Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cram, D.J.; Cram, J.M. Host-Guest Chemistry: Complexes between organic compounds simulate the substrate selectivity of enzymes. Science 1974, 183, 803–809. [Google Scholar] [CrossRef]
- Cram, D.J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 1009–1112. [Google Scholar] [CrossRef]
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 2495–2496. [Google Scholar] [CrossRef]
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. [Google Scholar] [CrossRef]
- Cram, D.J.; Tanner, M.E.; Thomas, R. The Taming of Cyclobutadiene. Angew. Chem. Int. Ed. 1991, 30, 1024–1027. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1753. [Google Scholar] [CrossRef]
- Breslow, R.; Dong, S. Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. Chem. Rev. 1998, 98, 1997–2011. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Gutsch, C.D. Calixarenes. Acc. Chem. Res. 1983, 16, 161–170. [Google Scholar] [CrossRef]
- Konishi, H.; Ohata, K.; Morikawa, O.; Kobayash, K. Calix[6]resorcinarenes: The first examples of [16]metacyclophanes derived from resorcinols. J. Chem. Soc. Chem. Commun. 1995, 3, 309–310. [Google Scholar] [CrossRef]
- Aoyama, Y.; Tanaka, Y.; Toi, H.; Ogoshi, H. Polar host-guest interaction. Binding of nonionic polar compounds with a resorcinol-aldehyde cyclooligomer as a lipophilic polar host. J. Am. Chem. Soc. 1988, 110, 634–635. [Google Scholar] [CrossRef]
- Ballester, P.; Shivanyuk, A.; Far, A.R.; Rebek, J., Jr. A Synthetic Receptor for Choline and Carnitine. J. Am. Chem. Soc. 2002, 124, 14014–14016. [Google Scholar] [CrossRef] [PubMed]
- Gissot, A.; Rebek, J., Jr. A Functionalized, Deep Cavitand Catalyzes the Aminolysis of a Choline Derivative. J. Am. Chem. Soc. 2004, 126, 7424–7425. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Gibb, C.L.D.; Stevens, E.D.; Gibb, B.C. Deep-cavity cavitands: Synthesis and solid state structure of host molecules possessing large bowl-shaped cavities. Chem. Commun. 1998, 34, 1743–1744. [Google Scholar] [CrossRef]
- Jordan, J.H.; Gibb, B.C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 2015, 44, 547–585. [Google Scholar] [CrossRef] [Green Version]
- Lippert, B.; Miguel, P.J.S. Metallatriangles and metallasquares: The diversity behind structurally characterized examples and the crucial role of ligand symmetry. Chem. Soc. Rev. 2011, 40, 4475–4487. [Google Scholar] [CrossRef]
- Frischmann, P.D.; MacLachlan, M.J. Metallocavitands: An emerging class of functional multimetallic host molecules. Chem. Soc. Rev. 2013, 42, 871–890. [Google Scholar] [CrossRef]
- Kulesza, J.; Barrosb, B.S.; Júnior, S.A. Organic–inorganic hybrid materials: Metallacalixarenes. Synthesis and applications. Coord. Chem. Rev. 2013, 257, 2192–2212. [Google Scholar] [CrossRef]
- Thanasekaran, P.; Lee, C.-C.; Lu, K.-L. One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. Acc. Chem. Res. 2012, 45, 1403–1418. [Google Scholar] [CrossRef]
- Severin, K. Supramolecular chemistry with organometallic half-sandwich complexes. Chem. Commun. 2006, 42, 3859–3867. [Google Scholar] [CrossRef]
- Sathiyendiran, M.; Tsai, C.C.; Thanasekaran, P.; Luo, T.T.; Yang, C.I.; Lee, G.H.; Peng, S.M.; Lu, K.L. Organometallic Calixarenes: Syceelike Tetrarhenium(I) Cavitands with Tunable Size, Color, Functionality, and Coin–Slot Complexation. Chem. Eur. J. 2011, 17, 3343–3346. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Yu, S.-Y.; Kusukawa, T.; Funaki, H.; Ogura, K.; Yamaguchi, K. Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules. Angew. Chem. Int. Ed. 1998, 37, 2082–2085. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Kusukawa, T.; Biradha, K.; Fujita, M. Hydrophobic Assembling of a Coordination Nanobowl into a Dimeric Capsule Which Can Accommodate up to Six Large Organic Molecules. J. Am. Chem. Soc. 2000, 122, 2665–2666. [Google Scholar] [CrossRef]
- Tashiro, S.; Tominaga, M.; Yamaguchi, Y.; Kato, K.; Fujita, M. Folding a De Novo Designed Peptide into an a Helix through Hydrophobic Binding by a Bowl Shaped Host. Angew. Chem. Int. Ed. 2005, 45, 241–244. [Google Scholar] [CrossRef]
- Tashiro, S.; Tominaga, M.; Yamaguchi, Y.; Kato, K.; Fujita, M. Peptide Recognition: Encapsulation and α-Helical Folding of a Nine-Residue Peptide within a Hydrophobic Dimeric Capsule of a Bowl-Shaped Host. Chem. Eur. J. 2006, 12, 3211–3217. [Google Scholar] [CrossRef]
- Barrett, E.S.; Irwin, J.L.; Edwards, A.J.; Sherburn, M.S. Superbowl Container Molecules. J. Am. Chem. Soc. 2004, 126, 16747–16749. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Shinokubo, H.; Sakurai, H. Figuration of bowl-shaped π-conjugated molecules: Properties and functions. Mater. Chem. Front. 2018, 2, 635–661. [Google Scholar] [CrossRef]
- Krzeszewski, M.; Dobrzycki, L.; Sobolewski, A.L.; Cyranski, M.K.; Gryko, D.T. Bowl-Shaped Pentagon- and Heptagon-Embedded Nanographene Containing a Central Pyrrolo[3,2-b]pyrrole Core. Angew. Chem. Int. Ed. 2021, 60, 14998–15005. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, G. Periphery-Core Strategy to Access a Bowl-Shaped Molecule Bearing Multiple Heteroatoms. Angew. Chem. Int. Ed. 2022, 61, e202208061. [Google Scholar]
- Sygula, A.; Fronczek, F.R.; Sygula, R.; Rabideau, P.W.; Olmstead, M.M. A Double Concave Hydrocarbon Buckycatcher. J. Am. Chem. Soc. 2007, 129, 3842–3843. [Google Scholar] [CrossRef] [PubMed]
- Le, V.H.; Yanney, M.; McGuire, M.; Sygula, A.; Lewis, E.A. Thermodynamics of Host–Guest Interactions between Fullerenes and a Buckycatcher. J. Phys. Chem. B 2014, 118, 11956–11964. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.M.; Garcia-Escudero, L.A.; Garcia-Rodriguez, R.; Martin-Alvarez, J.M.; Miguel, D.; Rayon, V.M. Enhanced association for C70 over C60 with a metal complex with corannulene derivate ligands. Dalton Trans. 2014, 43, 15693–15696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Presly, O.; White, F.; Oppel, I.M.; Mastalerz, M. A Permanent Mesoporous Organic Cage with an Exceptionally High Surface Area. Angew. Chem. Int. Ed. 2014, 53, 1516–1520. [Google Scholar] [CrossRef]
- Klotzbach, S.; Beuerle, F. Shape-Controlled Synthesis and Self-Sorting of Covalent Organic Cage Compounds. Angew. Chem. Int. Ed. 2015, 54, 10356–10360. [Google Scholar] [CrossRef]
- Au-Yeung, H.Y.; Pantos, G.D.; Sanders, J.K.M. Dynamic combinatorial synthesis of a catenane based on donor–acceptor interactions in water. Proc. Natl. Acad. Sci. USA 2009, 106, 10466–10470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Vysotsky, M.O.; Bogdan, A.; Bolte, M.; Bo, V. Multiple Catenanes Derived from Calix[4]arenes. Science 2004, 304, 1312–1314. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Lammer, A.D.; Wang, M.; Li, X.; Lynch, V.M.; Sessler, J.L. Quantitative self-assembly of a purely organic three-dimensional catenane in water. Nat. Chem. 2015, 7, 1003–1008. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Long, H.; Du, Y.; Jin, Y.; Zhang, W. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis. Angew. Chem. Int. Ed. 2015, 54, 7550–7554. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, C.; Zhang, C.; Long, H.; Azarnoush, S.; Jin, Y.; Zhang, W. Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: Dimer, tetramer, or interlocked complex? Chem. Sci. 2016, 7, 3370–3376. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yang, A.; Moneypenny, T.P.; Moore, J.S. Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis. J. Am. Chem. Soc. 2016, 138, 2182–2185. [Google Scholar] [CrossRef]
- Li, J.; Carnall, J.M.; Stuart, M.C.; Otto, S. Hydrogel Formation upon Photoinduced Covalent Capture of Macrocycle Stacks from Dynamic Combinatorial Libraries. Angew. Chem. Int. Ed. 2011, 50, 8384–8386. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nowak, P.; Otto, S. An Allosteric Receptor by Simultaneous “Casting” and “Molding” in a Dynamic Combinatorial Library. Angew. Chem. Int. Ed. 2015, 54, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nowak, P.; Fanlo-Virgós, H.; Otto, S. Catenanes from catenanes: Quantitative assessment of cooperativity in dynamic combinatorial catenation. Chem. Sci. 2014, 5, 4968–4974. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cvrtila, I.; Colomb-Delsuc, M.; Otten, E.; Otto, S. An “Ingredients” Approach to Functional Self-Synthesizing Materials: A Metal-Ion-Selective, Multi-Responsive, Self-Assembled Hydrogel. Chem. Eur. J. 2014, 20, 15709–15714. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Nowak, P.; Otto, S. Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry. J. Am. Chem. Soc. 2013, 135, 9222–9239. [Google Scholar] [CrossRef]
- Nowak, P.; Colomb-Delsuc, M.; Otto, S.; Li, J. Template-Triggered Emergence of a Self-Replicator from a Dynamic Combinatorial Library. J. Am. Chem. Soc. 2015, 137, 10965–10969. [Google Scholar] [CrossRef]
- Belowich, M.E.; Stoddart, J.F. Dynamic Imine Chemistry. Chem. Soc. Rev. 2012, 41, 2003–2024. [Google Scholar] [CrossRef]
- Quan, M.L.C.; Cram, D.J. Constrictive binding of large guests by a hemicarcerand containing four portals. J. Am. Chem. Soc. 1991, 113, 2754–2755. [Google Scholar] [CrossRef]
- Berl, V.; Huc, I.; Lehn, J.-M.; DeCian, A.; Fischer, J. Induced Fit Selection of a Barbiturate Receptor from a Dynamic Structural and Conformational/Configurational Library. Eur. J. Org. Chem. 1999, 1999, 3089–3094. [Google Scholar] [CrossRef]
- Godoy-Alcántar, C.; Yatsimirsky, A.K.; Lehn, J.M. Structure-stability correlations for imine formation in aqueous solution. J. Phys. Org. Chem. 2005, 18, 979–985. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Li, G.; Warmuth, R. One-Pot, 18-Component Synthesis of an Octahedral Nanocontainer Molecule. Angew. Chem. Int. Ed. 2006, 45, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Rue, N.M.; Sun, J.; Warmuth, R. Polyimine Container Molecules and Nanocapsules. Israel J. Chem. 2011, 51, 743–768. [Google Scholar] [CrossRef]
- Jiao, T.; Chen, L.; Yang, D.; Li, X.; Wu, G.; Zeng, P.; Zhou, A.; Yin, Q.; Pan, Y.; Wu, B.; et al. Trapping White Phosphorus within a Purely Organic Molecular Container Produced by Imine Condensation. Angew. Chem. Int. Ed. 2017, 56, 14545–14550. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xu, S.; Yu, C.; Li, Z.Y.; Xu, J.; Li, Z.M.; Zou, L.; Leng, X.; Gao, S.; Liu, Z.; et al. De Novo Construction of Catenanes with Dissymmetric Cages by Space-Discriminative Post-Assembly Modification. Angew. Chem. Int. Ed. 2020, 59, 7113–7121. [Google Scholar] [CrossRef] [PubMed]
- Cousins, G.R.L.; Poulsen, S.-A.; Sanders, J.K.M. Dynamic combinatorial libraries of pseudo-peptide hydrazone macrocycles. Chem. Commun. 1999, 35, 1575–1576. [Google Scholar] [CrossRef]
- Furlan, R.L.E.; Ng, Y.-F.; Otto, S.; Sanders, J.K.M. A New Cyclic Pseudopeptide Receptor for Li+ from a Dynamic Combinatorial Library. J. Am. Chem. Soc. 2001, 123, 8876–8877. [Google Scholar] [CrossRef]
- Roberts, S.L.; Furlan, R.L.; Cousins, G.R.; Sanders, J.K. Simultaneous selection, amplification and isolation of a pseudo-peptide receptor by an immobilised N-methyl ammonium ion template. Chem. Commun. 2002, 38, 938–939. [Google Scholar] [CrossRef]
- Nguyen, R.; Huc, I. Optimizing the reversibility of hydrazone formation for dynamic combinatorial chemistry. Chem. Commun. 2003, 39, 942–943. [Google Scholar] [CrossRef]
- Ramstrom, O.; Lohmann, S.; Bunyapaiboonsri, T.; Lehn, J.-M. Dynamic Combinatorial Carbohydrate Libraries: Probing the Binding Site of the Concanavalin A Lectin. Chem. Eur. J. 2004, 10, 1711–1715. [Google Scholar] [CrossRef]
- Wu, G.; Wang, C.Y.; Jiao, T.; Zhu, H.; Huang, F.; Li, H. Controllable Self-Assembly of Macrocycles in Water for Isolating Aromatic Hydrocarbon Isomers. J. Am. Chem. Soc. 2018, 140, 5955–5961. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Cao, N.; Yang, C.; Li, H. A Kinetically Stable Macrocycle Self-Assembled in Water. Org. Lett. 2018, 20, 2356–2359. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gómez, A.; Fernández-Blanco, Á.; Blanco, V.; Rodríguez, J.; Peinador, C.; García, M.D. Thinking Outside the “Blue Box”: Induced Fit within a Unique Self-Assembled Polycationic Cyclophane. J. Am. Chem. Soc. 2019, 141, 3959–3964. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gomez, A.; Neira, I.; Barriada, J.L.; Melle-Franco, M.; Peinador, C.; Garcia, M.D. Thinking outside the “Blue Box”: From molecular to supramolecular pH-responsiveness. Chem. Sci. 2019, 10, 10680–10686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Zhao, L.; He, C.; Zheng, S.; Reek, J.N.H.; Duan, C. Metal−Organic Capsules with NADH Mimics as Switchable Selectivity Regulators for Photocatalytic Transfer Hydrogenation. J. Am. Chem. Soc. 2019, 141, 12707–12716. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.S.; Li, X.Z.; Hu, S.J.; Yan, D.N.; Zhou, L.P.; Sun, Q.F. Base- and Metal-Dependent Self-Assembly of Lathanide-Organic Coordination Polymers or Macrocycles with Tetradentate Acylhydrazone-based Ditopic Ligands. Chem. Asian J. 2021, 16, 1392–1397. [Google Scholar] [CrossRef]
- Jing, X.; He, C.; Yang, Y.; Duan, C. A Metal−Organic Tetrahedron as a Redox Vehicle to Encapsulate Organic Dyes for Photocatalytic Proton Reduction. J. Am. Chem. Soc. 2015, 137, 3967–3974. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, Y.; Wu, G.; Liu, J.R.; Cao, N.; Wang, L.; Wang, Y.; Li, X.; Hong, X.; Yang, C.; et al. Temperature-dependent self-assembly of a purely organic cage in water. Chem. Commun. 2018, 54, 3138–3141. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Liu, H.K.; Wang, Z.K.; Song, B.; Zhang, D.W.; Wang, H.; Li, Z.; Li, X.; Li, Z.T. Olive-Shaped Organic Cages: Synthesis and Remarkable Promotion of Hydrazone Condensation through Encapsulation in Water. J. Org. Chem. 2021, 86, 3943–3951. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Y.; Fang, S.; Tong, L.; Shen, L.; Ge, C.; Pan, Y.; Shi, X.; Li, H. A Self-Assembled Cage for Wide-Scope Chiral Recognition in Water. Angew. Chem. Int. Ed. 2021, 60, 16594–16599. [Google Scholar] [CrossRef]
- Yang, M.; Qiu, F.; El-Sayed, M.E.-S.; Wang, W.; Du, S.; Su, K.; Yuan, D. Water-stable hydrazone-linked porous organic cages. Chem. Sci. 2021, 12, 13307–13315. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, G.; Jiao, T.; Shen, L.; Ma, G.; Pan, Y.; Li, H. Precursor control over the self-assembly of [2]catenanes via hydrazone condensation in water. Chem. Commun. 2018, 54, 5106–5109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, L.; Wang, C.-Y.; Jiao, T.; Pan, Y.; Li, H. Ultramacrocyclization via selective catenation in water. Chem. Commun. 2019, 55, 13108–13111. [Google Scholar] [CrossRef]
- Cougnon, F.B.L.; Caprice, K.; Pupier, M.; Bauza, A.; Frontera, A. A Strategy to Synthesize Molecular Knots and Links Using the Hydrophobic Effect. J. Am. Chem. Soc. 2018, 140, 12442–12450. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Cho, Y.; Lee, M.; Laskowski, R.A.; Ryu, S.E.; Sugihara, K.; Kim, D.S. BetaCavityWeb: A webserver for molecular voids and channels. Nucleic Acids Res. 2015, 43, W413–W418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibbert, D.B.; Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mecozzi, S.; Rebek, J., Jr. The 55% Solution: A Formula for Molecular Recognition in the Liquid State. Chem. Eur. J. 1998, 4, 1016–1022. [Google Scholar] [CrossRef]
- Newkome, G.R.; Cho, T.J.; Moorefield, C.N.; Cush, R.; Russo, P.S.; GodÌnez, L.A.; Saunders, M.J.; Mohapatra, P. Hexagonal Terpyridine–Ruthenium and –Iron Macrocyclic Complexes by Stepwise and Self-Assembly Procedures. Chem. Eur. J. 2002, 8, 2946–2954. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta. Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Jiao, T.; Li, H. Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules 2023, 28, 976. https://doi.org/10.3390/molecules28030976
Wu G, Jiao T, Li H. Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules. 2023; 28(3):976. https://doi.org/10.3390/molecules28030976
Chicago/Turabian StyleWu, Guangcheng, Tianyu Jiao, and Hao Li. 2023. "Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation" Molecules 28, no. 3: 976. https://doi.org/10.3390/molecules28030976
APA StyleWu, G., Jiao, T., & Li, H. (2023). Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules, 28(3), 976. https://doi.org/10.3390/molecules28030976