Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cram, D.J.; Cram, J.M. Host-Guest Chemistry: Complexes between organic compounds simulate the substrate selectivity of enzymes. Science 1974, 183, 803–809. [Google Scholar] [CrossRef]
- Cram, D.J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 1009–1112. [Google Scholar] [CrossRef]
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 2495–2496. [Google Scholar] [CrossRef]
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. [Google Scholar] [CrossRef]
- Cram, D.J.; Tanner, M.E.; Thomas, R. The Taming of Cyclobutadiene. Angew. Chem. Int. Ed. 1991, 30, 1024–1027. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1753. [Google Scholar] [CrossRef]
- Breslow, R.; Dong, S. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. Chem. Rev. 1998, 98, 1997–2011. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Gutsch, C.D. Calixarenes. Acc. Chem. Res. 1983, 16, 161–170. [Google Scholar] [CrossRef]
- Konishi, H.; Ohata, K.; Morikawa, O.; Kobayash, K. Calix[6]resorcinarenes: The first examples of [16]metacyclophanes derived from resorcinols. J. Chem. Soc. Chem. Commun. 1995, 3, 309–310. [Google Scholar] [CrossRef]
- Aoyama, Y.; Tanaka, Y.; Toi, H.; Ogoshi, H. Polar host-guest interaction. Binding of nonionic polar compounds with a resorcinol-aldehyde cyclooligomer as a lipophilic polar host. J. Am. Chem. Soc. 1988, 110, 634–635. [Google Scholar] [CrossRef]
- Ballester, P.; Shivanyuk, A.; Far, A.R.; Rebek, J., Jr. A Synthetic Receptor for Choline and Carnitine. J. Am. Chem. Soc. 2002, 124, 14014–14016. [Google Scholar] [CrossRef] [PubMed]
- Gissot, A.; Rebek, J., Jr. A Functionalized, Deep Cavitand Catalyzes the Aminolysis of a Choline Derivative. J. Am. Chem. Soc. 2004, 126, 7424–7425. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Gibb, C.L.D.; Stevens, E.D.; Gibb, B.C. Deep-cavity cavitands: Synthesis and solid state structure of host molecules possessing large bowl-shaped cavities. Chem. Commun. 1998, 34, 1743–1744. [Google Scholar] [CrossRef]
- Jordan, J.H.; Gibb, B.C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015, 44, 547–585. [Google Scholar] [CrossRef]
- Lippert, B.; Miguel, P.J.S. Metallatriangles and metallasquares: The diversity behind structurally characterized examples and the crucial role of ligand symmetry. Chem. Soc. Rev. 2011, 40, 4475–4487. [Google Scholar] [CrossRef]
- Frischmann, P.D.; MacLachlan, M.J. Metallocavitands: An emerging class of functional multimetallic host molecules. Chem. Soc. Rev. 2013, 42, 871–890. [Google Scholar] [CrossRef]
- Kulesza, J.; Barrosb, B.S.; Júnior, S.A. Organic–inorganic hybrid materials: Metallacalixarenes. Synthesis and applications. Coord. Chem. Rev. 2013, 257, 2192–2212. [Google Scholar] [CrossRef]
- Thanasekaran, P.; Lee, C.-C.; Lu, K.-L. One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. Acc. Chem. Res. 2012, 45, 1403–1418. [Google Scholar] [CrossRef]
- Severin, K. Supramolecular chemistry with organometallic half-sandwich complexes. Chem. Commun. 2006, 42, 3859–3867. [Google Scholar] [CrossRef]
- Sathiyendiran, M.; Tsai, C.C.; Thanasekaran, P.; Luo, T.T.; Yang, C.I.; Lee, G.H.; Peng, S.M.; Lu, K.L. Organometallic Calixarenes: Syceelike Tetrarhenium(I) Cavitands with Tunable Size, Color, Functionality, and Coin–Slot Complexation. Chem. Eur. J. 2011, 17, 3343–3346. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Yu, S.-Y.; Kusukawa, T.; Funaki, H.; Ogura, K.; Yamaguchi, K. Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules. Angew. Chem. Int. Ed. 1998, 37, 2082–2085. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Kusukawa, T.; Biradha, K.; Fujita, M. Hydrophobic Assembling of a Coordination Nanobowl into a Dimeric Capsule Which Can Accommodate up to Six Large Organic Molecules. J. Am. Chem. Soc. 2000, 122, 2665–2666. [Google Scholar] [CrossRef]
- Tashiro, S.; Tominaga, M.; Yamaguchi, Y.; Kato, K.; Fujita, M. Folding a De Novo Designed Peptide into an a Helix through Hydrophobic Binding by a Bowl Shaped Host. Angew. Chem. Int. Ed. 2005, 45, 241–244. [Google Scholar] [CrossRef]
- Tashiro, S.; Tominaga, M.; Yamaguchi, Y.; Kato, K.; Fujita, M. Peptide Recognition: Encapsulation and α-Helical Folding of a Nine-Residue Peptide within a Hydrophobic Dimeric Capsule of a Bowl-Shaped Host. Chem. Eur. J. 2006, 12, 3211–3217. [Google Scholar] [CrossRef]
- Barrett, E.S.; Irwin, J.L.; Edwards, A.J.; Sherburn, M.S. Superbowl Container Molecules. J. Am. Chem. Soc. 2004, 126, 16747–16749. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Shinokubo, H.; Sakurai, H. Figuration of bowl-shaped π-conjugated molecules: Properties and functions. Mater. Chem. Front. 2018, 2, 635–661. [Google Scholar] [CrossRef]
- Krzeszewski, M.; Dobrzycki, L.; Sobolewski, A.L.; Cyranski, M.K.; Gryko, D.T. Bowl-Shaped Pentagon- and Heptagon-Embedded Nanographene Containing a Central Pyrrolo[3,2-b]pyrrole Core. Angew. Chem. Int. Ed. 2021, 60, 14998–15005. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, G. Periphery-Core Strategy to Access a Bowl-Shaped Molecule Bearing Multiple Heteroatoms. Angew. Chem. Int. Ed. 2022, 61, e202208061. [Google Scholar]
- Sygula, A.; Fronczek, F.R.; Sygula, R.; Rabideau, P.W.; Olmstead, M.M. A Double Concave Hydrocarbon Buckycatcher. J. Am. Chem. Soc. 2007, 129, 3842–3843. [Google Scholar] [CrossRef] [PubMed]
- Le, V.H.; Yanney, M.; McGuire, M.; Sygula, A.; Lewis, E.A. Thermodynamics of Host–Guest Interactions between Fullerenes and a Buckycatcher. J. Phys. Chem. B 2014, 118, 11956–11964. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.M.; Garcia-Escudero, L.A.; Garcia-Rodriguez, R.; Martin-Alvarez, J.M.; Miguel, D.; Rayon, V.M. Enhanced association for C70 over C60 with a metal complex with corannulene derivate ligands. Dalton Trans. 2014, 43, 15693–15696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Presly, O.; White, F.; Oppel, I.M.; Mastalerz, M. A Permanent Mesoporous Organic Cage with an Exceptionally High Surface Area. Angew. Chem. Int. Ed. 2014, 53, 1516–1520. [Google Scholar] [CrossRef]
- Klotzbach, S.; Beuerle, F. Shape-Controlled Synthesis and Self-Sorting of Covalent Organic Cage Compounds. Angew. Chem. Int. Ed. 2015, 54, 10356–10360. [Google Scholar] [CrossRef]
- Au-Yeung, H.Y.; Pantos, G.D.; Sanders, J.K.M. Dynamic combinatorial synthesis of a catenane based on donor–acceptor interactions in water. Proc. Natl. Acad. Sci. USA 2009, 106, 10466–10470. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Vysotsky, M.O.; Bogdan, A.; Bolte, M.; Bo, V. Multiple Catenanes Derived from Calix[4]arenes. Science 2004, 304, 1312–1314. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Lammer, A.D.; Wang, M.; Li, X.; Lynch, V.M.; Sessler, J.L. Quantitative self-assembly of a purely organic three-dimensional catenane in water. Nat. Chem. 2015, 7, 1003–1008. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Long, H.; Du, Y.; Jin, Y.; Zhang, W. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis. Angew. Chem. Int. Ed. 2015, 54, 7550–7554. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Zhang, C.; Long, H.; Azarnoush, S.; Jin, Y.; Zhang, W. Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: Dimer, tetramer, or interlocked complex? Chem. Sci. 2016, 7, 3370–3376. [Google Scholar] [CrossRef]
- Lee, S.; Yang, A.; Moneypenny, T.P.; Moore, J.S. Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis. J. Am. Chem. Soc. 2016, 138, 2182–2185. [Google Scholar] [CrossRef]
- Li, J.; Carnall, J.M.; Stuart, M.C.; Otto, S. Hydrogel Formation upon Photoinduced Covalent Capture of Macrocycle Stacks from Dynamic Combinatorial Libraries. Angew. Chem. Int. Ed. 2011, 50, 8384–8386. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nowak, P.; Otto, S. An Allosteric Receptor by Simultaneous “Casting” and “Molding” in a Dynamic Combinatorial Library. Angew. Chem. Int. Ed. 2015, 54, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nowak, P.; Fanlo-Virgós, H.; Otto, S. Catenanes from catenanes: Quantitative assessment of cooperativity in dynamic combinatorial catenation. Chem. Sci. 2014, 5, 4968–4974. [Google Scholar] [CrossRef]
- Li, J.; Cvrtila, I.; Colomb-Delsuc, M.; Otten, E.; Otto, S. An “Ingredients” Approach to Functional Self-Synthesizing Materials: A Metal-Ion-Selective, Multi-Responsive, Self-Assembled Hydrogel. Chem. Eur. J. 2014, 20, 15709–15714. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nowak, P.; Otto, S. Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry. J. Am. Chem. Soc. 2013, 135, 9222–9239. [Google Scholar] [CrossRef]
- Nowak, P.; Colomb-Delsuc, M.; Otto, S.; Li, J. Template-Triggered Emergence of a Self-Replicator from a Dynamic Combinatorial Library. J. Am. Chem. Soc. 2015, 137, 10965–10969. [Google Scholar] [CrossRef]
- Belowich, M.E.; Stoddart, J.F. Dynamic Imine Chemistry. Chem. Soc. Rev. 2012, 41, 2003–2024. [Google Scholar] [CrossRef]
- Quan, M.L.C.; Cram, D.J. Constrictive binding of large guests by a hemicarcerand containing four portals. J. Am. Chem. Soc. 1991, 113, 2754–2755. [Google Scholar] [CrossRef]
- Berl, V.; Huc, I.; Lehn, J.-M.; DeCian, A.; Fischer, J. Induced Fit Selection of a Barbiturate Receptor from a Dynamic Structural and Conformational/Configurational Library. Eur. J. Org. Chem. 1999, 1999, 3089–3094. [Google Scholar] [CrossRef]
- Godoy-Alcántar, C.; Yatsimirsky, A.K.; Lehn, J.M. Structure-stability correlations for imine formation in aqueous solution. J. Phys. Org. Chem. 2005, 18, 979–985. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Li, G.; Warmuth, R. One-Pot, 18-Component Synthesis of an Octahedral Nanocontainer Molecule. Angew. Chem. Int. Ed. 2006, 45, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Rue, N.M.; Sun, J.; Warmuth, R. Polyimine Container Molecules and Nanocapsules. Israel J. Chem. 2011, 51, 743–768. [Google Scholar] [CrossRef]
- Jiao, T.; Chen, L.; Yang, D.; Li, X.; Wu, G.; Zeng, P.; Zhou, A.; Yin, Q.; Pan, Y.; Wu, B.; et al. Trapping White Phosphorus within a Purely Organic Molecular Container Produced by Imine Condensation. Angew. Chem. Int. Ed. 2017, 56, 14545–14550. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xu, S.; Yu, C.; Li, Z.Y.; Xu, J.; Li, Z.M.; Zou, L.; Leng, X.; Gao, S.; Liu, Z.; et al. De Novo Construction of Catenanes with Dissymmetric Cages by Space-Discriminative Post-Assembly Modification. Angew. Chem. Int. Ed. 2020, 59, 7113–7121. [Google Scholar] [CrossRef] [PubMed]
- Cousins, G.R.L.; Poulsen, S.-A.; Sanders, J.K.M. Dynamic combinatorial libraries of pseudo-peptide hydrazone macrocycles. Chem. Commun. 1999, 35, 1575–1576. [Google Scholar] [CrossRef]
- Furlan, R.L.E.; Ng, Y.-F.; Otto, S.; Sanders, J.K.M. A New Cyclic Pseudopeptide Receptor for Li+ from a Dynamic Combinatorial Library. J. Am. Chem. Soc. 2001, 123, 8876–8877. [Google Scholar] [CrossRef]
- Roberts, S.L.; Furlan, R.L.; Cousins, G.R.; Sanders, J.K. Simultaneous selection, amplification and isolation of a pseudo-peptide receptor by an immobilised N-methyl ammonium ion template. Chem. Commun. 2002, 38, 938–939. [Google Scholar] [CrossRef]
- Nguyen, R.; Huc, I. Optimizing the reversibility of hydrazone formation for dynamic combinatorial chemistry. Chem. Commun. 2003, 39, 942–943. [Google Scholar] [CrossRef]
- Ramstrom, O.; Lohmann, S.; Bunyapaiboonsri, T.; Lehn, J.-M. Dynamic Combinatorial Carbohydrate Libraries: Probing the Binding Site of the Concanavalin A Lectin. Chem. Eur. J. 2004, 10, 1711–1715. [Google Scholar] [CrossRef]
- Wu, G.; Wang, C.Y.; Jiao, T.; Zhu, H.; Huang, F.; Li, H. Controllable Self-Assembly of Macrocycles in Water for Isolating Aromatic Hydrocarbon Isomers. J. Am. Chem. Soc. 2018, 140, 5955–5961. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Cao, N.; Yang, C.; Li, H. A Kinetically Stable Macrocycle Self-Assembled in Water. Org. Lett. 2018, 20, 2356–2359. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gómez, A.; Fernández-Blanco, Á.; Blanco, V.; Rodríguez, J.; Peinador, C.; García, M.D. Thinking Outside the “Blue Box”: Induced Fit within a Unique Self-Assembled Polycationic Cyclophane. J. Am. Chem. Soc. 2019, 141, 3959–3964. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gomez, A.; Neira, I.; Barriada, J.L.; Melle-Franco, M.; Peinador, C.; Garcia, M.D. Thinking outside the “Blue Box”: From molecular to supramolecular pH-responsiveness. Chem. Sci. 2019, 10, 10680–10686. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhao, L.; He, C.; Zheng, S.; Reek, J.N.H.; Duan, C. Metal−Organic Capsules with NADH Mimics as Switchable Selectivity Regulators for Photocatalytic Transfer Hydrogenation. J. Am. Chem. Soc. 2019, 141, 12707–12716. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.S.; Li, X.Z.; Hu, S.J.; Yan, D.N.; Zhou, L.P.; Sun, Q.F. Base- and Metal-Dependent Self-Assembly of Lathanide-Organic Coordination Polymers or Macrocycles with Tetradentate Acylhydrazone-based Ditopic Ligands. Chem. Asian J. 2021, 16, 1392–1397. [Google Scholar] [CrossRef]
- Jing, X.; He, C.; Yang, Y.; Duan, C. A Metal−Organic Tetrahedron as a Redox Vehicle to Encapsulate Organic Dyes for Photocatalytic Proton Reduction. J. Am. Chem. Soc. 2015, 137, 3967–3974. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, Y.; Wu, G.; Liu, J.R.; Cao, N.; Wang, L.; Wang, Y.; Li, X.; Hong, X.; Yang, C.; et al. Temperature-dependent self-assembly of a purely organic cage in water. Chem. Commun. 2018, 54, 3138–3141. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Liu, H.K.; Wang, Z.K.; Song, B.; Zhang, D.W.; Wang, H.; Li, Z.; Li, X.; Li, Z.T. Olive-Shaped Organic Cages: Synthesis and Remarkable Promotion of Hydrazone Condensation through Encapsulation in Water. J. Org. Chem. 2021, 86, 3943–3951. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Y.; Fang, S.; Tong, L.; Shen, L.; Ge, C.; Pan, Y.; Shi, X.; Li, H. A Self-Assembled Cage for Wide-Scope Chiral Recognition in Water. Angew. Chem. Int. Ed. 2021, 60, 16594–16599. [Google Scholar] [CrossRef]
- Yang, M.; Qiu, F.; El-Sayed, M.E.-S.; Wang, W.; Du, S.; Su, K.; Yuan, D. Water-stable hydrazone-linked porous organic cages. Chem. Sci. 2021, 12, 13307–13315. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, G.; Jiao, T.; Shen, L.; Ma, G.; Pan, Y.; Li, H. Precursor control over the self-assembly of [2]catenanes via hydrazone condensation in water. Chem. Commun. 2018, 54, 5106–5109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, L.; Wang, C.-Y.; Jiao, T.; Pan, Y.; Li, H. Ultramacrocyclization via selective catenation in water. Chem. Commun. 2019, 55, 13108–13111. [Google Scholar] [CrossRef]
- Cougnon, F.B.L.; Caprice, K.; Pupier, M.; Bauza, A.; Frontera, A. A Strategy to Synthesize Molecular Knots and Links Using the Hydrophobic Effect. J. Am. Chem. Soc. 2018, 140, 12442–12450. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Cho, Y.; Lee, M.; Laskowski, R.A.; Ryu, S.E.; Sugihara, K.; Kim, D.S. BetaCavityWeb: A webserver for molecular voids and channels. Nucleic Acids Res. 2015, 43, W413–W418. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, D.B.; Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [PubMed]
- Mecozzi, S.; Rebek, J., Jr. The 55% Solution: A Formula for Molecular Recognition in the Liquid State. Chem. Eur. J. 1998, 4, 1016–1022. [Google Scholar] [CrossRef]
- Newkome, G.R.; Cho, T.J.; Moorefield, C.N.; Cush, R.; Russo, P.S.; GodÌnez, L.A.; Saunders, M.J.; Mohapatra, P. Hexagonal Terpyridine–Ruthenium and –Iron Macrocyclic Complexes by Stepwise and Self-Assembly Procedures. Chem. Eur. J. 2002, 8, 2946–2954. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta. Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Jiao, T.; Li, H. Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules 2023, 28, 976. https://doi.org/10.3390/molecules28030976
Wu G, Jiao T, Li H. Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules. 2023; 28(3):976. https://doi.org/10.3390/molecules28030976
Chicago/Turabian StyleWu, Guangcheng, Tianyu Jiao, and Hao Li. 2023. "Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation" Molecules 28, no. 3: 976. https://doi.org/10.3390/molecules28030976
APA StyleWu, G., Jiao, T., & Li, H. (2023). Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules, 28(3), 976. https://doi.org/10.3390/molecules28030976