatory Effects and in Vitro Antioxidant and Anti-Arthritic Potential of Scabiosa Stellata. Orient. Pharm. Exp. Med. 2018, 18, 335–348. [Google Scholar] [CrossRef]
- Guzik, T.J.; Mangalat, D.; Korbut, R. Adipocytokines—Novel Link between Inflammation and Vascular Function. J. Physiol. Pharmacol. 2006, 57, 505–528. [Google Scholar] [PubMed]
- Yu, T.; Lee, Y.J.; Jang, H.-J.; Kim, A.R.; Hong, S.; Kim, T.W.; Kim, M.-Y.; Lee, J.; Lee, Y.G.; Cho, J.Y. Anti-Inflammatory Activity of Sorbus Commixta Water Extract and Its Molecular Inhibitory Mechanism. J. Ethnopharmacol. 2011, 134, 493–500. [Google Scholar] [CrossRef]
- Roth, S.H. Coming to Terms with Nonsteroidal Anti-Inflammatory Drug Gastropathy. Drugs 2012, 72, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Batlouni, M. Nonsteroidal anti-inflammatory drugs: Cardiovascular, cerebrovascular and renal effects. Arq. Bras. Cardiol. 2010, 94, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Nantel, F.; Denis, D.; Gordon, R.; Northey, A.; Cirino, M.; Metters, K.M.; Chan, C.C. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. Br. J. Pharmacol. 1999, 128, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004, 96, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907. [Google Scholar] [CrossRef]
- Bounihi, A.; Hajjaj, G.; Alnamer, R.; Cherrah, Y.; Zellou, A. In Vivo Potential Anti-Inflammatory Activity of Melissa officinalis L. Essential Oil. Adv. Pharmacol. Sci. 2013, 101759, 7. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.A.; Jeon, S.-K.; Lee, E.J.; Shim, C.H.; Lee, I.S. Comparative Study of the Chemical Composition and Antioxidant Activity of Six Essential Oils and Their Components. Nat. Prod. Res. 2010, 24, 140–151. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeq, O.; Mechchate, H.; Es-Safi, I.; Bouhrim, M.; Jawhari, F.; Ouassou, H.; Kharchoufa, L.; AlZain, M.N.; Alzamel, N.M.; Al Kamaly, O.M.; et al. Phytochemical Screening, Antioxidant and Antibacterial Activities of Pollen Extracts from Micromeria Fruticosa, Achillea Fragrantissima, and Phoenix Dactylifera. Plants 2021, 10, 676. [Google Scholar] [CrossRef] [PubMed]
- Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative Stress and Cancer: An Overview. Ageing Res. Rev. 2013, 12, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Della Loggia, R. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 2008, 116, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Nasri, C.; Halabi, Y.; Aghzaf, S.; Nounah, I.; Brunel, M.; Oubihi, A.; El-Guorrami, O.; Harhar, H.; Costa, J.; Tabyaoui, M. Seven Persea americana varieties essential oils comparison: Chemical composition, toxicity, antibacterial, and antioxidant activities. Biocatal. Agric. Biotechnol. 2022, 44, 102468. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Conforti, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Comparative chemical composition, antioxidant and hypoglycaemic activities of Juniperus oxycedrus ssp. oxycedrus L. berry and wood oils from Lebanon. Food Chem. 2007, 105, 572–578. [Google Scholar] [CrossRef]
- Chao, L.K.; Hua, K.F.; Hsu, H.Y.; Cheng, S.S.; Liu, J.Y.; Chang, S.T. Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J. Agric. Food Chem. 2005, 53, 7274–7278. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Menichini, F.; Conforti, F.; Tundis, R.; Bonesi, M.; Saab, A.M.; Statti, G.A.; de Cindio, B.; Houghton, P.J.; Menichini, F.; et al. Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem. 2009, 117, 174–180. [Google Scholar] [CrossRef]
- Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil. J. Agric. Food Chem. 2014, 62, 6632–6639. [Google Scholar] [CrossRef]
- Peltzer, M.; Wagner, J.; Jiménez, A. Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Addit. Contam. 2009, 26, 938–946. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Da Silva Lima, M.; Quintans-Júnior, L.J.; de Santana, W.A.; Kaneto, C.M.; Soares, M.B.P.; Villarreal, C.F. Anti-inflammatory effects of carvacrol: Evidence for a key role of interleukin-10. Eur. J. Pharmacol. 2013, 699, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Damasceno, S.R.; Oliveira, F.R.A.; Carvalho, N.S.; Brito, C.F.; Silva, I.S.; Sousa, F.B.M.; Silva, R.O.; Sousa, D.P.; Barbosa, A.L.R.; Freitas, R.M. Carvacryl acetate, a derivative of carvacrol, reduces nociceptive and inflammatory response in mice. Life Sci. 2014, 94, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.V.; Guimarães, A.G.; Silva, E.R.S.; Sousa-Neto, B.P.; Machado, F.D.F.; Quintans-Júnior, L.J.; Arcanjo, D.D.R.; Oliveira, F.A.; Oliveira, R.C.M. Anti-Inflammatory and Anti-Ulcer Activities of Carvacrol, a Monoterpene Present in the Essential Oil of Oregano. J. Med. Food 2012, 15, 984–991. [Google Scholar] [CrossRef]
- Ismaili, H.; Milella, L.; Fkih-Tetouani, S.; Ilidrissi, A.; Camporese, A.; Sosa, S.; Altinier, G.; Della Loggia, R.; Aquino, R. In vivo topical anti-inflammatory and in vitro antioxidant activities of two extracts of Thymus satureioides leaves. J. Ethnopharmacol. 2004, 91, 31–36. [Google Scholar] [CrossRef]
- Benabid, A.A. Flore et Écosystèmes Du Maroc: Évaluation et Préservation de La Biodiversité; Ibis Press: Paris, France, 2000; ISBN 978-2-910728-13-7. [Google Scholar]
- Sayout, A.; Bahi, F.; Ouknin, M.; Arjouni, Y.; Majidi, L.; Romane, A. Phytochemical screening and antioxidant activity of four Moroccan Thymus species: T. leptobotrys Murb., T. pallidus Batt., T. broussonetti Boiss. and T. maroccanus Ball. Arab. J. Med. Aromat. Plants 2015, 1, 117–128. [Google Scholar] [CrossRef]
- El Asbahani, A.; Jilale, A.; Voisin, S.N.; Addi, E.H.A.; Casabianca, H.; EL Mousadik, A.; Hartmann, D.J.; Renaud, F.N.R. Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa Region (Morocco). J. Essent. Oil Res. 2014, 27, 34–44. [Google Scholar] [CrossRef]
- Jamali, C.A.; Kasrati, A.; Fadli, M.; Hassani, L.; Leach, D.; Abbad, A. Synergistic Effects of Three Moroccan Thyme Essential Oils with Antibiotic Cefixime. Phytothérapie 2017, 15, 111–112. [Google Scholar] [CrossRef]
- Oubihi, A.; Ouryemchi, I.; Nounah, I.; Tarfaoui, K.; Harhar, H.; Ouhssine, M.; Guessous, Z. Chemical Composition, Antibacterial and Antifungal Activities of Thymus Leptobotrys Murb Essential Oil. Orient. Pharm. Exp. Med. 2020, 20, 673–679. [Google Scholar] [CrossRef]
- Jamali, C.A.; El Bouzidi, L.; Bekkouche, K.; Lahcen, H.; Markouk, M.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical Composition and Antioxidant and Anticandidal Activities of Essential Oils from Different Wild Moroccan Thymus Species. Chem. Biodivers. 2012, 9, 1188–1197. [Google Scholar] [CrossRef]
- Asdadi, A.; Alilou, H.; Akssira, M.; Hassani, L.M.I.; Chebli, B.; Moutaj, R.; Gonzặlez-Mas, C.; Blặzquez, M.A. Chemical Composition and Anticandidal Effect of Three Thymus Species Essential Oils from Southwest of Morocco against the Emerging Nosocomial Fluconazole-Resistant Strains. J. Biol. Agric. Healthc. 2014, 4, 11. [Google Scholar]
- Elhabazi, K.; Ouacherif, A.; Laroubi, A.; Aboufatima, R.; Abbad, A.; Benharref, A.; Zyad, A.; Chait, A.; Dalal, A. Analgesic Activity of Three Thyme Species, Thymus Satureioides, Thymus Maroccanus and Thymus Leptobotrys. Afr. J. Microbiol. Res. 2008, 2, 262–267. [Google Scholar]
- Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Idrissi Hassani, L.M. Study on Chemical Analysis, Antioxidant and in Vitro Antifungal Activities of Essential Oil from Wild Vitex Agnus-Castus L. Seeds Growing in Area of Argan Tree of Morocco against Clinical Strains of Candida Responsible for Nosocomial Infections. J. Mycol. Med. 2015, 25, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Jamali, C.A.; Kasrati, A.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Phenological changes to the chemical composition and biological activity of the essential oil from Moroccan endemic thyme (Thymus maroccanus Ball). Ind. Crops Prod. 2013, 49, 366–372. [Google Scholar] [CrossRef]
- Alaoui-Jamali, C.; Kasrati, A.; Leach, D.; Abbad, A. Étude comparative de l’activité insecticide des huiles essentielles des espèces de thyms originaires du Sud-Ouest marocain. Phytothérapie 2018, 16, 268–274. [Google Scholar] [CrossRef]
- Imtara, H.; Al-Waili, N.; Aboulghazi, A.; Abdellaoui, A.; Al-Waili, T.; Lyoussi, B. Chemical Composition and Antioxidant Content of Thymus Vulgaris Honey and Origanum Vulgare Essential Oil; Their Effect on Carbon Tetrachloride-Induced Toxicity. Vet. World 2021, 14, 292–301. [Google Scholar] [CrossRef]
- Elhabazi, K.; Aboufatima, R.; Bensalah, A.; Collado, A.; Sanz, J.; Zyad, A.; Ait Mouse, H.; Benharref, A.; Chait, A.; Maroc, M. Acute Toxicity of Essential Oils of Two Moroccan Endemic Species: Thymus Broussonetii and Thymus Leptobotrys. Moroccan J. Biol. 2012, 12, 8–9. [Google Scholar]
- Clarke, E.G.C.; Clarke, M.L. Veterinary Toxicology; Cassel and Collier Macmillan Publishers: London, UK, 1977; pp. 268–277. [Google Scholar]
- El Jemli, M.; Kamal, R.; Marmouzi, I.; Doukkali, Z.; Bouidida, E.H.; Touati, D.; Nejjari, R.; El Guessabi, L.; Cherrah, Y.; Alaoui, K. Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L. J. Tradit. Complement. Med. 2016, 7, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Boughton-Smith, N.; Deakin, A.; Follenfant, R.; Whittle, B.; Garland, L. Role of oxygen radicals and arachidonic acid metabolites in the reverse passive Arthus reaction and carrageenin paw oedema in the rat. Br. J. Pharmacol. 1993, 110, 896–902. [Google Scholar] [CrossRef]
- Islam, E.; Islam, K.M.D.; Billah, M.; Biswas, R.; Sohrab, H.; Rahman, S.M.M. Antioxidant and anti-inflammatory activity of Heritiera fomes (Buch.-Ham), a mangrove plant of the Sundarbans. Orient. Pharm. Exp. Med. 2019, 20, 189–197. [Google Scholar] [CrossRef]
- Pidgeon, G.P.; Lysaght, J.; Krishnamoorthy, S.; Reynolds, J.V.; O’Byrne, K.; Nie, D.; Honn, K.V. Lipoxygenase metabolism: Roles in tumor progression and survival. Cancer Metastasis Rev. 2007, 26, 503–524. [Google Scholar] [CrossRef]
- El Cadi, M.A.; Makram, S.; Ansar, M.; Khabbal, Y.; Alaoui, K.; Faouzi, M.A.; Cherrah, Y.; Taoufik, J. Activité anti-inflammatoire des extraits aqueux et éthanolique de Zygophyllum gaetulum. In Annales Pharmaceutiques Francaises; Elsevier: Amsterdam, The Netherlands, 2012; pp. 113–116. [Google Scholar]
- DI ROSA, M. Biological properties of carrageenan. J. Pharm. Pharmacol. 1972, 24, 89–102. [Google Scholar] [CrossRef]
- Olajide, O.A.; Makinde, J.M.; Awe, S.O. Effects of the aqueous extract of Bridelia ferruginea stem bark on carrageenan-induced oedema and granuloma tissue formation in rats and mice. J. Ethnopharmacol. 1999, 66, 113–117. [Google Scholar] [CrossRef]
- Posadas, I.; Bucci, M.; Roviezzo, F.; Rossi, A.; Parente, L.; Sautebin, L.; Cirino, G. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br. J. Pharmacol. 2004, 142, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Sosa, S.; Altinier, G.; Politi, M.; Braca, A.; Morelli, I.; Della Loggia, R. Extracts and constituents of Lavandula multifida with topical anti-inflammatory activity. Phytomedicine 2005, 12, 271–277. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response. Evid. Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.; Wierer, M.; Bauer, R. In vitro inhibition of prostaglandin biosynthesis by essential oils and phenolic compounds. Planta Med. 1986, 3, 184–187. [Google Scholar] [CrossRef]
- Ismaili, H.; Sosa, S.; Brkic, D.; Fkih-Tetouani, S.; Ilidrissi, A.; Touati, D.; Aquino, R.P.; Tubaro, A. Topical Anti-Inflammatory Activity of Extracts and Compounds from Thymus Broussonettii. J. Pharm. Pharmacol. 2002, 54, 1137–1140. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T.; Deans, S.G.; Dorman, H.J. Antioxidant and Antimicrobial Activity of Foeniculum Vulgare and Crithmum Maritimum Essential Oils. Planta Med. 2000, 66, 687–693. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M.; Giovanelli, E.; Deans, S.G.; Eaglesham, E. Antibacterial and Antioxidant Properties of Mediterranean Aromatic Plants. Ind. Crops Prod. 1993, 2, 47–50. [Google Scholar] [CrossRef]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical Composition, Antioxidant and Antibacterial Activities of the Essential Oils Isolated from Tunisian Thymus Capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Sokmen, A.; Gulluce, M.; Askin Akpulat, H.; Daferera, D.; Tepe, B.; Polissiou, M.; Sokmen, M.; Sahin, F. The in Vitro Antimicrobial and Antioxidant Activities of the Essential Oils and Methanol Extracts of Endemic Thymus Spathulifolius. Food Control 2004, 15, 627–634. [Google Scholar] [CrossRef]
- Amarti, F.; Satrani, B.; Ghanmi, M.; Aafi, A.; Farah, A.; Aarab, L.; El Ajjouri, M.; Guedira, A.; Chaouch, A. Activité Antioxydante et Composition Chimique Des Huiles Essentielles de Quatre Espèces de Thym Du Maroc. Acta Bot. Gall. 2011, 158, 513–523. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Ebrahimabadi, A.H.; Djafari-Bidgoli, Z.; Batooli, H. GC/MS Analysis and in Vitro Antioxidant Activity of Essential Oil and Methanol Extracts of Thymus Caramanicus Jalas and Its Main Constituent Carvacrol. Food Chem. 2009, 115, 1524–1528. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T. Antioxidant Activity of Selected Essential Oil Components in Two Lipid Model Systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- El Abed, N.; Kaabi, B.; Smaali, M.I.; Chabbouh, M.; Habibi, K.; Mejri, M.; Marzouki, M.N.; Ben Hadj Ahmed, S. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus Capitata Essential Oil with Its Preservative Effect against Listeria Monocytogenes Inoculated in Minced Beef Meat. Evid. Based Complement. Altern. Med. 2014, 2014, 152487. [Google Scholar] [CrossRef] [Green Version]
- Sayah, K.; Chemlal, L.; Marmouzi, I.; El Jemli, M.; Cherrah, Y.; Faouzi, M.E.A. In Vivo Anti-Inflammatory and Analgesic Activities of Cistus Salviifolius (L.) and Cistus Monspeliensis (L.) Aqueous Extracts. South Afr. J. Bot. 2017, 113, 160–163. [Google Scholar] [CrossRef]
- OECD: Organisation for Economic Co-operation and Development (OECD). Guidelines for Testing of Chemical, Guideline 423. In Acute Oral Toxicity e Acute Toxic Class Method (Paris); OECD: Paris, France, 2002. [Google Scholar]
- Oubihi, A.; Hosni, H.; Nounah, I.; Ettouil, A.; Harhar, H.; Alaoui, K.; Ouhssine, M.; Guessous, Z. Phenolic Content, Antioxidant Activity, Anti-Inflammatory Potential, and Acute Toxicity Study of Thymus Leptobotrys Murb. Extracts. Biochem. Res. Int. 2020, 2020, 8823209. [Google Scholar] [CrossRef]
- Sindhu, R.K.; Arora, S. Anti-inflammatory potential of different extracts isolated from the roots of Ficus lacor Buch. Hum and Murraya koenigii L. Spreng. Arch. Biol. Sci. 2014, 66, 1261–1270. [Google Scholar] [CrossRef] [Green Version]
- Saénz, M.T.; García, M.D.; Fernández, M.A. Anti-Inflammatory Activity and Acute Toxicity of Anredera Leptostachys. Phytomedicine 1998, 5, 195–198. [Google Scholar] [CrossRef]
- Sindhu, R.K.; Arora, S. Evaluation of phenolic contents and antioxidant potential of Murraya koenigii (L) spreng roots. J. Appl. Pharm. Sci. 2012, 2, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Tarfaoui, K.; Brhadda, N.; Ziri, R.; Oubihi, A.; Imtara, H.; Haida, S.; Saleh, A.; Parvez, M.K.; Fettach, S.; Ouhssine, M. Chemical Profile, Antibacterial and Antioxidant Potential of Zingiber officinale Roscoe and Elettaria cardamomum (L.) Maton Essential Oils and Extracts. Plants 2022, 11, 1487. [Google Scholar] [CrossRef]
- Hajib, A.; Nounah, I.; Oubihi, A.; Hicham, H.; Gharby, S.; Kartah, B.; Bougrin, K.; Charrouf, Z. Chemical Composition and Biological Activities of Essential Oils from the Fruits of Cuminum Cyminum L. and Ammodaucus Leucotrichus L. (Apiaceae). J. Essent. Oil Bear. Plants 2020, 23, 474–483. [Google Scholar] [CrossRef]
RT | Compound | % | |
---|---|---|---|
1 | 838 | 2-hexenal | Tr |
2 | 916 | 3-heptanone | Tr |
3 | 936 | α-pinene | 2.84 |
4 | 980 | β-pinene | Tr |
5 | 1025 | P-cymene | 8.68 |
6 | 1047 | (E) β-ocimene | 0.38 |
7 | 1059 | γ-terpinene | 4.14 |
8 | 1067 | Sabinene-hydrate | 0.05 |
9 | 1088 | α-terpinolene | 0.24 |
10 | 1099 | Linalol | 0.95 |
11 | 1122 | Trans-p-menth-2-en-1-ol | Tr |
12 | 1123 | Pinocarveol | 0.14 |
13 | 1179 | Terpinene-4-ol | 1.14 |
14 | 1191 | Cis-dihydrocarvone | 0.15 |
15 | 1196 | α-terpineol | 0.05 |
16 | 1204 | Dihydrocarvone | 0.19 |
17 | 1234 | Carvacrol methyl ether | 0.56 |
18 | 1302 | Carvacrol | 73.68 |
19 | 1358 | Eugenol | 0.23 |
20 | 1381 | Carvacryl acetate | 0.57 |
21 | 1426 | β-caryophyllene | 2.51 |
22 | 1445 | Aromadendrene | 0.91 |
23 | 1443 | α-guaiene | 0.07 |
24 | 1467 | Alloaromandendrene | 0.32 |
25 | 1480 | β-guaiene | 0.05 |
26 | 1524 | γ-cadinene | 0.14 |
27 | 1532 | δ-cadinene | 0.21 |
28 | 1587 | Spathulenol | 0.92 |
29 | 1635 | β- eudesmol | Tr |
30 | 1638 | Epi-α-cadinol | 0.19 |
31 | 1939 | Phytol | Tr |
Total identified % | 99.31 |
Treatments (mg kg−1) | Inhibition of Edema Induced by Carrageenan (%) | ||
---|---|---|---|
1 h 30 min | 3 h | 6 h | |
Indo 10 | 75.24 ± 0.025 | 68.32 ± 0.017 | 53.22 ± 0.018 |
EO 100 | 73.33 ± 0.021 | 73.55 ± 0.028 | 58.37 ± 0.026 |
EO 200 | 80.00 ± 0.030 | 89.59 ± 0.018 | 70.81 ± 0.027 |
Assays | T. leptobotrys | Positive Control |
---|---|---|
EO | Trolox | |
DPPH (IC50 µg mL−1) | 346.90 ± 0.53 | 1.85 ± 0.02 |
ABTS (mg Trolox equivalent/g EO) | 861.14 ± 1.21 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oubihi, A.; Ballaoui, F.Z.; Imtara, H.; Jaber, H.; Ettouil, A.; Haida, S.; Ouhssine, M.; Noman, O.M.; Mothana, R.A.; Tarayrah, M.; et al. Phytochemical Compounds, Acute Toxicity, Anti-Inflammatory and Antioxidant Activities of Thymus leptobotrys Murb Essential Oil. Molecules 2023, 28, 1355. https://doi.org/10.3390/molecules28031355
Oubihi A, Ballaoui FZ, Imtara H, Jaber H, Ettouil A, Haida S, Ouhssine M, Noman OM, Mothana RA, Tarayrah M, et al. Phytochemical Compounds, Acute Toxicity, Anti-Inflammatory and Antioxidant Activities of Thymus leptobotrys Murb Essential Oil. Molecules. 2023; 28(3):1355. https://doi.org/10.3390/molecules28031355
Chicago/Turabian StyleOubihi, Asmaa, Fatima Zahrae Ballaoui, Hamada Imtara, Hassna Jaber, Abdessamad Ettouil, Sara Haida, Mohammed Ouhssine, Omar M. Noman, Ramzi A. Mothana, Mahmoud Tarayrah, and et al. 2023. "Phytochemical Compounds, Acute Toxicity, Anti-Inflammatory and Antioxidant Activities of Thymus leptobotrys Murb Essential Oil" Molecules 28, no. 3: 1355. https://doi.org/10.3390/molecules28031355
APA StyleOubihi, A., Ballaoui, F. Z., Imtara, H., Jaber, H., Ettouil, A., Haida, S., Ouhssine, M., Noman, O. M., Mothana, R. A., Tarayrah, M., & Guessous, Z. (2023). Phytochemical Compounds, Acute Toxicity, Anti-Inflammatory and Antioxidant Activities of Thymus leptobotrys Murb Essential Oil. Molecules, 28(3), 1355. https://doi.org/10.3390/molecules28031355