DFT Study of Regio- and Stereoselective 13DC Reaction between Diazopropane and Substituted Chalcone Derivatives: Molecular Docking of Novel Pyrazole Derivatives as Anti-Alzheimer’s Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Topological Analysis of the 1,3-Dipolar Cycloaddition Reaction
2.2. Application of the Rule of Houk and Local Regioselectivity Analysis
2.3. Analysis of Transition States TS and Intrinsic Reaction Coordinate IRC
2.4. Molecular Docking Analysis
2.4.1. Molecular Docking Results for Human Serum Albumin (HSA)
2.4.2. Molecular Docking Results for Hydrolase (AChE and BuChE)
3. Materials and Methods
3.1. Methodological and Computational Details
3.2. Selection of Inhibitors
3.3. Synthesis of Pyrazole Derivatives (D1–D3)
3.3.1. Synthesis of 2-Diazopropane
3.3.2. Synthesis of 4-p-Methoxyphenyl-5,5-dimethyl-3-benzoyl-4,5-dihydro-1H-pyrazole (D1H)
3.3.3. Synthesis of 4-p-Methoxyphenyl-5,5-dimethyl-3- p-bromobenzoyl-4,5-dihydro-1Hpyrazole (D1Br)
3.3.4. Synthesis of 4-p-Methoxyphenyl-5,5-dimethyl-3-p-chorobenzoyl-4,5-dihydro-1Hpyrazole (D1Cl)
3.3.5. Oxidation of ∆2 − Pyrazolines (D1)
3.3.6. Synthesis of 4-p-Methoxyphenyl-3,3-dimethyl-5-p-bromobenzoyl-3H–pyrazole (D2Br)
3.3.7. Synthesis of 4-p-Methoxyphenyl-3,3-dimethyl-5-p-chlorobenzoyl-3H–pyrazole (D2Cl)
3.3.8. Synthesis of the 4-p-Methoxyphenyl-3,3-dimethyl-5-benzoyl-3H–pyrazole (D2H)
3.3.9. Synthesis of the 2-(4-p-Methoxyphenyl-5,5-dimethyl-4,5-dihydro-3H-pyrazol-3-yl)-5,5-dimethyl-2′-benzoyl-2′,5′-dihydro-1,3,4-oxadiazole (D3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiro, T.; Fukaya, T.; Tobe, M. The Chemistry and Biological Activity of Heterocycle-Fused Quinolinone Derivatives: A Review. Eur. J. Med. Chem. 2015, 97, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015, 20, 16852–16891. [Google Scholar] [CrossRef] [PubMed]
- Musiol, R. An Overview of Quinoline as a Privileged Scaffold in Cancer Drug Discovery. Expert Opin. Drug Discov. 2017, 12, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, H.; Bayat, M. Cyanoacetohydrazides in Synthesis of Heterocyclic Compounds. Top. Curr. Chem. 2018, 376, 40. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Verma, P.K. Therapeutic Importance of Synthetic Thiophene. Chem. Cent. J. 2018, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-P.; Wu, C.-H.; Song, J.-S.; Chou, M.-C.; Wong, Y.-C.; Lin, Y.; Yeh, T.-K.; Sadani, A.A.; Ou, M.-H.; Chen, K.-H.; et al. Discovery of 1-(2,4-Dichlorophenyl)-N-(Piperidin-1-Yl)-4-((Pyrrolidine-1-Sulfonamido)Methyl)-5-(5-((4-(Trifluoromethyl)Phenyl)Ethynyl)Thiophene-2-Yl)-1H-Pyrazole-3-Carboxamide as a Novel Peripherally Restricted Cannabinoid-1 Receptor Antagonist with Significant Weight-Loss Efficacy in Diet-Induced Obese Mice. J. Med. Chem. 2013, 56, 9920–9933. [Google Scholar] [CrossRef]
- Sharma, M.K.; Murumkar, P.R.; Giridhar, R.; Yadav, M.R. Exploring Structural Requirements for Peripherally Acting 1,5-Diaryl Pyrazole-Containing Cannabinoid 1 Receptor Antagonists for the Treatment of Obesity. Mol. Divers. 2015, 19, 871–893. [Google Scholar] [CrossRef]
- Datar, P.A.; Jadhav, S.R. Design and Synthesis of Pyrazole-3-One Derivatives as Hypoglycaemic Agents. Int. J. Med. Chem. 2015, 2015, 670181. [Google Scholar] [CrossRef]
- Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of Recent Developments of Pyrazole Derivatives as an Anticancer Agent in Different Cell Line. Bioorganic Chem. 2020, 97, 103470. [Google Scholar] [CrossRef]
- B’Bhatt, H.; Sharma, S. Synthesis and Antimicrobial Activity of Pyrazole Nucleus Containing 2-Thioxothiazolidin-4-One Derivatives. Arab. J. Chem. 2017, 10, S1590–S1596. [Google Scholar] [CrossRef]
- Pancic, F.; Steinberg, B.A.; Diana, G.D.; Carabateas, P.M.; Gorman, W.G.; Came, P.E. Antiviral Activity of Win 41258-3, a Pyrazole Compound, against Herpes Simplex Virus in Mouse Genital Infection and in Guinea Pig Skin Infection. Antimicrob. Agents Chemother. 1981, 19, 470–476. [Google Scholar] [CrossRef]
- Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and Pyrazolines as Anti-Inflammatory Agents. Molecules 2021, 26, 3439. [Google Scholar] [CrossRef]
- Van Gool, M.; Alonso De Diego, S.A.; Delgado, O.; Trabanco, A.A.; Jourdan, F.; Macdonald, G.J.; Somers, M.; Ver Donck, L. 1,3,5-Trisubstituted Pyrazoles as Potent Negative Allosteric Modulators of the mGlu2/3 Receptors. ChemMedChem 2017, 12, 905–912. [Google Scholar] [CrossRef]
- Glomb, T.; Świątek, P. Antimicrobial Activity of 1,3,4-Oxadiazole Derivatives. Int. J. Mol. Sci. 2021, 22, 6979. [Google Scholar] [CrossRef]
- Dewangan, D.; Pandey, A.; Sivakumar, T.; Rajavel, R.; Dubey, R. Synthesis of Some Novel 2, 5-Disubstituted 1, 3, 4-Oxadiazole and Its Analgesic, Anti-Inflammatory, Anti-Bacterial and Anti-Tubercular Activity. Int. J. ChemTech Res. 2010, 2, 1397–1412. [Google Scholar]
- Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-Cancer Activity of Derivatives of 1,3,4-Oxadiazole. Molecules 2018, 23, 3361. [Google Scholar] [CrossRef]
- Maslat, A.O.; Abussaud, M.; Tashtoush, H.; Al-Talib, M. Synthesis, Antibacterial, Antifungal and Genotoxic Activity of Bis-1,3,4-Oxadiazole Derivatives. Pol. J. Pharmacol. 2002, 54, 55–59. [Google Scholar]
- Verma, S.K.; Verma, R.; Verma, S.; Vaishnav, Y.; Tiwari, S.P.; Rakesh, K.P. Anti-Tuberculosis Activity and Its Structure-Activity Relationship (SAR) Studies of Oxadiazole Derivatives: A Key Review. Eur. J. Med. Chem. 2021, 209, 112886. [Google Scholar] [CrossRef]
- Makane, V.B.; Krishna, V.S.; Krishna, E.V.; Shukla, M.; Mahizhaveni, B.; Misra, S.; Chopra, S.; Sriram, D.; Azger Dusthackeer, V.N.; Rode, H.B. Novel 1,3,4-Oxadiazoles as Antitubercular Agents with Limited Activity against Drug-Resistant Tuberculosis. Future Med. Chem. 2019, 11, 499–510. [Google Scholar] [CrossRef]
- Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. [Google Scholar] [CrossRef]
- Kudelko, A.; Zieliński, W. Microwave-Assisted Synthesis of 2-Styryl-1,3,4-Oxadiazoles from Cinnamic Acid Hydrazide and Triethyl Orthoesters. Tetrahedron Lett. 2012, 53, 76–77. [Google Scholar] [CrossRef]
- Aksenov, A.V.; Khamraev, V.; Aksenov, N.A.; Kirilov, N.K.; Domenyuk, D.A.; Zelensky, V.A.; Rubin, M. Electrophilic Activation of Nitroalkanes in Efficient Synthesis of 1,3,4-Oxadiazoles. RSC Adv. 2019, 9, 6636–6642. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.; Ramazani, A.; Joo, S.W. Ultrasonics in Isocyanide-Based Multicomponent Reactions: A New, Efficient and Fast Method for the Synthesis of Fully Substituted 1,3,4-Oxadiazole Derivatives under Ultrasound Irradiation. Ultrason. Sonochemistry 2015, 22, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Ramazani, A.; Rezaei, A. Novel One-Pot, Four-Component Condensation Reaction: An Efficient Approach for the Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives by a Ugi-4CR/aza-Wittig Sequence. Org. Lett. 2010, 12, 2852–2855. [Google Scholar] [CrossRef]
- Matheau-Raven, D.; Boulter, E.; Rogova, T.; Dixon, D.J. A Three-Component Ugi-Type Reaction of N-Carbamoyl Imines Enables a Broad Scope Primary α-Amino 1,3,4-Oxadiazole Synthesis. Org. Lett. 2021, 23, 8209–8213. [Google Scholar] [CrossRef]
- Pearce, A.J.; Harkins, R.P.; Reiner, B.R.; Wotal, A.C.; Dunscomb, R.J.; Tonks, I.A. Multicomponent Pyrazole Synthesis from Alkynes, Nitriles, and Titanium Imido Complexes via Oxidatively Induced N–N Bond Coupling. J. Am. Chem. Soc. 2020, 142, 4390–4399. [Google Scholar] [CrossRef]
- Baiju, T.V.; Namboothiri, I.N.N. Synthesis of Functionalized Pyrazoles via 1,3-Dipolar Cycloaddition of α-Diazo-β-ketophosphonates, Sufones and Esters with Electron-Deficient Alkenes. Chem. Rec. 2017, 17, 939–955. [Google Scholar] [CrossRef]
- Sowmya, D.V.; Lakshmi Teja, G.; Padmaja, A.; Kamala Prasad, V.; Padmavathi, V. Green Approach for the Synthesis of Thiophenyl Pyrazoles and Isoxazoles by Adopting 1,3-Dipolar Cycloaddition Methodology and Their Antimicrobial Activity. Eur. J. Med. Chem. 2018, 143, 891–898. [Google Scholar] [CrossRef]
- Kadambar, A.K.; Kalluraya, B.; Singh, S.; Agarwal, V.; Revanasiddappa, B.C. One-pot three-component azide-alkyne Cycloaddition: Synthesis of New Pyrazole, 1,2, 3-triazole, and Oxadiazole Tethered and Their anti-inflammatory, Quantitative Structure-activity Relationship, and Docking Studies. J. Heterocycl. Chem. 2021, 58, 654–664. [Google Scholar] [CrossRef]
- Hellel, D.; Chafaa, F.; Khorief Nacereddine, A.; Djerourou, A.; Vrancken, E. Regio- and Stereoselective Synthesis of Novel Isoxazolidine Heterocycles by 1,3-Dipolar Cycloaddition between C-Phenyl-N-Methylnitrone and Substituted Alkenes. Experimental and DFT Investigation of Selectivity and Mechanism. RSC Adv. 2017, 7, 30128–30141. [Google Scholar] [CrossRef]
- Breugst, M.; Reissig, H. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Angew. Chem. Int. Ed. Engl. 2020, 59, 12293–12307. [Google Scholar] [CrossRef]
- Jasiński, R. A Stepwise, Zwitterionic Mechanism for the 1,3-Dipolar Cycloaddition between (Z)-C-4-Methoxyphenyl-N-Phenylnitrone and Gem-Chloronitroethene Catalysed by 1-Butyl-3-Methylimidazolium Ionic Liquid Cations. Tetrahedron Lett. 2015, 56, 532–535. [Google Scholar] [CrossRef]
- Jasiński, R. Competition between One-Step and Two-Step Mechanism in Polar [3 + 2] Cycloadditions of (Z)-C-(3,4,5-Trimethoxyphenyl)-N-Methyl-Nitrone with (Z)-2-EWG-1-Bromo-1-Nitroethenes. Comput. Theor. Chem. 2018, 1125, 77–85. [Google Scholar] [CrossRef]
- Jasiński, R. In the Searching for Zwitterionic Intermediates on Reaction Paths of [3 + 2] Cycloaddition Reactions between 2,2,4,4-Tetramethyl-3-Thiocyclobutanone S-Methylide and Polymerizable Olefins. RSC Adv. 2015, 5, 101045–101048. [Google Scholar] [CrossRef]
- Jasiński, R. Nitroacetylene as Dipolarophile in [2+3] Cycloaddition Reactions with Allenyl-Type Three-Atom Components: DFT Computational Study. Mon. Chem. 2015, 146, 591–599. [Google Scholar] [CrossRef]
- Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49–69. [Google Scholar] [CrossRef]
- Tamura, O.; Mita, N.; Okabe, T.; Yamaguchi, T.; Fukushima, C.; Yamashita, M.; Morita, Y.; Morita, N.; Ishibashi, H.; Sakamoto, M. Tandem Transesterification and Intramolecular Cycloaddition of α-Methoxycarbonylnitrones with Chiral Acyclic Allyl Alcohols: Systematic Studies on the Factors Affecting Diastereofacial Selectivity of the Cycloaddition. J. Org. Chem. 2001, 66, 2602–2610. [Google Scholar] [CrossRef]
- Kalita, S.J.; Zhao, Z.-N.; Li, Z.-H.; Cheng, F.; Zhao, Y.; Huang, Y.-Y. Diastereodivergent 1,3-Dipolar Cycloaddition of α-Fluoro-α,β-Unsaturated Arylketones and Azomethine Ylides: Experimental and Theoretical DFT Studies. Eur. J. Org. Chem. 2021, 2021, 5530–5535. [Google Scholar] [CrossRef]
- Riu, M.-L.Y.; Transue, W.J.; Rall, J.M.; Cummins, C.C. An Azophosphine Synthetic Equivalent of Mesitylphosphaazide and Its 1,3-Dipolar Cycloaddition Reactions. J. Am. Chem. Soc. 2021, 143, 7635–7640. [Google Scholar] [CrossRef]
- Hamdi, N.; Dixneuf, P.H.; Khemiss, A. Synthesis of New 3H-Pyrazoles and Cyclopropenyl Alcohols Directly from Propargyl Alcohols. Eur. J. Org. Chem. 2005, 2005, 3526–3529. [Google Scholar] [CrossRef]
- Burdisso, M.; Gamba, A.; Gandolfi, R.; Toma, L.; Rastelli, A.; Schiatti, E. Syn-Anti Isomerism in the 1,3-Dipolar Cycloaddition to Cis-3,4-Disubstituted Cyclobutenes. 5. Diastereoselectivity in the Reaction with Diazoalkanes. J. Org. Chem. 1990, 55, 3311–3321. [Google Scholar] [CrossRef]
- Hamdi, N.; Dixneuf, P.H. Synthesis of Triazole and Coumarin Compounds and Their Physiological Activity. In Bioactive Heterocycles IV; Khan, M.T.H., Ed.; Topics in Heterocyclic Chemistry; Springer: Berlin/Heidelberg, Germany, 2007; Volume 10, pp. 123–153. ISBN 978-3-540-73403-1. [Google Scholar]
- Hamdi, N.; Toumi, B.; Khemiss, A. Synthese, etude structurale de Δ2-pyrazolines et de 3-(1,3,4) oxadiazolines: Oxydation des Δ2-pyrazolines. Moroc. J. Heterocycl. Chem. 2003, 2. [Google Scholar] [CrossRef]
- Houk, K.N.; Sims, J.; Watts, C.R.; Luskus, L.J. Origin of Reactivity, Regioselectivity, and Periselectivity in 1,3-Dipolar Cycloadditions. J. Am. Chem. Soc. 1973, 95, 7301–7315. [Google Scholar] [CrossRef]
- Becker, H.G.O. Jan Fleming, Frontier Orbitals and Organic Chemical Reactions. 249 S., John Wiley u. Sons LTD., London/New York/Syndney/Toronto 1976. Clothed £8,95, Paperb. £3,95. J. Prakt. Chem. 1978, 320, 879–880. [Google Scholar] [CrossRef]
- Khan, A.M.; Shawon, J.; Halim, M.A. Multiple Receptor Conformers Based Molecular Docking Study of Fluorine Enhanced Ethionamide with Mycobacterium Enoyl ACP Reductase (InhA). J. Mol. Graph. Model. 2017, 77, 386–398. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer’s Fibrils: Possible Role of the Peripheral Site of the Enzyme. Neuron 1996, 16, 881–891. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Dinamarca, M.C.; Alvarez, A. Amyloid-Cholinesterase Interactions: Implications for Alzheimer’s Disease. FEBS J. 2008, 275, 625–632. [Google Scholar] [CrossRef]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic Structure of Acetylcholinesterase from Torpedo Californica: A Prototypic Acetylcholine-Binding Protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef]
- Eichler, J.; Anselment, A.; Sussman, J.L.; Massoulié, J.; Silman, I. Differential Effects of “Peripheral” Site Ligands on Torpedo and Chicken Acetylcholinesterase. Mol. Pharmacol. 1994, 45, 335–340. [Google Scholar]
- Eisenstein, O.; Lefour, J.-M.; Anh, N.T. Simple Prediction of Regiospecificity in Diels–Alder Reactions. J. Chem. Soc. D 1971, 969–970. [Google Scholar] [CrossRef]
- Gaussian, R.; Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; et al. Gaussian 16 Revision A.03. 2016. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=3016318 (accessed on 26 May 2022).
- Omrani, R.; Ben Ali, R.; Selmi, W.; Arfaoui, Y.; Véronique El May, M.; Ben Akacha, A. Synthesis, Design, DFT Modeling, Hirshfeld Surface Analysis, Crystal Structure, Anti-Oxidant Capacity and Anti-Nociceptive Activity of Dimethylphenylcarbamothioylphosphonate. J. Mol. Struct. 2020, 1217, 128429. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Schlegel, H.B. Optimization of Equilibrium Geometries and Transition Structures. J. Comput. Chem. 1982, 3, 214–218. [Google Scholar] [CrossRef]
- Fukui, K. The Path of Chemical Reactions—The IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Omrani, R.; Zouaghi, M.O.; Arfaoui, Y. Mechanistic Density Functional Theory Study of the Claisen Rearrangement Diels-Alder Cycloaddition Domino Sequence for the Synthesis of the Caged Garcinia Xanthone. J. Mol. Struct. 2020, 1202, 127305. [Google Scholar] [CrossRef]
- Domingo, L.R.; Pérez, P.; Sáez, J.A. Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Adv. 2013, 3, 1486–1494. [Google Scholar] [CrossRef]
- Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef]
- Tao, A.; Huang, Y.; Shinohara, Y.; Caylor, M.L.; Pashikanti, S.; Xu, D. EzCADD: A Rapid 2D/3D Visualization-Enabled Web Modeling Environment for Democratizing Computer-Aided Drug Design. J. Chem. Inf. Model. 2019, 59, 18–24. [Google Scholar] [CrossRef]
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons Learned in Empirical Scoring with Smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef]
- BIOVIA Product Portfolio—BIOVIA—Dassault Systèmes®. Available online: https://www.3ds.com/products-services/biovia/products/ (accessed on 28 June 2022).
- Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal Structure of Human Serum Albumin at 2.5 Å Resolution. Protein Eng. Des. Sel. 1999, 12, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. J. Biol. Chem. 2003, 278, 41141–41147. [Google Scholar] [CrossRef] [PubMed]
- Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth, C.; Axelsen, P.H.; Silman, I.; Sussman, J.L. Quaternary Ligand Binding to Aromatic Residues in the Active-Site Gorge of Acetylcholinesterase. Proc. Natl. Acad. Sci. USA 1993, 90, 9031–9035. [Google Scholar] [CrossRef] [PubMed]
- Kryger, G.; Silman, I.; Sussman, J.L. Structure of Acetylcholinesterase Complexed with E2020 (Aricept®): Implications for the Design of New Anti-Alzheimer Drugs. Structure 1999, 7, 297–307. [Google Scholar] [CrossRef]
- PyMOL|Pymol.Org. Available online: https://pymol.org/2/ (accessed on 28 June 2022).
- Consul, C.; Beg, M.A.; Thakur, S.C. Terpenoids from Centella Asiatica, a Novel Inhibitor against RNA-Dependent-RNA Polymerase Activity of NSP12 of the SARS CoV-2 (COVID-19). IJNPR Indian J. Nat. Prod. Resour. 2021, 12, 527–537. [Google Scholar]
- Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tuffery, P. Fpocket: Online Tools for Protein Ensemble Pocket Detection and Tracking. Nucleic Acids Res. 2010, 38, W582–W589. [Google Scholar] [CrossRef]
- Taber, D.F. TLC Mesh Column Chromatography. J. Org. Chem. 1982, 47, 1351–1352. [Google Scholar] [CrossRef]
- Still, W.C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, 2923–2925. [Google Scholar] [CrossRef]
- Hamdi, H.; Khemiss, A. Synthèse de Delta-2-Pyrazolines precurseurs de pyrazolenines à différents substituants electroattracteurs en C4. Evolution photochimique des 3,3-dimethylpyrolenines formées. J. Sociéte Algérienne Chim. 2002, 42–45. [Google Scholar]
- Bolte, M. CCDC 727836: Experimental Crystal Structure Determination, Cambridge Crystallographic Data Centre: Cambridge, UK, 2009. [CrossRef]
- Applequist, D.E.; Babad, H. Reactions of Diphenyldiazomethane and 2-Diazopropane with Zinc Iodide. J. Org. Chem. 1962, 27, 288–290. [Google Scholar] [CrossRef]
Compound | Site | ||
---|---|---|---|
DAP | C34 | 0.45 | |
N35 | 0.59 | ||
DP | C1 | 0.039 | |
C2 | 0.137 | ||
C15 | −0.050 | ||
O16 | −0.014 |
TS | Imaginary Frequency | ||
---|---|---|---|
TS1HP1 | C-N = 2.13 C-C = 2.28 | 411.85i | |
TS1HP2 | C-C = 2.17 N-C = 2.30 | 416.37i | |
TS1HP3 | O-N = 2.09 C-C = 1.96 | 405.78i | |
TS1HP4 | C-N = 2.10 C-O = 1.98 | 460.31i |
Entry | Compound | Dipolarophile Structure | ||
---|---|---|---|---|
1 | 1H | 18.02 | −8.97 | |
2 | 1Br | 16.89 | −9.38 | |
3 | 1Cl | 16.86 | −9.62 | |
4 | 1F(p)P1 | 16.22 | −10.27 | |
5 | 1F(p)P2 | 18.63 | −8.83 | |
6 | 1F(p)P3 | 25.55 | 10.87 | |
7 | 1F(p)P4 | 17.84 | −8.47 | |
8 | 1F(o) | 15.84 | −10.24 | |
9 | 1F(m) | 12.05 | −7.86 | |
10 | 2F(o) | 16.46 | −9.76 | |
11 | 2F(m) | 17.57 | −8.26 | |
12 | 3F(p-o) | 15.19 | −10.67 | |
13 | 3F(p-m) | 16.57 | −8.96 | |
14 | 4F | 16.56 | −8.4 | |
15 | 5F | 15.01 | −9.3 |
Entry | Compound | Bond Length | L | Bond Length | L | |
---|---|---|---|---|---|---|
1 | 1H | 0.19 | C2-C34 | 0.635 | C1-N35 | 0.490 |
2 | 1Br | 0.22 | C2-C34 | 0.639 | C1-N35 | 0.493 |
3 | 1Cl | 0.22 | C2-C34 | 0.637 | C1-N35 | 0.491 |
4 | 1F(p)P1 | 0.22 | C2-C34 | 0.636 | C1-N35 | 0.499 |
5 | 1F(p)P2 | 0.18 | C2-C34 | 0.595 | C1-N35 | 0.599 |
6 | 1F(p)P3 | 0.36 | C15-C34 | 0.755 | O16-N35 | 0.551 |
7 | 1F(p)P4 | 0.30 | O16-C34 | 0.632 | C15-N4 | 0.559 |
8 | 1F(o) | 0.24 | C2-C34 | 0.642 | C1-N35 | 0.490 |
9 | 1F(m) | 0.22 | C2-C34 | 0.637 | C1-N35 | 0.489 |
10 | 2F(o) | 0.24 | C2-C34 | 0.636 | C1-N35 | 0.479 |
11 | 2F(m) | 0.23 | C2-C34 | 0.642 | C1-N35 | 0.487 |
12 | 3F(p-o) | 0.24 | C2-C34 | 0.639 | C1-N35 | 0.476 |
13 | 3F(p-m) | 0.24 | C2-C34 | 0.642 | C1-N35 | 0.491 |
14 | 4F | 0.25 | C2-C34 | 0.644 | C1-N35 | 0.477 |
15 | 5F | 0.26 | C2-C34 | 0.651 | C1-N35 | 0.488 |
Receptor ID: | Compounds | Binding Affinity (kcal/mol) | PAS | CAS |
---|---|---|---|---|
1P0I | 1 | −9.2 | Arg517, TRP82, TRP430, TYR440 | HIS438 |
2 | −9.8 | TYR332 | -- | |
3 | −8.5 | TRP82 | HIS438 | |
4 | −8.7 | TRP82, TYR332 | HIS438 | |
1HP14 | −10.4 | TRP82 | -- | |
1HP24 | −9.5 | TYR440, TYR332, TRP430, TRP82 | -- | |
1ACJ | 1 | −6.4 | ARG517 | -- |
2 | −7.3 | VAL518, ARG515 | -- | |
3 | −5.9 | ASN424, ARG517 | -- | |
4 | −6.1 | PHE288, TYR70, TRP279 | -- | |
1HP14 | −7.5 | -- | -- | |
1HP24 | −7.5 | -- | -- | |
1EVE | 1 | −9.5 | TYR121, ASP72 | TRP84 |
2 | −9.1 | TYR334, ILE287, TRP279, TYR70 | PHE330 | |
3 | −10.2 | TRP279, TYR334, PHE288, ARG289 | HIS440, TRP84 | |
4 | −10.5 | TYR121, TYR334 | Gly118 | |
1HP14 | −8.2 | TRP279, TYR121, TYR334 | -- | |
1HP24 | −9.5 | TYR334, TRP279, TYR270 | HIS440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hazmy, S.M.; Zouaghi, M.O.; Amri, N.; Arfaoui, Y.; Alhagri, I.A.; Hamdi, N. DFT Study of Regio- and Stereoselective 13DC Reaction between Diazopropane and Substituted Chalcone Derivatives: Molecular Docking of Novel Pyrazole Derivatives as Anti-Alzheimer’s Agents. Molecules 2023, 28, 1899. https://doi.org/10.3390/molecules28041899
Al-Hazmy SM, Zouaghi MO, Amri N, Arfaoui Y, Alhagri IA, Hamdi N. DFT Study of Regio- and Stereoselective 13DC Reaction between Diazopropane and Substituted Chalcone Derivatives: Molecular Docking of Novel Pyrazole Derivatives as Anti-Alzheimer’s Agents. Molecules. 2023; 28(4):1899. https://doi.org/10.3390/molecules28041899
Chicago/Turabian StyleAl-Hazmy, Sadeq M., Mohamed Oussama Zouaghi, Nasser Amri, Youssef Arfaoui, Ibrahim A. Alhagri, and Naceur Hamdi. 2023. "DFT Study of Regio- and Stereoselective 13DC Reaction between Diazopropane and Substituted Chalcone Derivatives: Molecular Docking of Novel Pyrazole Derivatives as Anti-Alzheimer’s Agents" Molecules 28, no. 4: 1899. https://doi.org/10.3390/molecules28041899
APA StyleAl-Hazmy, S. M., Zouaghi, M. O., Amri, N., Arfaoui, Y., Alhagri, I. A., & Hamdi, N. (2023). DFT Study of Regio- and Stereoselective 13DC Reaction between Diazopropane and Substituted Chalcone Derivatives: Molecular Docking of Novel Pyrazole Derivatives as Anti-Alzheimer’s Agents. Molecules, 28(4), 1899. https://doi.org/10.3390/molecules28041899