Electron Paramagnetic Resonance Studies of Irradiated Grape Snails (Helix pomatia) and Investigation of Biophysical Parameters
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chelik, O.; Atak, C.; Suludere, Z. Response of soybean plants to gamma radiation: Biochemical analyses and expression patterns of trichome development. Plant Omics 2014, 7, 382–391. [Google Scholar]
- Gudkov, S.V.; Grinberg, M.A.; Sukhov, V.; Vodeneev, V. Effect of ionizing radiation on physiological and molecular processes in plants. J. Environ. Radioact. 2019, 202, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Song, K.E.; Lee, S.H.; Jung, J.G.; Choi, J.E.; Jun, W.; Chung, J.W.; Hong, S.H.; Shim, S. Hormesis effects of gamma radiation on growth of quinoa (Chenopodium quinoa). Int. J. Radiat. Biol. 2021, 97, 906–915. [Google Scholar] [CrossRef]
- Elgazzar, A.H.; Kazem, N. Biological effects of ionizing radiation. Pathophysiol. Basis Nucl. Med. 2006, 23, 540–548. [Google Scholar]
- Zhang, H.; Zhao, Y.; Zhu, J.K. Thriving under stress: How plants balance growth and the stress response. Dev. Cell 2020, 55, 529–543. [Google Scholar] [CrossRef]
- Eftekhari, A.; Arjmand, A.; Asheghvatan, A.; Švajdlenková, H.; Šauša, O.; Abiyev, H.; Ahmadian, E.; Smutok, O.; Khalilov, R.; Kavetskyy, T.; et al. The potential application of magnetic nanoparticles for liver fibrosis theranostics. Front. Chem. 2021, 14, 674786. [Google Scholar] [CrossRef] [PubMed]
- Lukashev, E.P.; Oleinikov, I.P.; Knox, P.P.; Seifullina, N.K.; Gorokhov, V.V.; Rubin, A.B. The Effects of ultraviolet irradiation on hybrid films of photosynthetic reaction centers and quantum dots in various organic matrices. Biophysics 2017, 62, 722–727. [Google Scholar] [CrossRef]
- Nasibova, A.N. UV-B radiation effects on electron-transport reactions in biomaterials. Adv. Biol. Earth Sci. 2022, 7, 13–18. [Google Scholar]
- Nasibova, A.N.; Khalilov, R.I. Preliminary studies on generating metal nanoparticles in pomegranates (Punica granatum) under stress. Int. J. Dev. Res. 2016, 6, 7071–7078. [Google Scholar]
- Khalilov, R.; Nasibova, A. The EPR parameter’s investigation of plants under the influence of radiation factors. Acta Bot. Caucasica 2022, 1, 48–52. [Google Scholar]
- Nasibova, A.N.; Trubitsin, B.V.; İsmailova, S.M.; Fridunbekov, İ.Y.; Qasımov, U.M.; Khalilov, R.I. Impact of stress factors on the generation of nanoparticles in the biological structures. Rep. ANAS 2015, 71, 35–40. [Google Scholar]
- Khalilov, R.I.; Kavetskyy, T.S.; Serezhenkov, V.A.; Nasibova, A.N.; Akbarzadeh, A.; Davaran, S.; Moghaddam, M.P.; Saghfi, S.; Tkachev, N.A.; Milani, M.; et al. Detection of manganese-containing enzymes and magnetic nanoparticles in Juniperus communis and related biomaterials by ESR spectroscopy. Adv. Biol. Earth Sci. 2018, 3, 167–175. [Google Scholar]
- Kavetskyy, T.S.; Khalilov, R.I.; Voloshanska, O.O.; Kropyvnytska, L.M.; Beyba, T.M.; Serezhenkov, V.A.; Nasibova, A.N.; Akbarzadeh, A.; Voloshanska, S.Y. Self-organized magnetic nanoparticles in plant systems: ESR detection and perspectives for biomedical applications. In NATO Science for Peace and Security Series B: Physics and Biophysics; NATO Advanced Study Institute (SPS. ASI 985310) on Advanced Technologies for Detection and Defence Against CBRN Agents; Petkov, P., Tsiulyanu, D., Popov, C., Kulisch, W., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 487–492. [Google Scholar]
- Nasibova, A.; Khalilov, R.; Eftekhari, A.; Abiyev, H.; Trubitsin, B. Identification of the EPR signals of fig leaves (Ficus carica L.). Eurasian Chem. Commun. 2021, 3, 193–199. [Google Scholar]
- Nasibova, A.; Khalilov, R.; Abiyev, H.; Kavetskyy, T.; Trubitsin, B.; Keskin, C.; Ahmadian, E.; Eftekhari, A. Study of Endogenous paramagnetic centers in biological systems from different areas. Concepts Magn. Reson. Part B 2021, 2021, 6787360. [Google Scholar] [CrossRef]
- Kavetskyy, T.S.; Soloviev, V.N.; Khalilov, R.I.; Serezhenkov, V.A.; Pan’kiv, L.I.; Pan’kiv, I.S.; Nasibova, A.N.; Stakhiv, V.I.; Ivasivka, A.S.; Starchevskyy, M.K.; et al. EPR study of self-organized magnetic nanoparticles in biomaterials. Semicond. Phys. Quantum Electron. Optoelectron. 2022, 25, 146–156. [Google Scholar] [CrossRef]
- Khalilov, R.I.; Nasibova, A.N.; Kasumov, U.M.; Bayramov, M.A. Effect of radiation on wheat (Triticum L.) and corn (Zea mays L.): EPR studies. In Proceedings of the XXVIII International Conference “Mathematics. Computing. Education”, Moscow, Russia 24–28 January 2022; p. 91. [Google Scholar]
- Nasibova, A.N.; Khalilov, R.I.; Bayramov, M.A.; Bayramova, M.F.; Kazimli, L.T.; Qasimov, R.S. Study of some biophysical and biochemical parameters in stress—Exposed laboratory rats (Wistar albino). J. Radiat. Res. 2021, 8, 42–51. [Google Scholar]
- Heybatova, N.; Nasibova, A. EPR studies of the effect of ionizing gamma radiation on Pelvic Grape Snails (Helix pomatia Linnaeus). In Proceedings of the XII International Scientific and Practical Conference, Topical Tendencies of Science and Practice, Edmonton, CA, USA, 7–10 December 2021; pp. 80–81. [Google Scholar]
- Nasibova, A.; Kazimli, L.; Heybatova, N. Effect of metal nanoparticles on Pelvic grape snails (Helix pomatia L.). In Proceedings of the XVIII International Scientific and Practical Conference “Advancing in Research, Practice and Education”, Florence, Italy, 8–11 March 2022; pp. 63–65. [Google Scholar]
- Nasibova, A.N. The use of EPR signals of snails as bioindicative parameters in the study of environmental pollution. Adv. Biol. Earth Sci. 2019, 4, 196–205. [Google Scholar]
- Andreev, N. Assessment of the status of wild populations of land snail (escargot) Helix pomatia L. in Moldova: The effect of exploitation. Biodivers. Conserv. 2006, 15, 2957–2970. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, L.L.; Yang, S.; Zhang, J.E.; Zhao, N.Q.; Wu, H.; He, Z.; Yan, T.M.; Guo, J. Regeneration of excised shell by the invasive apple snail Pomacea canaliculata. Mar. Freshw. Behav. Physiol. 2017, 50, 17–29. [Google Scholar] [CrossRef]
- Messina, L.; Bruno, F.; Licata, P.; Paola, D.D.; Franco, G.; Marino, Y.; Peritore, A.F.; Cuzzocrea, S.; Gugliandolo, E.; Crupi, R. Snail mucus filtrate reduces inflammation in canine progenitor epidermal keratinocytes (CPEK). Animals 2022, 12, 1848. [Google Scholar] [CrossRef]
- Gugliandolo, E.; Macrì, F.; Fusco, R.; Siracusa, R.; D’Amico, R.; Cordaro, M.; Peritore, A.F.; Impellizzeri, D.; Genovese, T.; Cuzzocrea, S.; et al. The protective effect of snail secretion filtrate in an experimental model of excisional wounds in mice. Vet. Sci. 2021, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Gugliandolo, E.; Cordaro, M.; Fusco, R.; Peritore, A.F.; Siracusa, R.; Genovese, T.; D’Amico, R.; Impellizzeri, D.; Di Paola, R.; Cuzzocrea, S.; et al. Protective effect of snail secretion filtrate against ethanol-induced gastric ulcer in mice. Sci. Rep. 2021, 11, 3638. [Google Scholar] [CrossRef] [PubMed]
- Trapella, C.; Rizzo, R.; Gallo, S.; Alogna, A.; Bortolotti, D.; Casciano, F.; Zauli, G.; Secchiero, P.; Voltan, R. Helix Complex snail mucus exhibits pro-survival, proliferative and pro-migration effects on mammalian fibroblasts. Sci. Rep. 2018, 8, 17665. [Google Scholar] [CrossRef] [Green Version]
- Nasibova, A.N.; Fridunbayov, İ.Y.; Khalilov, R.I. Interaction of magnetite nanoparticles with plants. Eur. J. Biotechnol. Biosci. 2017, 5, 14–16. [Google Scholar]
- Khalilov, R.I.; Nasibova, A.N.; Gasimov, R.J. Magnetic nanoparticles in plants: EPR researchers. News Baku Univ. 2011, 4, 55–61. [Google Scholar]
- Khalilov, R.I.; Nasibova, A.N.; Serezhenkov, V.A.; Ramazanov, M.A.; Kerimov, M.K.; Garibov, A.A.; Vanin, A.F. Accumulation of magnetic nanoparticles in plants grown on soils of apsheron peninsula. Biophysics 2011, 56, 316–322. [Google Scholar] [CrossRef]
- Nasibova, A.N. The use of EPR signals of plants as bioindicative parameters in the study of environmental pollution. Int. J. Pharm. Pharm. Sci. 2015, 7, 172–175. [Google Scholar]
- Nasibova, A.N. Formation of magnetic properties in biological systems under stress factors. J. Radiat. Res. 2020, 7, 5–10. [Google Scholar]
- Flores-Rojas, G.G.; López-Saucedo, F.; Vera-Graziano, R.; Mendizabal, E.; Bucio, E. Magnetic nanoparticles for medical applications: Updated review. Macromol 2022, 2, 374–390. [Google Scholar] [CrossRef]
- Tang, Y.D.; Zou, J.; Flesch, R.C.; Jin, T. Effect of injection strategy for nanofluid transport on thermal damage behavior inside biological tissue during magnetic hyperthermia. Int. Commun. Heat Mass Transf. 2022, 133, 105979. [Google Scholar] [CrossRef]
- Koksharov, Y.A.; Gubin, S.P.; Taranov, I.V.; Khomutov, G.B.; Gulyaev, Y.V. Magnetic nanoparticles in medicine: Progress, problems, and advances. J. Commun. Technol. Electron. 2022, 67, 101–116. [Google Scholar] [CrossRef]
Radionuclides | Unit of Measure | Grape Snail Shell | Grape Snail Body |
---|---|---|---|
40K | Bq/kg | 26.1 ± 3.1 | 6.7 ± 1.5 |
232Th | Bq/kg | 6.2 ± 0.3 | MDA = 0.32 |
226Ra | Bq/kg | 3.1 ± 0.5 | MDA = 0.63 |
228Ra | Bq/kg | 4.3 ± 0.4 | MDA = 0.55 |
137Cs | Bq/kg | 1.39 ± 0.12 | 0.91 ± 0.14 |
235U, | Bq/kg | 0.08 ± 0.03 | MDA = 0.03 |
238U | Bq/kg | 1.65 ± 0.31 | MDA = 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasibova, A.; Khalilov, R.; Bayramov, M.; Mustafayev, İ.; Eftekhari, A.; Abbasov, M.; Kavetskyy, T.; Rosić, G.; Selakovic, D. Electron Paramagnetic Resonance Studies of Irradiated Grape Snails (Helix pomatia) and Investigation of Biophysical Parameters. Molecules 2023, 28, 1872. https://doi.org/10.3390/molecules28041872
Nasibova A, Khalilov R, Bayramov M, Mustafayev İ, Eftekhari A, Abbasov M, Kavetskyy T, Rosić G, Selakovic D. Electron Paramagnetic Resonance Studies of Irradiated Grape Snails (Helix pomatia) and Investigation of Biophysical Parameters. Molecules. 2023; 28(4):1872. https://doi.org/10.3390/molecules28041872
Chicago/Turabian StyleNasibova, Aygun, Rovshan Khalilov, Mahammad Bayramov, İslam Mustafayev, Aziz Eftekhari, Mirheydar Abbasov, Taras Kavetskyy, Gvozden Rosić, and Dragica Selakovic. 2023. "Electron Paramagnetic Resonance Studies of Irradiated Grape Snails (Helix pomatia) and Investigation of Biophysical Parameters" Molecules 28, no. 4: 1872. https://doi.org/10.3390/molecules28041872
APA StyleNasibova, A., Khalilov, R., Bayramov, M., Mustafayev, İ., Eftekhari, A., Abbasov, M., Kavetskyy, T., Rosić, G., & Selakovic, D. (2023). Electron Paramagnetic Resonance Studies of Irradiated Grape Snails (Helix pomatia) and Investigation of Biophysical Parameters. Molecules, 28(4), 1872. https://doi.org/10.3390/molecules28041872