Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Characterizations
2.2. Catalytic Performance in Acetylene Hydrogenation
2.3. Study on Reaction Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Pd NCs
3.3. Synthesis of Pd NCs@Bi and Pd NCs@Bi/Al2O3
3.4. Synthesis of Pd NPs@Bi/Al2O3 and Pd NPs@Bi/CaCO3
3.5. Characterization
3.6. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A.-L.; Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773–1786. [Google Scholar] [CrossRef]
- Li, Y.; Yan, K.; Cao, Y.; Ge, X.; Zhou, X.; Yuan, W.; Chen, D.; Duan, X. Mechanistic and atomic-level insights into semihydrogenation catalysis to light olefins. ACS Catal. 2022, 12, 12138–12161. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Q.; Mao, S.; Wang, C.; Xiong, J.; Chen, Z.; Wang, Y. Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts. Nano Res. 2022, 15, 10044–10062. [Google Scholar] [CrossRef]
- Shittu, T.-D.; Ayodele, O.-B. Catalysis of semihydrogenation of acetylene to ethylene: Current trends, challenges, and outlook. Front. Chem. Sci. Eng. 2022, 16, 1031–1059. [Google Scholar] [CrossRef]
- Borodziński, A.; Bond, G.C. Selective Hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 2006, 48, 91–144. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- Doyle, A. Alkene chemistry on the palladium surface: Nanoparticles vs single crystals. J. Catal. 2004, 223, 444–453. [Google Scholar] [CrossRef]
- Li, X.-T.; Chen, L.; Shang, C.; Liu, Z.-P. Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress. Chin. J. Catal. 2022, 43, 1991–2000. [Google Scholar] [CrossRef]
- Shi, X.; Lin, Y.; Huang, L.; Sun, Z.; Yang, Y.; Zhou, X.; Vovk, E.; Liu, X.; Huang, X.; Sun, M.; et al. Copper catalysts in semihydrogenation of acetylene: From single atoms to nanoparticles. ACS Catal. 2020, 10, 3495–3504. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, S.; Liu, S.; Chen, C.; Chen, W.; Zhu, W.; Liang, C.; Cheong, W.-C.; Wang, Y.; Yu, Y.; et al. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv. Mater. 2018, 30, 1801878. [Google Scholar] [CrossRef]
- Fu, B.; McCue, A.J.; Liu, Y.; Weng, S.; Song, Y.; He, Y.; Feng, J.; Li, D. Highly selective and stable isolated non-noble metal atom catalysts for selective hydrogenation of acetylene. ACS Catal. 2022, 12, 607–615. [Google Scholar] [CrossRef]
- Cao, Y.; Sui, Z.; Zhu, Y.; Zhou, X.; Chen, D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: Promotional effect of indium and composition-dependent performance. ACS Catal. 2017, 7, 7835–7846. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Polyoxometalate-based metal-organic framework as molecular sieve for high selective semi-hydrogenation of acetylene on isolated single Pd atom site. Angew. Chem. Int. Ed. 2021, 60, 22522–22528. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, S.; Wang, Y.; Dong, J.; Chen, W.; He, D.; Wang, D.; Yang, J.; Zhu, Y.; Zhu, H.; et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. ACS Catal. 2017, 7, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Pei, G.; Liu, X.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. J. Am. Chem. Soc. 2018, 140, 13142–13146. [Google Scholar] [CrossRef]
- Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747. [Google Scholar] [CrossRef] [PubMed]
- Dario, F.; Andrea, R.-F.; Edvin, F.; Roland, H.; Olga, S.; Sharon, M.; López, N.; Javier, P. Precursor nuclearity and ligand effects in atomically-dispersed heterogeneous iron catalysts for alkyne semi-hydrogenation. ChemCatChem 2021, 13, 3247–3256. [Google Scholar]
- Ge, X.; Cao, Y.; Yan, K.; Li, Y.; Zhou, L.; Dai, S.; Zhang, J.; Gong, X.; Qian, G.; Zhou, X.; et al. Increasing the distance of adjacent palladium atoms for configuration matching in selective hydrogenation. Angew. Chem. Int. Ed. 2022, 51, e2022152252022. [Google Scholar]
- Kim, S.K.; Kim, C.; Lee, J.H.; Kim, J.; Lee, H.; Moon, S.H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J. Catal. 2013, 306, 146–154. [Google Scholar] [CrossRef]
- Niu, W.; Gao, Y.; Zhang, W.; Nan, N.; Lu, X. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem. Int. Ed. 2015, 54, 8271–8274. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ye, B.; Chen, M.; Lu, L.; Yu, J.; Zhou, Y.; Wang, Y.; Liu, J.; Xiao, L.; Zou, S.; et al. Site-specific deposition creates electron-rich Pd atoms for unprecedented C-H activation in aerobic alcohol oxidation. Chin. J. Catal. 2020, 41, 1240–1247. [Google Scholar] [CrossRef]
- Xu, Y.; Bian, W.; Pan, Q.; Chu, M.; Cao, M.; Li, Y.; Gong, Z.; Wang, R.; Cui, Y.; Lin, H.; et al. Revealing the active sites of Pd nanocrystals for propyne semihydrogenation: From theory to experiment. ACS Catal. 2019, 9, 8471–8480. [Google Scholar] [CrossRef]
- Mao, S.; Zhao, B.; Wang, Z.; Gong, Y.; Lü, L.; Yu, L.; Wang, Y. Tuning the catalytic performance for the semi-hydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts. Green Chem. 2019, 21, 4143–4151. [Google Scholar] [CrossRef]
- Cherkasov, N.; Ibhadon, A.-O.; Rebrov, E.-V. Solvent-free semihydrogenation of acetylene alcohols in a capillary reactor coated with a Pd-Bi/TiO2 catalyst. Appl. Catal. A Gen. 2016, 515, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, X.; Wang, J.; Ghosh, A.; Zhu, J.; LiBretto, N.; Zhang, G.; Datye, A.; Liu, W.; Miller, J. Bismuth-modulated surface structural evolution of Pd3Bi intermetallic alloy catalysts for selective propane dehydrogenation and acetylene semihydrogenation. ACS Catal. 2022, 12, 10531–10545. [Google Scholar] [CrossRef]
- Anderdon, J.-A.; Mellor, J.; Wells, R. Pd catalysed hexyne hydrogenation modified by Bi and by Pb. J. Catal. 2009, 261, 208–216. [Google Scholar] [CrossRef]
- Cherkasov, N.; Expósitoa, A.; Aw, M.; García, J.; Huband, S.; Sloan, J.; Paniwnyk, L.; Rebrov, E. Active site isolation in bismuth-poisoned Pd/SiO2 catalysts for selective hydrogenation of furfural. Appl. Catal. A Gen. 2019, 570, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Qian, H.; Lu, L.; Fan, J.; Guo, Y.; Fang, W. Influence of Reduction Kinetics on the Preparation of Well-Defined Cubic Palladium Nanocrystals. Inorg. Chem. 2018, 57, 8128–8136. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, X.; Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, Q.; Chen, J.; Wang, Z.; Cao, M.; Yang, H.; Cheng, T.; Chen, J.; Sham, T.-K.; Zhang, Q. Unveiling the local structure and electronic properties of PdBi surface alloy for selective hydrogenation of propyne. ACS Nano 2022, 16, 16869–16879. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Liu, J.; Kobayashi, H.; Chen, C.; Qiao, P.; Li, R.; Xiao, L.; Fan, J. Boosting hydrogen evolution activities by strong interfacial electronic interaction in ZnO@Bi(NO3)3 core-shell Structures. J. Phys. Chem. C 2017, 121, 4343–4351. [Google Scholar] [CrossRef]
- Heise, M.; Chang, J.-H.; Schönemann, R.; Herrmannsdörfer, T.; Wosnitza, J.; Ruck, M. Full access to nanoscale bismuth-palladium intermetallics by low-temperature syntheses. Chem. Mater. 2014, 19, 5640–5646. [Google Scholar] [CrossRef]
- Zou, S.; Lou, B.; Yang, K.; Yuan, W.; Zhu, C.; Zhu, Y.; Du, Y.; Lu, L.; Liu, J.; Huang, W.; et al. Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nat. Commun. 2021, 12, 5770. [Google Scholar] [CrossRef]
- Takei, T.; Akita, T.; Nakamura, I.; Fujitani, T.; Okumura, M.; Okazaki, K.; Huang, J.; Ishida, T.; Haruta, M. Heterogeneous catalysis by gold. Adv. Catal. 2012, 55, 1–126. [Google Scholar]
- Lou, B.; Kang, H.; Yuan, W.; Ma, L.; Huang, W.; Wang, Y.; Jiang, Z.; Du, Y.; Zou, S.; Fan, J. Highly selective acetylene semihydrogenation catalyst with an operation window exceeding 150 °C. ACS Catal. 2021, 11, 6073–6080. [Google Scholar] [CrossRef]
- Cherkasov, N.; Ibhadon, A.; McCue, A.; Anderson, J.; Johnston, S. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Appl. Catal. A-Gen. 2015, 497, 22–30. [Google Scholar] [CrossRef]
- Pei, G.X.; Liu, X.Y.; Wang, A.; Lee, A.F.; Isaacs, M.A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, S.; Xu, Q.; Chen, W.; Tian, S.; Wang, Y.; Yan, W.; Luo, J.; Wang, D.; Li, Y. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024. [Google Scholar] [CrossRef]
- Kyriakou, G.; Boucher, M.B.; Jewell, A.D.; Lewis, E.A.; Lawton, T.J.; Baber, A.; Tierney, H.L.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212. [Google Scholar] [CrossRef]
- Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Ren, P.; Xiao, D.; Wen, X.; Wang, N.; et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.W.; Kang, J.H.; Kim, W.J.; Park, J.D.; Moon, S.H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: The origin of the ethylene selectivity improvement. Appl. Catal. A-Gen. 2002, 223, 161–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Wu, J.; Lou, B.; Wang, Y.; Zhao, Y.; Liu, J.; Zou, S.; Fan, J. Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene. Molecules 2023, 28, 2335. https://doi.org/10.3390/molecules28052335
Kang H, Wu J, Lou B, Wang Y, Zhao Y, Liu J, Zou S, Fan J. Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene. Molecules. 2023; 28(5):2335. https://doi.org/10.3390/molecules28052335
Chicago/Turabian StyleKang, Hongquan, Jianzhou Wu, Baohui Lou, Yue Wang, Yilin Zhao, Juanjuan Liu, Shihui Zou, and Jie Fan. 2023. "Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene" Molecules 28, no. 5: 2335. https://doi.org/10.3390/molecules28052335
APA StyleKang, H., Wu, J., Lou, B., Wang, Y., Zhao, Y., Liu, J., Zou, S., & Fan, J. (2023). Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene. Molecules, 28(5), 2335. https://doi.org/10.3390/molecules28052335