Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies
Abstract
:1. Introduction
2. Main Steps Haematococcus pluvialis Biorefinery
3. Cultivation and Growth Stages of Haematococcus pluvialis, Effects of Electrotreatment
3.1. Cultivation and Growth Stages
3.2. Electrotreatments during the Growth Stages
4. Structure of Cell and Biomolecular Composition of Haematococcus pluvialis
4.1. Cell Structure
4.2. Biomolecular Composition
4.2.1. Lipids, Proteins and Carbohydrates
4.2.2. Carotenoids
5. Harvesting of Biomass
6. Cell Disruption, Extraction, Purification Techniques
6.1. Cell Disruption
6.2. Extraction
6.3. Purification
7. Processing of Haematococcus pluvialis by Pulsed Electrotechnologies
8. Bioactivity of Haematococcus pluvialis Extracts
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEF | pulsed electric fields |
HVED | high-voltage electric discharges |
References
- Zarei, Z.; Zamani, H. Biorefinery Potential of Microalga Haematococcus pluvialis to Produce Astaxanthin and Biodiesel under Nitrogen Deprivation. BioEnergy Res. 2022, 1–12. [Google Scholar] [CrossRef]
- Khoo, K.S.; Lee, S.Y.; Ooi, C.W.; Fu, X.; Miao, X.; Ling, T.C.; Show, P.L. Recent Advances in Biorefinery of Astaxanthin from Haematococcus pluvialis. Bioresour. Technol. 2019, 288, 121606. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Jazini, M.; Mahdieh, M.; Karimi, K. Efficient Superantioxidant and Biofuel Production from Microalga Haematococcus pluvialis via a Biorefinery Approach. Bioresour. Technol. 2020, 306, 123100. [Google Scholar] [CrossRef]
- Papadaki, S.; Kyriakopoulou, K.; Krokida, M. Recovery and Encapsualtion of Bioactive Extracts from Haematococcus pluvialis and Phaedodactylum Tricornutum for Food Applications. IOSR Int. Organ. Sci. Res. J. Environ. Sci. Toxicol. Food Technol. 2017, 10, 53–58. [Google Scholar] [CrossRef]
- Nishshanka, G.K.S.H.; Liyanaarachchi, V.C.; Nimarshana, P.H.V.; Ariyadasa, T.U.; Chang, J.-S. Haematococcus pluvialis: A Potential Feedstock for Multiple-Product Biorefining. J. Clean. Prod. 2022, 344, 131103. [Google Scholar] [CrossRef]
- Bogoçlua, M.; Keçecilerb, C.; Çokcanb, C.; Özelb, C.; Tekerekc, B.S.; Yücelb, S. The Accumulation of Astaxanthin from Haematococcus pluvialis in Different Stress Factors. J. Indian Chem. Soc. 2019, 96, 1–6. [Google Scholar]
- Dos Santos, A.C.; Lombardi, A.T. Growth, Photosynthesis and Biochemical Composition of Haematococcus pluvialis </i> at Various PH. J. Algal Biomass Util. 2017, 8, 1–15. [Google Scholar]
- Christian, D.; Zhang, J.; Sawdon, A.J.; Peng, C.-A. Enhanced Astaxanthin Accumulation in Haematococcus pluvialis Using High Carbon Dioxide Concentration and Light Illumination. Bioresour. Technol. 2018, 256, 548–551. [Google Scholar] [CrossRef]
- Nishshanka, S.H.; Liyanaarachchi, V.C.; Premaratne, M.; Ariyadasa, T.U.; Nimarshana, V. Sustainable Cultivation of Haematococcus pluvialis for the Production of Natural Astaxanthin. In Proceedings of the Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 27–29 July 2021; pp. 297–302. [Google Scholar]
- Ahirwar, A.; Meignen, G.; Khan, M.J.; Sirotiya, V.; Scarsini, M.; Roux, S.; Marchand, J.; Schoefs, B.; Vinayak, V. Light Modulates Transcriptomic Dynamics Upregulating Astaxanthin Accumulation in Haematococcus: A Review. Bioresour. Technol. 2021, 340, 125707. [Google Scholar] [CrossRef]
- Giannelli, L.; Yamada, H.; Katsuda, T.; Yamaji, H. Effects of Temperature on the Astaxanthin Productivity and Light Harvesting Characteristics of the Green Alga Haematococcus pluvialis. J. Biosci. Bioeng. 2015, 119, 345–350. [Google Scholar] [CrossRef]
- Cheng, J.; Li, K.; Yang, Z.; Zhou, J.; Cen, K. Enhancing the Growth Rate and Astaxanthin Yield of Haematococcus pluvialis by Nuclear Irradiation and High Concentration of Carbon Dioxide Stress. Bioresour. Technol. 2016, 204, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Ross, M.E.; Norici, A.; Jesus, B. A Two-Step Process for Improved Biomass Production and Non-Destructive Astaxanthin and Carotenoids Accumulation in Haematococcus pluvialis. Appl. Sci. 2022, 12, 1261. [Google Scholar] [CrossRef]
- Wan, M.; Zhang, Z.; Wang, J.; Huang, J.; Fan, J.; Yu, A.; Wang, W.; Li, Y. Sequential Heterotrophy--Dilution--Photoinduction Cultivation of Haematococcus pluvialis for Efficient Production of Astaxanthin. Bioresour. Technol. 2015, 198, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Geada, P.; Rodrigues, R.; Loureiro, L.; Pereira, R.; Fernandes, B.; Teixeira, J.A.; Vasconcelos, V.; Vicente, A.A. Electrotechnologies Applied to Microalgal Biotechnology--Applications, Techniques and Future Trends. Renew. Sustain. Energy Rev. 2018, 94, 656–668. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Gusbeth, C.; Frey, W.; Nick, P. Nanosecond Pulsed Electric Fields Modulate the Expression of the Astaxanthin Biosynthesis Genes Psy, CrtR-b and Bkt 1 in Haematococcus pluvialis. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Nguyen, A.D.; Scarsini, M.; Poncin-Epaillard, F.; Noel, O.; Marchand, J.; Schoefs, B. Plasma Applications in Microalgal Biotechnology. In Agritech: Innovative Agriculture Using Microwaves and Plasmas. Thermal and Non-Thermal Processing; Horikoshi, S., Brodie, G., Takaki, K., Serpone, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 327–349. [Google Scholar]
- Li, Q.; Zhao, Y.; Ding, W.; Han, B.; Geng, S.; Ning, D.; Ma, T.; Yu, X. Gamma-Aminobutyric Acid Facilitates the Simultaneous Production of Biomass, Astaxanthin and Lipids in Haematococcus pluvialis under Salinity and High-Light Stress Conditions. Bioresour. Technol. 2021, 320, 124418. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.Y.; Narasimhan, A.L.; Kim, S.; Oh, Y.-K. Cell Disruption and Astaxanthin Extraction from Haematococcus pluvialis: Recent Advances. Bioresour. Technol. 2022, 343, 126124. [Google Scholar] [CrossRef]
- Vorobiev, E.; Lebovka, N. Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-40917-3. [Google Scholar]
- Safi, C.; Rodriguez, L.C.; Mulder, W.J.; Engelen-Smit, N.; Spekking, W.; den Broek, L.A.M.; Olivieri, G.; Sijtsma, L. Energy Consumption and Water-Soluble Protein Release by Cell Wall Disruption of Nannochloropsis Gaditana. Bioresour. Technol. 2017, 239, 204–210. [Google Scholar] [CrossRef]
- von Flotow, J. Beobachtungen Über Haematococcus pluvialis (Observations on Haematococcus pluvialis) Verhandlungen Der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie Der Naturforscher 12(Abt. 2): 413–606, 3 Pls. Verhandlungen der Kais. Leopoldinisch-Carolinischen Dtsch. Akad. der Naturforscher (Proceedings Imp. Leopoldine-Carolinic Ger. Acad. Sci. 1844, 12, 413–606. [Google Scholar]
- Kützing, F.T. Über Die Verwandlung Der Infusorien in Niedere Algenformen (On the Transformation of Infusoria into Lower Forms of Algae; Verlag von W. Kohne: Nordhausen, Germany, 1844. [Google Scholar]
- Focke, G.W. Physiologische Studien; C. Schünemann: Bremen, Germany, 1847. [Google Scholar]
- Hazen, T.E. The Life History of Sphaerella lacustris (Haematococcus pluvialis). Mem. Torrey Bot. Club 1899, 6, 211–246. [Google Scholar]
- Rather, A.H.; Singh, S.; Rao, R.; Choudhary, S. Haematococcus pluvialis Astaxanthin and Its Applications. In Advances in Biotechnology and Bioscience; Kumar, S., Ed.; AkiNik Publications: New Delhi, India, 2020; Volume 4, pp. 21–35. [Google Scholar]
- Boussiba, S. Carotenogenesis in the Green Alga Haematococcus pluvialis: Cellular Physiology and Stress Response. Physiol. Plant. 2000, 108, 111–117. [Google Scholar] [CrossRef]
- Grujić, V.J.; Todorović, B.; Kranvogl, R.; Ciringer, T.; Ambrožič-Dolinšek, J. Diversity and Content of Carotenoids and Other Pigments in the Transition from the Green to the Red Stage of Haematococcus pluvialis Microalgae Identified by HPLC-DAD and LC-QTOF-MS. Plants 2022, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, A.; Minceva, M. Techno-Economic Analysis of a New Downstream Process for the Production of Astaxanthin from the Microalgae Haematococcus pluvialis. Bioresour. Bioprocess. 2021, 8, 1–18. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Zhang, L. Cell Cycles and Proliferation Patterns in Haematococcus pluvialis. Chin. J. Oceanol. Limnol. 2017, 35, 1205–1211. [Google Scholar] [CrossRef]
- Samorì, C.; Pezzolesi, L.; Galletti, P.; Semeraro, M.; Tagliavini, E. Extraction and Milking of Astaxanthin from Haematococcus pluvialis Cultures. Green Chem. 2019, 21, 3621–3628. [Google Scholar] [CrossRef]
- Nunes, M.; Vieira, A.A.H.; Pinto, E.; Carneiro, R.L.; Monteiro, A.C. Carotenogenesis in Haematococcus pluvialis Cells Induced by Light and Nutrient Stresses. Pesqui. Agropecuária Bras. 2013, 48, 825–832. [Google Scholar] [CrossRef]
- Xi, T.; Kim, D.G.; Roh, S.W.; Choi, J.-S.; Choi, Y.-E. Enhancement of Astaxanthin Production Using Haematococcus pluvialis with Novel LED Wavelength Shift Strategy. Appl. Microbiol. Biotechnol. 2016, 100, 6231–6238. [Google Scholar] [CrossRef]
- Niño-Castillo, C.M.; Rodríguez-Rivera, F.C.; Díaz, L.E.; Lancheros-Díaz, A.G. Evaluation of Cell Growth Conditions for the Astaxanthin Production as of Haematococcus pluvialis Microalgae. Nova 2017, 15, 19–31. [Google Scholar]
- Pham, K.T.; Nguyen, T.C.; Luong, T.H.; Dang, P.H.; Vu, D.C.; Do, T.N.; Phi, T.C.M.; Nguyen, D.B. Influence of Inoculum Size, CO2 Concentration and LEDs on the Growth of Green Microalgae Haematococcus Pluvialis Flotow. Vietnam J. Sci. Technol. Eng. 2018, 60, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Minceva, M. Examination of Photo-, Mixo-, and Heterotrophic Cultivation Conditions on Haematococcus pluvialis Cyst Cell Germination. Appl. Sci. 2021, 11, 7201. [Google Scholar] [CrossRef]
- Scibilia, L.; Girolomoni, L.; Berteotti, S.; Alboresi, A.; Ballottari, M. Photosynthetic Response to Nitrogen Starvation and High Light in Haematococcus pluvialis. Algal Res. 2015, 12, 170–181. [Google Scholar] [CrossRef]
- Sharon-Gojman, R.; Maimon, E.; Leu, S.; Zarka, A.; Boussiba, S. Advanced Methods for Genetic Engineering of Haematococcus Pluvialis (Chlorophyceae, Volvocales). Algal Res. 2015, 10, 8–15. [Google Scholar] [CrossRef]
- Domínguez, A.; Pereira, S.; Otero, A. Does Haematococcus pluvialis Need to Sleep? Algal Res. 2019, 44, 101722. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, M.; Xu, J.-W.; Zhao, P.; Li, T.; Yu, X. Enhanced Astaxanthin Production from a Novel Strain of Haematococcus pluvialis Using Fulvic Acid. Process Biochem. 2015, 50, 2072–2077. [Google Scholar] [CrossRef]
- Panis, G.; Carreon, J.R. Commercial Astaxanthin Production Derived by Green Alga Haematococcus pluvialis: A Microalgae Process Model and a Techno-Economic Assessment All through Production Line. Algal Res. 2016, 18, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Jannel, S.; Caro, Y.; Bermudes, M.; Petit, T. Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. J. Mar. Sci. Eng. 2020, 8, 789. [Google Scholar] [CrossRef]
- Miyakawa, K. Commercial Production of Astaxanthin from the Green Alga Haematococcus pluvialis. In Carotenoids: Biosynthetic and Biofunctional Approaches; Misawa, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–10. [Google Scholar]
- Jiang, S.; Tong, S. Advances in Astaxanthin Biosynthesis in Haematococcus pluvialis. Chin. J. Biotechnol. 2019, 35, 988–997. [Google Scholar] [CrossRef]
- Li, J.; Zhu, D.; Niu, J.; Shen, S.; Wang, G. An Economic Assessment of Astaxanthin Production by Large Scale Cultivation of Haematococcus pluvialis. Biotechnol. Adv. 2011, 29, 568–574. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Shoparwe, N.F.; Yusoff, A.H.; Rahim, A.A.; Chang, C.S.; Tan, J.S.; Oslan, S.N.; Arumugam, K.; Ariff, A.B.; Sulaiman, A.Z.; et al. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules 2021, 11, 256. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Tan, J.S.; Oslan, S.N.; Matanjun, P.; Mokhtar, R.A.M.; Shapawi, R.; Huda, N. Haematococcus pluvialis as a Potential Source of Astaxanthin with Diverse Applications in Industrial Sectors: Current Research and Future Directions. Molecules 2021, 26, 6470. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Deng, J.; Huang, J.; Wu, Z.; Yi, L.; Bi, Y.; Chen, F. Using Green Alga Haematococcus pluvialis for Astaxanthin and Lipid Co-Production: Advances and Outlook. Bioresour. Technol. 2021, 340, 125736. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.L.M.; Viana, W.K.R.; Moreira, M.S.M.; Soares Filho, A.A.; Lisboa, V.; de Vidigal, R.C.A.B.; Catter, K.M.; Eloy, H.R.F.; Matias, J.F.N. Technological Innovations in the Cultivation of Haematococcus pluvialis Microalgae. Sist. Gestão 2020, 15, 223–234. [Google Scholar] [CrossRef]
- Liu, J.; van der Meer, J.P.; Zhang, L.; Zhang, Y. Cultivation of Haematococcus pluvialis for Astaxanthin Production. In Microalgal Production for Biomass and High-Value Products; Slocombe, S.P., Benemann, J.R., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 267–293. [Google Scholar]
- Zhu, X.; Meng, C.; Sun, F.; Wei, Z.; Chen, L.; Chen, W.; Tong, S.; Du, H.; Gao, J.; Ren, J. Sustainable Production of Astaxanthin in Microorganisms: The Past, Present, and Future. Crit. Rev. Food Sci. Nutr. 2022, 1–17. [Google Scholar] [CrossRef]
- Lu, S.; Chen, G.; Wei, D. Effect of Electroporation Conditions on Cell Viability of Haematococcus pluvialis. Mod. Food Sci. Technol. 2010, 26, 554–557. [Google Scholar]
- Kim, J.Y.; Lee, C.; Jeon, M.S.; Park, J.; Choi, Y.-E. Enhancement of Microalga Haematococcus pluvialis Growth and Astaxanthin Production by Electrical Treatment. Bioresour. Technol. 2018, 268, 815–819. [Google Scholar] [CrossRef]
- Fitriana, H.-N.; Lee, S.-Y.; Choi, S.-A.; Lee, J.-Y.; Kim, B.-L.; Lee, J.-S.; Oh, Y.-K. Electric Stimulation of Astaxanthin Biosynthesis in Haematococcus pluvialis. Appl. Sci. 2021, 11, 3348. [Google Scholar] [CrossRef]
- Li, L.; Chen, Z.; Acheampong, A.; Huang, Q. Low-Temperature Plasma Promotes Growth of Haematococcus pluvialis and Accumulation of Astaxanthin by Regulating Histone H3 Lysine 4 Tri-Methylation. Bioresour. Technol. 2022, 343, 126095. [Google Scholar] [CrossRef]
- Gao, L.; Shi, X.; Wu, X. Applications and Challenges of Low Temperature Plasma in Pharmaceutical Field. J. Pharm. Anal. 2021, 11, 28–36. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Chen, Z.; Qin, S.; Huang, Q. Isolation and Characterization of Astaxanthin-Hyperproducing Mutants of Haematococcus pluvialis (Chlorophyceae) Produced by Dielectric Barrier Discharge Plasma. Phycologia 2016, 55, 650–658. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Jiang, Y. Mutation Breeding of Haematococcus pluvialis by Atmospheric and Room Temperature Plasma and Isolation of High-Producing Mutants. J. Food Saf. Qual. 2016, 7, 3781–3787. [Google Scholar]
- Chen, Z.; Li, L.; Zhang, H.; Huang, Q. Stimulation of Biomass and Astaxanthin Accumulation in Haematococcus pluvialis Using Low-Temperature Plasma (LTP). Bioresour. Technol. Rep. 2020, 9, 100385. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Liu, J.; Li, L.; Qin, S.; Huang, Q. Transcriptomic and Metabolic Analysis of an Astaxanthin-Hyperproducing Haematococcus pluvialis Mutant Obtained by Low-Temperature Plasma (LTP) Mutagenesis under High Light Irradiation. Algal Res. 2020, 45, 101746. [Google Scholar] [CrossRef]
- Bowen, W.R. Ultrastructural Aspects of the Cell Boundary of Haematococcus pluvialis. Trans. Am. Microsc. Soc. 1967, 86, 36–43. [Google Scholar] [CrossRef]
- Hagen, C.; Siegmund, S.; Braune, W. Ultrastructural and Chemical Changes in the Cell Wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during Aplanospore Formation. Eur. J. Phycol. 2002, 37, 217–226. [Google Scholar] [CrossRef]
- Damiani, M.C.; Leonardi, P.I.; Pieroni, O.I.; Cáceres, E.J. Ultrastructure of the Cyst Wall of Haematococcus pluvialis (Chlorophyceae): Wall Development and Behaviour during Cyst Germination. Phycologia 2006, 45, 616–623. [Google Scholar] [CrossRef]
- D’Hondt, E.; Martin-Juarez, J.; Bolado, S.; Kasperoviciene, J.; Koreiviene, J.; Sulcius, S.; Elst, K.; Bastiaens, L. Cell Disruption Technologies. In Microalgae-Based Biofuels and Bioproducts. From Feedstock Cultivation to End-products; Muñoz, R., Gonzalez-Fernandez, C., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 133–154. [Google Scholar]
- Praveenkumar, R.; Lee, J.; Vijayan, D.; Lee, S.Y.; Lee, K.; Sim, S.J.; Hong, M.E.; Kim, Y.-E.; Oh, Y.-K. Morphological Change and Cell Disruption of Haematococcus pluvialis Cyst during High-Pressure Homogenization for Astaxanthin Recovery. Appl. Sci. 2020, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Zhang, L.; Yu, W.; Liu, J. A Strategy for Interfering with the Formation of Thick Cell Walls in Haematococcus pluvialis by down-Regulating the Mannan Synthesis Pathway. Bioresour. Technol. 2022, 362, 127783. [Google Scholar] [CrossRef]
- Zhu, F.; Shi, B.; Li, Y.; Yang, H.; Sun, S.; Yao, S.; Yin, X.; Zhang, J. Chemical Constituents of Extracellular Extract of Haematococcus pluvialis. Chem. Nat. Compd. 2019, 55, 578–579. [Google Scholar] [CrossRef]
- Marino, T.; Iovine, A.; Casella, P.; Martino, M.; Chianese, S.; Larocca, V.; Musmarra, D.; Molino, A. From Haematococcus pluvialis Microalgae a Powerful Antioxidant for Cosmetic Applications. Chem. Eng. Trans. 2020, 79, 271–276. [Google Scholar] [CrossRef]
- Shahid, A.; Khan, F.; Ahmad, N.; Farooq, M.; Mehmood, M.A. Microalgal Carbohydrates and Proteins: Synthesis, Extraction, Applications, and Challenges. In Microalgae Biotechnology for Food, Health and High Value Products; Alam, M.A., Wang, Z., Eds.; Springer: Singapore, 2020; pp. 433–468. [Google Scholar]
- Jung, S.M.; Jeon, J.; Park, T.H.; Yoon, J.H.; Lee, K.S.; Shin, H.W. Enhancing Production-Extraction and Antioxidant Activity of Astaxanthin from Haematococcus pluvialis. J. Environ. Biol. 2019, 40, 924–931. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Duan, C.; Yi, S.; Gao, Z.; Xiao, C.; Agathos, S.N.; Wang, G.; Li, J. Biotechnological Production of Astaxanthin from the Microalga Haematococcus pluvialis. Biotechnol. Adv. 2020, 43, 107602. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 5281224, Astaxanthin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Astaxanthin (accessed on 2 February 2023).
- Harith, Z. Production of Astaxanthin by Xanthophyllomyces Dendrorhous DSMZ 5626 Using Rapeseed Meal Hydrolysates as Substrate. Ph.D. Thesis, Department of Food and Nutritional Sciences, University of Reading, Reading, UK, 2019. [Google Scholar]
- Johnson, E.A.; An, G.-H. Astaxanthin from Microbial Sources. Crit. Rev. Biotechnol. 1991, 11, 297–326. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Cho, E.-A.; Yoo, J.-M.; In, M.-J.; Chae, H.-J. Solubility and Storage Stability of Astaxanthin. Korean Soc. Biotechnol. Bioeng. J. 2008, 23, 546–550. [Google Scholar]
- Bjørklund, G.; Gasmi, A.; Lenchyk, L.; Shanaida, M.; Zafar, S.; Mujawdiya, P.K.; Lysiuk, R.; Antonyak, H.; Noor, S.; Akram, M.; et al. The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules 2022, 27, 7167. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Fu, L.; Zhu, H.; Zhang, B. Effect of Extraction and Drying Methods on Antioxidant Activity of Astaxanthin from Haematococcus pluvialis. Food Bioprod. Process. 2016, 99, 197–203. [Google Scholar] [CrossRef]
- Lemoine, Y.; Schoefs, B. Secondary Ketocarotenoid Astaxanthin Biosynthesis in Algae: A Multifunctional Response to Stress. Photosynth. Res. 2010, 106, 155–177. [Google Scholar] [CrossRef]
- Cheng, X.; Shah, M. Bioextraction of Astaxanthin Adopting Varied Techniques and Downstream Processing Methodologies. In Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications; Ravishankar, G.A., Rao, A.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 313–339. [Google Scholar]
- Galarza, J.I.; Vega, B.O.A.; Villón, J.; Henríquez, V. Deesterification of Astaxanthin and Intermediate Esters from Haematococcus pluvialis Subjected to Stress. Biotechnol. Rep. 2019, 23, e00351. [Google Scholar] [CrossRef]
- Nitsos, C.; Filali, R.; Taidi, B.; Lemaire, J. Current and Novel Approaches to Downstream Processing of Microalgae: A Review. Biotechnol. Adv. 2020, 45, 107650. [Google Scholar] [CrossRef]
- Bharte, S.; Desai, K. Techniques for Harvesting, Cell Disruption and Lipid Extraction of Microalgae for Biofuel Production. Biofuels 2021, 12, 285–305. [Google Scholar] [CrossRef]
- Putri, D.S.; Sari, D.A.; Zuhdia, L.D. Flocculants Optimization in Harvesting Freshwater Microalgae Haematococcus pluvialis. J. Kim. Ris. Sci. J. Chem. Res. 2020, 5, 49–54. [Google Scholar] [CrossRef]
- Butler, T.O.; Guimarães, B. Industrial Perspective on Downstream Processing of Haematococcus pluvialis. In Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications; Ravishankar, G.A., Ambati, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 283–311. [Google Scholar]
- Koopmann, I.K.; Möller, S.; Elle, C.; Hindersin, S.; Kramer, A.; Labes, A. Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus Pluvialis. Foods 2022, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Ahirwar, A.; Meignen, G.; Khan, M.; Khan, N.; Rai, A.; Schoefs, B.; Marchand, J.; Varjani, S.; Vinayak, V. Nanotechnological Approaches to Disrupt the Rigid Cell Walled Microalgae Grown in Wastewater for Value-Added Biocompounds: Commercial Applications, Challenges, and Breakthrough. Biomass Convers. Biorefinery 2021, 1–26. [Google Scholar] [CrossRef]
- Shpigelman, A.; Okun, Z. Efficient Production of Functional and Bioactive Compounds and Foods for Use in Food, Pharma, Cosmetic and Other Industries. In Nonthermal Processing in Agri-Food-Bio Sciences; Režek Jambrak, A., Ed.; Springer: Cham, Switzerland, 2022; pp. 623–637. [Google Scholar]
- Sarkarat, R.; Mohamadnia, S.; Tavakoli, O. Recent Advances in Non-Conventional Techniques for Extraction of Phycobiliproteins and Carotenoids from Microalgae. Braz. J. Chem. Eng. 2022, 1–22. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Vijayan, D.; Praveenkumar, R.; Han, J.-I.; Lee, K.; Park, J.-Y.; Chang, W.-S.; Lee, J.-S.; Oh, Y.-K. Cell-Wall Disruption and Lipid/Astaxanthin Extraction from Microalgae: Chlorella and Haematococcus. Bioresour. Technol. 2016, 199, 300–310. [Google Scholar] [CrossRef]
- Machado Jr, F.R.S.; Trevisol, T.C.; Boschetto, D.L.; Burkert, J.F.M.; Ferreira, S.R.S.; Oliveira, J.V.; Burkert, C.A.V. Technological Process for Cell Disruption, Extraction and Encapsulation of Astaxanthin from Haematococcus pluvialis. J. Biotechnol. 2016, 218, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-W.; Zeng, X.-A.; Cheng, J.-H.; Liu, D.-B.; Aadil, R.M. The Efficiency and Comparison of Novel Techniques for Cell Wall Disruption in Astaxanthin Extraction from Haematococcus pluvialis. Int. J. Food Sci. Technol. 2018, 53, 2212–2219. [Google Scholar] [CrossRef]
- Butler, T.; Golan, Y. Astaxanthin Production from Microalgae. In Microalgae Biotechnology for Food, Health and High Value Products; Alam, M.A., Xu, J.-L., Wang, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 175–242. [Google Scholar]
- Tan, Y.; Ye, Z.; Wang, M.; Manzoor, M.F.; Aadil, R.M.; Tan, X.; Liu, Z. Comparison of Different Methods for Extracting the Astaxanthin from Haematococcus pluvialis: Chemical Composition and Biological Activity. Molecules 2021, 26, 3569. [Google Scholar] [CrossRef]
- Bauer, A.; Minceva, M. Direct Extraction of Astaxanthin from the Microalgae Haematococcus pluvialis Using Liquid--Liquid Chromatography. RSC Adv. 2019, 9, 22779–22789. [Google Scholar] [CrossRef] [Green Version]
- Bueno, M.; Gallego, R.; Chourio, A.M.; Ibáñez, E.; Herrero, M.; Saldaña, M.D.A. Green Ultra-High Pressure Extraction of Bioactive Compounds from Haematococcus pluvialis and Porphyridium Cruentum Microalgae. Innov. Food Sci. Emerg. Technol. 2020, 66, 102532. [Google Scholar] [CrossRef]
- Macias-Sánchez, M.D. High-Pressure Extraction of Astaxanthin from Haematococcus pluvialis. In Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 355–373. [Google Scholar]
- Zhao, X.; Fu, L.; Liu, D.; Zhu, H.; Wang, X.; Bi, Y. Magnetic-Field-Assisted Extraction of Astaxanthin from Haematococcus pluvialis. J. Food Process. Preserv. 2016, 40, 463–472. [Google Scholar] [CrossRef]
- Khoo, K.S.; Chew, K.W.; Yew, G.Y.; Manickam, S.; Ooi, C.W.; Show, P.L. Integrated Ultrasound-Assisted Liquid Biphasic Flotation for Efficient Extraction of Astaxanthin from Haematococcus pluvialis. Ultrason. Sonochem. 2020, 67, 105052. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Cho, E.-A.; Yoo, J.-M.; In, M.-J.; Chae, H.-J. Extraction and Analysis of Astaxanthin from Haematococcus pluvialis Using Sonication. J. Korean Soc. Food Sci. Nutr. 2008, 37, 1363–1368. [Google Scholar] [CrossRef]
- Zou, T.-B.; Jia, Q.; Li, H.-W.; Wang, C.-X.; Wu, H.-F. Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis. Mar. Drugs 2013, 11, 1644–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plîngău, E.; Rudi, L.; Miscu, V.; Dencicov-Cristea, L. Application of Microwave Pretreatment Technique of Aplanospores of Haematococcus pluvialis for Astaxanthin Recovering. In Proceedings of the Microbial Biotechnology, Chișinău, Moldova, 11–12 October 2018; p. 91. [Google Scholar]
- Zhao, L.; Chen, G.; Zhao, G.; Hu, X. Optimization of Microwave-Assisted Extraction of Astaxanthin from Haematococcus pluvialis by Response Surface Methodology and Antioxidant Activities of the Extracts. Sep. Sci. Technol. 2009, 44, 243–262. [Google Scholar] [CrossRef]
- Desai, R.K.; Streefland, M.; Wijffels, R.H.; Eppink, M.H.M. Novel Astaxanthin Extraction from Haematococcus pluvialis Using Cell Permeabilising Ionic Liquids. Green Chem. 2016, 18, 1261–1267. [Google Scholar] [CrossRef]
- Tavanandi, H.A.; Devi, A.C.; Raghavarao, K. Sustainable Pre-Treatment Methods for Downstream Processing of Harvested Microalgae. In Sustainable Downstream Processing of Microalgae for Industrial Application; Gayen, K., Bhowmick, T.K., Maity, S.K., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 101–135. ISBN 9780429027970. [Google Scholar]
- Liu, Z.-W.; Yue, Z.; Zeng, X.-A.; Cheng, J.-H.; Aadil, R.M. Ionic Liquid as an Effective Solvent for Cell Wall Deconstructing through Astaxanthin Extraction from Haematococcus pluvialis. Int. J. Food Sci. Technol. 2019, 54, 583–590. [Google Scholar] [CrossRef]
- Choi, S.-A.; Oh, Y.-K.; Lee, J.; Sim, S.J.; Hong, M.E.; Park, J.-Y.; Kim, M.-S.; Kim, S.W.; Lee, J.-S. High-Efficiency Cell Disruption and Astaxanthin Recovery from Haematococcus pluvialis Cyst Cells Using Room-Temperature Imidazolium-Based Ionic Liquid/Water Mixtures. Bioresour. Technol. 2019, 274, 120–126. [Google Scholar] [CrossRef]
- In, M.-J.; Choi, J.-H.; Kim, S.-Y.; Chae, H.-J.; Kim, D.-H. Enhanced Extraction of Astaxanthin from Haematococcus pluvialis Using Enzyme Treatments. Appl. Biol. Chem. 2008, 51, 247–249. [Google Scholar]
- Corrêa, P.S.; Morais Júnior, W.G.; Martins, A.A.; Caetano, N.S.; Mata, T.M. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes 2020, 9, 10. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Subcritical Water Extraction and Characterization of Bioactive Compounds from Haematococcus pluvialis Microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustamante, A.; Roberts, P.; Aravena, R.; Del Valle, J.M. Supercritical Extraction of Astaxanthin from H. Pluvialis Using Ethanol-Modified CO2. Experiments and Modeling. In Proceedings of the 11th International Conference of Eng Food, Athens, Greece, 20–26 May 2011; pp. 22–26. [Google Scholar]
- Reyes, F.A.; Muñoz, L.A.; Hansen, A.; del Valle, J.M. Water Relationships in Haematoccoccus Pluvialis and Their Effect in High-Pressure Agglomeration for Supercritical CO2 Extraction. J. Food Eng. 2015, 162, 18–24. [Google Scholar] [CrossRef]
- Di Sanzo, G.; Mehariya, S.; Martino, M.; Larocca, V.; Casella, P.; Chianese, S.; Musmarra, D.; Balducchi, R.; Molino, A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Mar. Drugs 2018, 16, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molino, A.; Mehariya, S.; Iovine, A.; Larocca, V.; Di Sanzo, G.; Martino, M.; Casella, P.; Chianese, S.; Musmarra, D. Extraction of Astaxanthin and Lutein from Microalga Haematococcus Pluvialis in the Red Phase Using CO2 Supercritical Fluid Extraction Technology with Ethanol as Co-Solvent. Mar. Drugs 2018, 16, 432. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Domínguez, M.C.; Espinosa, C.; Paredes, A.; Palma, J.; Jaime, C.; Vílchez, C.; Cerezal, P. Determining the Potential of Haematococcus pluvialis Oleoresin as a Rich Source of Antioxidants. Molecules 2019, 24, 4073. [Google Scholar] [CrossRef] [Green Version]
- Espinosa Álvarez, C.; Vardanega, R.; Salinas-Fuentes, F.; Palma Ramírez, J.; Bugueño Muñoz, W.; Jiménez-Rondón, D.; Meireles, M.A.A.; Cerezal Mezquita, P.; Ruiz-Domínguez, M.C. Effect of CO2 Flow Rate on the Extraction of Astaxanthin and Fatty Acids from Haematococcus Pluvialis Using Supercritical Fluid Technology. Molecules 2020, 25, 6044. [Google Scholar] [CrossRef]
- Khoo, K.S.; Ooi, C.W.; Chew, K.W.; Foo, S.C.; Lim, J.W.; Tao, Y.; Jiang, N.; Ho, S.-H.; Show, P.L. Permeabilization of Haematococcus Pluvialis and Solid-Liquid Extraction of Astaxanthin by CO2-Based Alkyl Carbamate Ionic Liquids. Chem. Eng. J. 2021, 411, 128510. [Google Scholar] [CrossRef]
- Aravena, R.I.; del Valle, J.M.; de la Fuente, J.C. Supercritical CO2 Extraction of Aqueous Suspensions of Disrupted Haematococcus Pluvialis Cysts. J. Supercrit. Fluids 2022, 181, 105392. [Google Scholar] [CrossRef]
- Vardanega, R.; Cerezal-Mezquita, P.; Veggi, P.C. Supercritical Fluid Extraction of Astaxanthin-Rich Extracts from Haematococcus pluvialis: Economic Assessment. Bioresour. Technol. 2022, 361, 127706. [Google Scholar] [CrossRef]
- Saini, K.C.; Yadav, D.S.; Mehariya, S.; Rathore, P.; Kumar, B.; Marino, T.; Leone, G.P.; Verma, P.; Musmarra, D.; Molino, A. Overview of Extraction of Astaxanthin from Haematococcus Pluvialis Using CO2 Supercritical Fluid Extraction Technology Vis-a-Vis Quality Demands. In Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications; Ravishankar, G., Ambati, R., Eds.; Academic Press: London, UK, 2021; pp. 341–354. ISBN 9780128233054. [Google Scholar]
- Youn, H.-S.; Roh, M.-K.; Weber, A.; Wilkinson, G.T.; Chun, B.-S. Solubility of Astaxanthin in Supercritical Carbon Dioxide. Korean J. Chem. Eng. 2007, 24, 831–834. [Google Scholar] [CrossRef]
- Molino, A.; Rimauro, J.; Casella, P.; Cerbone, A.; Larocca, V.; Chianese, S.; Karatza, D.; Mehariya, S.; Ferraro, A.; Hristoforou, E. Extraction of Astaxanthin from Microalga Haematococcus pluvialis in Red Phase by Using Generally Recognized as Safe Solvents and Accelerated Extraction. J. Biotechnol. 2018, 283, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.; Pereira, S.; Otero, A.; Garcia-Jares, C.; Lores, M. Multicomponent Bioactive Extract from Red Stage Haematococcus pluvialis Wet Paste: Avoiding the Drying Step and Toxic Solvents. J. Appl. Phycol. 2022, 34, 1537–1553. [Google Scholar] [CrossRef]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.I.; Vorobiev, E. Selective Extraction from Microalgae Nannochloropsis Sp. Using Different Methods of Cell Disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Parniakov, O.; Grimi, N.; Lebovka, N.; Marchal, L.; Vorobiev, E. Emerging Techniques for Cell Disruption and Extraction of Valuable Bio-Molecules of Microalgae Nannochloropsis Sp. Bioprocess Biosyst. Eng. 2019, 42, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Marchal, L.; Jubeau, S.; Lebovka, N.; Vorobiev, E. Pulsed Electric Field and PH Assisted Selective Extraction of Intracellular Components from Microalgae Nannochloropsis. Algal Res. 2015, 8, 128–134. [Google Scholar] [CrossRef]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Marchal, L.; Jubeau, S.; Lebovka, N.; Vorobiev, E. Pulsed Electric Field Assisted Extraction of Nutritionally Valuable Compounds from Microalgae Nannochloropsis Spp. Using the Binary Mixture of Organic Solvents and Water. Innov. Food Sci. Emerg. Technol. 2015, 27, 79–85. [Google Scholar] [CrossRef]
- Akyil, S.; İlter, I.; Koç, M.; Ertekin, F. Recent Trends in Extraction Techniques for High Value Compounds from Algae as Food Additives. Turk. J. Agric. Sci. Technol. 2018, 6, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.M.; Delso, C.; Álvarez, I.; Raso, J. Pulsed Electric Field-Assisted Extraction of Valuable Compounds from Microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 530–552. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Emerging Technologies for the Clean Recovery of Antioxidants from Microalgae. In Microalgae; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 173–205. [Google Scholar]
- Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.A.; Juliano, P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef] [Green Version]
- Amaro, H.M.; Sousa-Pinto, I.; Malcata, F.X.; Guedes, A.C. Microalgae as a Source of Pigments: Extraction and Purication Methods. In Marine Microorganisms; Nollet, L.M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 113–142. [Google Scholar]
- Gogate, P.R.; Joshi, S.M. Process Intensification Aspects of Extraction of Pigments from Microalgae. In Pigments from Microalgae Handbook; Jacob-Lopes, E., Queiroz, M.I., Zepka, L.Q., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 309–324. [Google Scholar]
- Pagels, F.; Pereira, R.N.; Vicente, A.A.; Guedes, A.C. Extraction of Pigments from Microalgae and Cyanobacteria—A Review on Current Methodologies. Appl. Sci. 2021, 11, 5187. [Google Scholar] [CrossRef]
- Pereira, R.N.; Avelar, Z.; Pereira, S.G.; Rocha, C.M.R.; Teixeira, J.A. Pulsed Electric Fields for the Extraction of Proteins and Carbohydrates from Marine Resources. In Innovative and Emerging Technologies in the Bio-marine Food Sector; Garcia-Vaquero, M., Rajauria, G., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 173–195. [Google Scholar]
- Lafarga, T.; Aguiló-Aguayo, I. Pulsed Electric Fields for the Extraction of Lipids, Pigments, and Polyphenols from Cultured Microalgae. In Innovative and Emerging Technologies in the Bio-marine Food Sector; Garcia-Vaquero, M., Rajauria, G., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 197–221. [Google Scholar]
- Suwal, S.; Marciniak, A. Technologies for the Extraction, Separation and Purification of Polyphenols--A Review. Nepal J. Biotechnol. 2018, 6, 74–91. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Mikes, F.; Matsakas, L. An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Microorganisms. Molecules 2018, 23, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- bin Azmi, A.A.; Sankaran, R.; Show, P.L.; Ling, T.C.; Tao, Y.; Munawaroh, H.S.H.; San Kong, P.; Lee, D.-J.; Chang, J.-S. Current Application of Electrical Pre-Treatment for Enhanced Microalgal Biomolecules Extraction. Bioresour. Technol. 2020, 302, 122874. [Google Scholar] [CrossRef] [PubMed]
- Ahirwar, A.; Khan, M.J.; Sirotiya, V.; Mourya, M.; Rai, A.; Schoefs, B.; Marchand, J.; Varjani, S.; Vinayak, V. Pulsed Electric Field--Assisted Cell Permeabilization of Microalgae (Haematococcus pluvialis) for Milking of Value-Added Compounds. BioEnergy Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Coustets, M.; Joubert-Durigneux, V.; Hérault, J.; Schoefs, B.; Blanckaert, V.; Garnier, J.-P.; Teissié, J. Optimization of Protein Electroextraction from Microalgae by a Flow Process. Bioelectrochemistry 2015, 103, 74–81. [Google Scholar] [CrossRef]
- Gateau, H.; Blanckaert, V.; Veidl, B.; Burlet-Schiltz, O.; Pichereaux, C.; Gargaros, A.; Marchand, J.; Schoefs, B. Application of Pulsed Electric Fields for the Biocompatible Extraction of Proteins from the Microalga Haematococcus pluvialis. Bioelectrochemistry 2021, 137, 107588. [Google Scholar] [CrossRef]
- Martínez, J.M.; Gojkovic, Z.; Ferro, L.; Maza, M.; Álvarez, I.; Raso, J.; Funk, C. Use of Pulsed Electric Field Permeabilization to Extract Astaxanthin from the Nordic Microalga Haematococcus pluvialis. Bioresour. Technol. 2019, 289, 121694. [Google Scholar] [CrossRef]
- Rodríguez-Sifuentes, L.; Marszalek, J.E.; Hernández-Carbajal, G.; Chuck-Hernández, C. Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. Front. Chem. Eng. 2021, 2, 601483. [Google Scholar] [CrossRef]
- Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals. Int. J. Mol. Sci. 2016, 17, 962. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Hassan, S.H.A.; Awasthi, M.K.; Gajendran, B.; Sharma, M.; Ji, M.-K.; Salama, E.-S. The Recent Progress on the Bioactive Compounds from Algal Biomass for Human Health Applications. Food Biosci. 2022, 51, 102267. [Google Scholar] [CrossRef]
- Oliveira, C.; Coelho, C.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry—The European and North America Regulation Challenges. Molecules 2022, 27, 1669. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Akhtar, N. Biofertilizers: Characteristic Features and Applications. In Biofertilizers: Study and Impact; Ahamed, I.M.I., Boddula, R., Rezakazemi, M., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 429–489. [Google Scholar]
- Capelli, B.; Bagchi, D.; Cysewski, G.R. Synthetic Astaxanthin Is Significantly Inferior to Algal-Based Astaxanthin as an Antioxidant and May Not Be Suitable as a Human Nutraceutical Supplement. Nutrafoods 2013, 12, 145–152. [Google Scholar] [CrossRef]
- Yamashita, E. Extensive Bioactivity of Astaxanthin from Haematococcus pluvialis in Human. In Carotenoids: Biosynthetic and Biofunctional Approaches; Misawa, N., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2021; Volume 1261, pp. 249–259. ISBN 978-981-15-7359-0. [Google Scholar]
- Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A Review of Its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Tambat, V.S.; Chen, C.-W.; Chauhan, A.S.; Kumar, P.; Vadrale, A.P.; Huang, C.-Y.; Dong, C.-D.; Singhania, R.R. Recent Advancements in Astaxanthin Production from Microalgae: A Review. Bioresour. Technol. 2022, 154, 128030. [Google Scholar] [CrossRef]
- Mularczyk, M.; Michalak, I.; Marycz, K. Astaxanthin and Other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Mar. Drugs 2020, 18, 459. [Google Scholar] [CrossRef]
- Mota, G.C.P.; de Moraes, L.B.S.; Oliveira, C.Y.B.; Oliveira, D.W.S.; de Abreu, J.L.; Dantas, D.M.M.; Gálvez, A.O. Astaxanthin from Haematococcus pluvialis: Processes, Applications, and Market. Prep. Biochem. Biotechnol. 2022, 52, 598–609. [Google Scholar] [CrossRef]
- Brendler, T.; Williamson, E.M. Astaxanthin: How Much Is Too Much? A Safety Review. Phyther. Res. 2019, 33, 3090–3111. [Google Scholar] [CrossRef]
- Stachowiak, B.; Szulc, P. Astaxanthin for the Food Industry. Molecules 2021, 26, 2666. [Google Scholar] [CrossRef]
- Patil, A.D.; Kasabe, P.J.; Dandge, P.B. Pharmaceutical and Nutraceutical Potential of Natural Bioactive Pigment: Astaxanthin. Nat. Prod. Bioprospect. 2022, 12, 1–27. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Yadav, V.K.; Yadav, K.K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B.-H. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26, 5313. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Diksha; Kumari, A.; Panwar, A. Astaxanthin: A Super Antioxidant from Microalgae and Its Therapeutic Potential. J. Basic Microbiol. 2022, 62, 1064–1082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin. Mar. Drugs 2015, 13, 4310–4330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishimoto, Y.; Yoshida, H.; Kondo, K. Potential Anti-Atherosclerotic Properties of Astaxanthin. Mar. Drugs 2016, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.X.; Xiong, F. Astaxanthin and Its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules 2020, 25, 5342. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherabli, A.; Grimi, N.; Lemaire, J.; Vorobiev, E.; Lebovka, N. Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules 2023, 28, 2089. https://doi.org/10.3390/molecules28052089
Gherabli A, Grimi N, Lemaire J, Vorobiev E, Lebovka N. Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules. 2023; 28(5):2089. https://doi.org/10.3390/molecules28052089
Chicago/Turabian StyleGherabli, Adila, Nabil Grimi, Julien Lemaire, Eugène Vorobiev, and Nikolai Lebovka. 2023. "Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies" Molecules 28, no. 5: 2089. https://doi.org/10.3390/molecules28052089
APA StyleGherabli, A., Grimi, N., Lemaire, J., Vorobiev, E., & Lebovka, N. (2023). Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules, 28(5), 2089. https://doi.org/10.3390/molecules28052089