The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg
Abstract
:1. Introduction
2. Methods
3. Fractionation of Egg Proteins
3.1. Fractionation of EW Proteins
3.2. Separation Methods of EW Proteins
3.2.1. Chromatography
Ion Exchange Chromatography
Affinity Chromatography
Adsorption Chromatography
Gel Filtration Chromatography
3.2.2. Precipitation
3.2.3. Membrane Separation Technology
3.2.4. Membrane Chromatography
3.2.5. Electrophoresis
3.2.6. Aqueous Two-Phase Systems
3.2.7. Molecular Imprinting Technology
3.3. Separation of EY Proteins
4. Allergenicity from Egg Proteins
4.1. Egg Allergy
4.2. Effect of Processing on the Allergenicity
5. Bioactive Peptides Derived from Egg Protein
5.1. Enzymatic Hydrolysis
Efficacy of Hydrolyzed Egg Proteins on Health Benefits
5.2. Thermal Treatment
5.3. Membrane Separation
5.4. Electrodialysis Method
5.5. Glycosylation
5.6. Chromatography
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McClements, D.J.; Grossmann, L. Eggs and Egg Products. In Next-Generation Plant-Based Foods; Springer: Cham, Switzerland, 2022; pp. 341–388. [Google Scholar] [CrossRef]
- Barnkob, L.L.; Argyraki, A.; Jakobsen, J. Naturally enhanced eggs as a source of vitamin D: A review. Trends Food Sci. Technol. 2020, 102, 62–70. [Google Scholar] [CrossRef]
- Gautron, J.; Réhault-Godbert, S.; Van de Braak, T.; Dunn, I. What are the challenges facing the table egg industry in the next decades and what can be done to address them? Animal 2021, 15, 100282. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Lahti, T.; Tanaka, T.; Nickerson, M.T. Egg proteins: Fractionation, bioactive peptides and allergenicity. J. Sci. Food Agric. 2018, 98, 5547–5558. [Google Scholar] [CrossRef] [PubMed]
- Büyükcan, M.K.; Karakaya, S. Comparison of some functional properties and protein profiles of different protein sources with egg components. Ital. J. Food Sci. 2021, 33, 142–155. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. How can the value and use of egg yolk be increased? J. Food Sci. 2019, 84, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Mine, Y. Egg Bioscience and Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Valverde, D.; Laca, A.; Estrada, L.N.; Paredes, B.; Rendueles, M.; Díaz, M. Egg yolk and egg yolk fractions as key ingredient for the development of a new type of gels. Int. J. Gastron. Food Sci. 2016, 3, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Anton, M. Egg yolk: Structures, functionalities and processes. J. Sci. Food Agric. 2013, 93, 2871–2880. [Google Scholar] [CrossRef]
- Strixner, T.; Kulozik, U. Continuous centrifugal fractionation of egg yolk granules and plasma constituents influenced by process conditions and product characteristics. J. Food Eng. 2013, 117, 89–98. [Google Scholar] [CrossRef]
- Lunhui, H.; Yanhong, S.; Shaoshen, L.; Huijing, B.; Yunde, L.; Huiqiang, L. Component resolved diagnosis of egg yolk is an indispensable part of egg allergy. Allergol. Immunopathol. 2021, 49, 6–14. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Tang, Q.; Ma, M.; Jin, Y.; Sheng, L. Functional properties and extraction techniques of chicken egg white proteins. Foods 2022, 11, 2434. [Google Scholar] [CrossRef]
- Liu, L.; Meng, Y.; Dai, X.; Chen, K.; Zhu, Y. 3D printing complex egg white protein objects: Properties and optimization. Food Bioprocess Technol. 2019, 12, 267–279. [Google Scholar] [CrossRef]
- Lee, J.; Paik, H.-D. Anticancer and immunomodulatory activity of egg proteins and peptides: A review. Poult. Sci. 2019, 98, 6505–6516. [Google Scholar] [CrossRef]
- Syngai, G.G.; Ahmed, G. Lysozyme: A natural antimicrobial enzyme of interest in food applications. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 169–179. [Google Scholar] [CrossRef]
- Ayats-Vidal, R.; Riera-Rubió, S.; Valdesoiro-Navarrete, L.; García-González, M.; Larramona-Carrera, H.; Asensio-De la Cruz, O.; Bosque-García, M. Long-term outcome of omalizumab-assisted desensitisation to cow’s milk and eggs in patients refractory to conventional oral immunotherapy: Real-life study. Allergol. Immunopathol. 2022, 50, 1–7. [Google Scholar] [CrossRef]
- Jang, D.-T.; Sabido, M.P.; Buendía, E.; Ibáñez, L.; Nieto, M.; Bartoll, E.; Selva, B.; Uixera, S.; Nieto, A.; Mazón, Á. Validation of the food allergy independent measure and the EuroPrevall food allergy quality of life questionnaire for children 8–12 years translated into Spanish. Allergol. Immunopathol. 2022, 50, 51–59. [Google Scholar] [CrossRef]
- Vassilopoulou, E.; Vardaka, E.; Efthymiou, D.; Pitsios, C. Early life triggers for food allergy that in turn impacts dietary habits in childhood. Allergol. Immunopathol. 2021, 49, 146–152. [Google Scholar] [CrossRef]
- Domínguez, M.; Vega-Hernández, M.C.; De la Calle Cabrera, T.; Arriba-Méndez, S.; Pellegrini-Belinchón, F.J. Mediterranean diet in the Castilian plains: Dietary patterns and childhood asthma in 6–7-year-old children from the province of Salamanca. Allergol. Immunopathol. 2022, 50, 91–99. [Google Scholar] [CrossRef]
- Floca, E.; Gaga, R.; Sur, G.; Lupan, I.; Armat, I.; Samasca, G.; Sur, L.M. A new autoimmune disease: Atopic dermatitis in children. Allergol. Immunopathol. 2022, 50, 17–21. [Google Scholar] [CrossRef]
- Liu, T.; Yang, C.; He, J.; Wang, Y.; Hu, T.; Zhang, X. Study of The specificity of gut microbiota in adult patients with delayed-onset of atopic dermatitis. Allergol. Immunopathol. 2022, 50, 128–136. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; Li, X. Correlation between B-cell lymphoma 6 with the balance of T helper-1/2 and severity of allergic rhinitis. Allergol. Immunopathol. 2023, 51, 1–8. [Google Scholar] [CrossRef]
- Moreno-Fernández, S.; Garcés-Rimón, M.; Miguel, M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci. Technol. 2020, 104, 208–218. [Google Scholar] [CrossRef]
- Zhou, N.; Zhao, Y.; Yao, Y.; Wu, N.; Xu, M.; Du, H.; Wu, J.; Tu, Y. Antioxidant stress and anti-inflammatory activities of egg white proteins and their derived peptides: A review. J. Agric. Food Chem. 2021, 70, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Gawryjołek, J.; Krogulska, A. Food-induced anaphylaxis in children up to 3-years-old–preliminary study. Allergol. Immunopathol. 2021, 49, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Grootaert, C.; Voorspoels, S.; Jacobs, G.; Matthijs, B.; Possemiers, S.; Van der Saag, H.; Van Camp, J.; Lucey, A. Clinical aspects of egg bioactive peptide research: A review. Int. J. Food Sci. Technol. 2019, 54, 1967–1975. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, A.; Lagousi, T.; Hatzopoulou, E.; Korovessi, P.; Kostaridou, S.; Mermiri, D.-Z. Atypical food protein-induced enterocolitis syndrome in children: Is IgE sensitisation an issue longitudinally? Allergol. Immunopathol. 2021, 49, 73–82. [Google Scholar] [CrossRef]
- Ünsal, H.; Ocak, M.; Akarsu, A.; Şahiner, Ü.M.; Soyer, Ö.; Şekerel, B.E. Oral food challenge in IgE mediated food allergy in eastern Mediterranean children. Allergol. Immunopathol. 2021, 49, 185–192. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Yao, Y.; Xu, M.; Du, H.; Zhang, M.; Tu, Y. Anti-inflammatory activity of di-peptides derived from ovotransferrin by simulated peptide-cut in TNF-α-induced Caco-2 cells. J. Funct. Foods 2017, 37, 424–432. [Google Scholar] [CrossRef]
- Ma, B.; Guo, Y.; Fu, X.; Jin, Y. Identification and antimicrobial mechanisms of a novel peptide derived from egg white ovotransferrin hydrolysates. LWT 2020, 131, 109720. [Google Scholar] [CrossRef]
- Benedé, S.; Molina, E. Chicken egg proteins and derived peptides with antioxidant properties. Foods 2020, 9, 735. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Bekhit, A.E.D.A.; Kumar, S.; Bhat, H.F. Effect of processing technologies on the digestibility of egg proteins. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4703–4738. [Google Scholar] [CrossRef]
- Pathania, S.; Parmar, P.; Tiwari, B.K. Stability of proteins during processing and storage. In Proteins: Sustainable Source, Processing and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 295–330. [Google Scholar]
- Rao, P.S.; Nolasco, E.; Handa, A.; Naldrett, M.J.; Alvarez, S.; Majumder, K. Effect of pH and heat treatment on the antioxidant activity of egg white protein-derived peptides after simulated in-vitro gastrointestinal digestion. Antioxidants 2020, 9, 1114. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, N.; Liu, Y. Effect of different heat treatments on in vitro digestion of egg white proteins and identification of bioactive peptides in digested products. J. Food Sci. 2018, 83, 1140–1148. [Google Scholar] [CrossRef]
- Al-Mohammadi, A.-R.; Osman, A.; Enan, G.; Abdel-Shafi, S.; El-Nemer, M.; Sitohy, M.; Taha, M.A. Powerful antibacterial peptides from egg albumin hydrolysates. Antibiotics 2020, 9, 901. [Google Scholar] [CrossRef]
- Naderi, N.; House, J.D.; Pouliot, Y.; Doyen, A. Effects of high hydrostatic pressure processing on hen egg compounds and egg products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chi, Y.-J.; Xu, W. Comparisons on the functional properties and antioxidant activity of spray-dried and freeze-dried egg white protein hydrolysate. Food Bioprocess Technol. 2012, 5, 2342–2352. [Google Scholar] [CrossRef]
- Du, T.; Xu, J.; Zhu, S.; Yao, X.; Guo, J.; Lv, W. Effects of spray drying, freeze drying, and vacuum drying on physicochemical and nutritional properties of protein peptide powder from salted duck egg white. Front. Nutr. 2022, 9, 1026903. [Google Scholar] [CrossRef]
- Wang, Y.; Selomulya, C. Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Adv. Powder Technol. 2020, 31, 409–415. [Google Scholar] [CrossRef]
- Ma, X.; Liang, R.; Xing, Q.; Lozano-Ojalvo, D. Can food processing produce hypoallergenic egg? J. Food Sci. 2020, 85, 2635–2644. [Google Scholar] [CrossRef]
- Popielarz, M.; Krogulska, A. The importance of component-resolved diagnostics in IgE-mediated cow’s milk allergy. Allergol. Immunopathol. 2021, 49, 30–41. [Google Scholar] [CrossRef]
- Majewska, K.; Sławińska, A.; Skiba, G. Egg components and their consumption: Antioxidant properties, nutritional quality and safety—A review. Pol. J. Food Nutr. Sci. 2019, 69, 109–120. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Xiao, X.; Zhuang, Y. Egg white protein-derived bioactive peptides and their potential applications in human health and nutrition. J. Funct. Foods 2021, 78, 104363. [Google Scholar] [CrossRef]
- Sheng, L.; Tang, G.; Wang, Q.; Zou, J.; Ma, M.; Huang, X. Molecular characteristics and foaming properties of ovalbumin-pullulan conjugates through the Maillard reaction. Food Hydrocoll. 2020, 100, 105384. [Google Scholar] [CrossRef]
- Guérin-Dubiard, C.; Pasco, M.; Mollé, D.; Désert, C.; Croguennec, T.; Nau, F. Proteomic analysis of hen egg white. J. Agric. Food Chem. 2006, 54, 3901–3910. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Liu, Q.; Dong, W.; Cai, Z. Effect of high intensity ultrasound assisted glycosylation on the gel properties of ovalbumin: Texture, rheology, water state and microstructure. Food Chem. 2022, 372, 131215. [Google Scholar] [CrossRef] [PubMed]
- Salim, M.A.S.M.; Gan, C.-Y. Dual-function peptides derived from egg white ovalbumin: Bioinformatics identification with validation using in vitro assay. J. Funct. Foods 2020, 64, 103618. [Google Scholar] [CrossRef]
- Tan, A.; Suzuki, R.; Yokoyama, C.; Yano, S.; Konno, H. Antimicrobial activity and secondary structure of a novel peptide derived from ovalbumin. J. Pept. Sci. 2020, 26, e3276. [Google Scholar] [CrossRef]
- Yu, Z.; Dong, W.; Wu, S.; Shen, J.; Zhao, W.; Ding, L.; Liu, J.; Zheng, F. Identification of ovalbumin-derived peptides as multi-target inhibitors of AChE, BChE, and BACE1. J. Sci. Food Agric. 2020, 100, 2648–2655. [Google Scholar] [CrossRef]
- Ballini, G.; Gavagni, C.; Guidotti, C.; Ciolini, G.; Liccioli, G.; Giovannini, M.; Sarti, L.; Ciofi, D.; Novembre, E.; Mori, F. Frequency of positive oral food challenges and their outcomes in the allergy unit of a tertiary-care pediatric hospital. Allergol. Immunopathol. 2021, 49, 120–130. [Google Scholar] [CrossRef]
- Karakurt, T.; Bozkurt, H.B.; Kaplan, F.; Akşit, A.; Cavkaytar, Ö.; Topal, E.; Arga, M. Experiences and attitudes of parents of children with cow’s milk and other food-allergy. Allergol. Immunopathol. 2022, 50, 77–82. [Google Scholar] [CrossRef]
- Keohane, H.; Cronin, C.; Trujillo, J. Risk taking and self-care behaviours amongst adolescents and young adults with food allergies. Allergol. Immunopathol. 2022, 50, 31–49. [Google Scholar] [CrossRef]
- Reali, A.C.R.; Pierotti, F.F.; Aranda, C.S.; Cocco, R.R.; Sarinho, E.S.C.; Sano, F.; Neto, A.P.; Rosário, N.A.; Neto, H.J.C.; Goudouris, E.S. Laboratory screening test with inhalant and food allergens in atopic Brazilian children and adolescents: A performance. Allergol. Immunopathol. 2021, 49, 42–48. [Google Scholar] [CrossRef]
- Trujillo, J.; Cronin, C. Benefit of educational intervention on Autoinjector Technique for caregivers and paediatric patients with food allergies: A literature review. Allergol. Immunopathol. 2022, 50, 100–113. [Google Scholar] [CrossRef]
- Wusiman, A.; Gu, P.; Liu, Z.; Xu, S.; Zhang, Y.; Hu, Y.; Liu, J.; Wang, D.; Huang, X. Cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses. Int. J. Nanomed. 2019, 14, 3221–3234. [Google Scholar] [CrossRef] [Green Version]
- Ezz-Eldin, Y.M.; Aboseif, A.A.; Khalaf, M.M. Potential anti-inflammatory and immunomodulatory effects of carvacrol against ovalbumin-induced asthma in rats. Life Sci. 2020, 242, 117222. [Google Scholar] [CrossRef]
- Yin, J.; Yan, F.; Zheng, R.; Wu, X.; Athari, S.S. Immunomodulatory effect of IL-2 induced bone marrow mononuclear cell therapy on control of allergic asthma. Allergol. Immunopathol. 2023, 51, 110–115. [Google Scholar] [CrossRef]
- Giansanti, F.; Leboffe, L.; Angelucci, F.; Antonini, G. The nutraceutical properties of ovotransferrin and its potential utilization as a functional food. Nutrients 2015, 7, 9105–9115. [Google Scholar] [CrossRef] [Green Version]
- Ko, K.; Mendonca, A.; Ahn, D. Influence of zinc, sodium bicarbonate, and citric acid on the antibacterial activity of ovotransferrin against Escherichia coli O157: H7 and Listeria monocytogenes in model systems and ham. Poult. Sci. 2008, 87, 2660–2670. [Google Scholar] [CrossRef]
- Wang, X.; Wei, Z.; Xue, C. The past and future of ovotransferrin: Physicochemical properties, assembly and applications. Trends Food Sci. Technol. 2021, 116, 47–62. [Google Scholar] [CrossRef]
- Abeyrathne, E.N.S.; Lee, H.; Ahn, D.U. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—A review. Poult. Sci. 2013, 92, 3292–3299. [Google Scholar] [CrossRef]
- Wu, J.; Acero-Lopez, A. Ovotransferrin: Structure, bioactivities, and preparation. Int. Food Res. J. 2012, 46, 480–487. [Google Scholar] [CrossRef]
- Galla, R.; Grisenti, P.; Farghali, M.; Saccuman, L.; Ferraboschi, P.; Uberti, F. Ovotransferrin supplementation improves the iron absorption: An in vitro gastro-intestinal model. Biomedicines 2021, 9, 1543. [Google Scholar] [CrossRef]
- Rathnapala, E.C.N.; Ahn, D.U.; Abeyrathne, S. Functional properties of ovotransferrin from chicken egg white and its derived peptides: A review. Food Sci. Biotechnol. 2021, 30, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Lall, R.; Talukder, J.; DuBourdieu, D.; Gupta, R.C. Iron transport tocopheryl polyethylene glycol succinate in animal health and diseases. Molecules 2019, 24, 4289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, H.R.; Hoq, M.I.; Aoki, T. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 2007, 41, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Legros, J.; Jan, S.; Bonnassie, S.; Gautier, M.; Croguennec, T.; Pezennec, S.; Cochet, M.-F.; Nau, F.; Andrews, S.C.; Baron, F. The role of ovotransferrin in egg-white antimicrobial activity: A review. Foods 2021, 10, 823. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.J.; Ahn, D.U.; Paik, H.-D. Improved immune-enhancing activity of egg white protein ovotransferrin after enzyme hydrolysis. J. Anim. Sci. Technol. 2021, 63, 1159. [Google Scholar] [CrossRef]
- Wickramasinghe, H.S.; Abeyrathne, E.D.N.S.; Nam, K.-C.; Ahn, D.U. Antioxidant and Metal-Chelating Activities of Bioactive Peptides from Ovotransferrin Produced by Enzyme Combinations. Poultry 2022, 1, 220–228. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, H.; Peng, H.; Wu, X.; Fang, J. Corrigendum to “The Utility of Ovotransferrin and Ovotransferrin-Derived Peptides as Possible Candidates in the Clinical Treatment of Cardiovascular Diseases”. Oxid. Med. Cell. Longev. 2018, 2018, 1897257. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Shetty, K. Emerging applications of ovotransferrin and its derived peptides in healthcare and disease prevention: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2066–2087. [Google Scholar] [CrossRef]
- Jin, H.; Li, P.; Jin, Y.; Sheng, L. Effect of sodium tripolyphosphate on the interaction and aggregation behavior of ovalbumin-lysozyme complex. Food Chem. 2021, 352, 129457. [Google Scholar] [CrossRef]
- Shahmohammadi, A. Lysozyme separation from chicken egg white: A review. Eur. Food Res. Technol. 2018, 244, 577–593. [Google Scholar] [CrossRef]
- Leśnierowski, G.; Yang, T. Lysozyme and its modified forms: A critical appraisal of selected properties and potential. Trends Food Sci. Technol. 2021, 107, 333–342. [Google Scholar] [CrossRef]
- Sheng, L.; Su, P.; Han, K.; Chen, J.; Cao, A.; Zhang, Z.; Jin, Y.; Ma, M. Synthesis and structural characterization of lysozyme–pullulan conjugates obtained by the Maillard reaction. Food Hydrocoll. 2017, 71, 1–7. [Google Scholar] [CrossRef]
- Aminlari, L.; Mohammadi Hashemi, M.; Aminlari, M. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods. J. Food Sci. 2014, 79, R1077–R1090. [Google Scholar] [CrossRef]
- Khorshidian, N.; Khanniri, E.; Koushki, M.R.; Sohrabvandi, S.; Yousefi, M. An overview of antimicrobial activity of lysozyme and its functionality in cheese. Front. Nutr. 2022, 9, 833618. [Google Scholar] [CrossRef]
- Liu, J.; Wang, N.; Liu, Y.; Jin, Y.; Ma, M. The antimicrobial spectrum of lysozyme broadened by reductive modification. Poult. Sci. 2018, 97, 3992–3999. [Google Scholar] [CrossRef]
- Chen, L.-L.; Shi, W.-P.; Zhang, T.-D.; Zhou, Y.-Q.; Zhao, F.-Z.; Ge, W.-Y.; Jin, X.-Q.; Lin, W.-J.; Guo, W.-H.; Yin, D.-C. Antibacterial activity of lysozyme-loaded cream against MRSA and promotion of scalded wound healing. Int. J. Pharm. 2022, 627, 122200. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y.Q. An insight on egg white: From most common functional food to biomaterial application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1045–1058. [Google Scholar] [CrossRef]
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef]
- Jalili-Firoozinezhad, S.; Filippi, M.; Mohabatpour, F.; Letourneur, D.; Scherberich, A. Chicken egg white: Hatching of a new old biomaterial. Mater. Today 2020, 40, 193–214. [Google Scholar] [CrossRef]
- Behbahani, M.; Nosrati, M.; Mohabatkar, H. Inhibition of human immunodeficiency type 1 virus (HIV-1) life cycle by different egg white lysozymes. Appl. Biochem. Biotechnol. 2018, 185, 786–798. [Google Scholar] [CrossRef]
- Hartono, Y.D.; Lee, A.N.; Lee-Huang, S.; Zhang, D. Computational study of bindings of HL9, a nonapeptide fragment of human lysozyme, to HIV-1 fusion protein gp41. Bioorg. Med. Chem. Lett. 2011, 21, 1607–1611. [Google Scholar] [CrossRef]
- Mann, J.K.; Ndung’u, T. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19. Future Virol. 2020, 15, 609–624. [Google Scholar] [CrossRef]
- Omana, D.A.; Wang, J.; Wu, J. Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites. J. Chromatogr. B 2010, 878, 1771–1776. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.S.; Monsey, J.B. The composition and proposed subunit structure of egg-white β-ovomucin. The isolation of an unreduced soluble ovomucin. Biochem. J. 1975, 147, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, A.; Zhao, X.; Shan, Y.; Lü, X. Potential role of ovomucin and its peptides in modulation of intestinal health: A review. Int. J. Biol. Macromol. 2020, 162, 385–393. [Google Scholar] [CrossRef]
- Hiidenhovi, J. Ovomucin. In Bioactive Egg Compounds; Huopalahti, R., López-Fandiño, R., Anton, M., Schade, R.e., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 61–68. [Google Scholar] [CrossRef]
- Shan, Y.; Tang, D.; Wang, R.; Tu, A.; Yi, Y.; Wang, X.; Liu, B.; Zhou, Y.; Huang, Q.; Lü, X. Rheological and structural properties of ovomucin from chicken eggs with different interior quality. Food Hydrocoll. 2020, 100, 105393. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Oey, I.; Bremer, P.; Carne, A.; Silcock, P. Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white. Int. Food Res. J. 2017, 91, 161–170. [Google Scholar] [CrossRef]
- Cui, R.; Ji, S.; Xia, M.; Fu, X.; Huang, X. Mechanistic studies of polyphenols reducing the trypsin inhibitory activity of ovomucoid: Structure, conformation, and interactions. Food Chem. 2023, 408, 135063. [Google Scholar] [CrossRef]
- De Oliveira, F.C.; dos Reis Coimbra, J.S.; Da Silva, L.H.M.; Rojas, E.E.G.; da Silva, M.d.C.H. Ovomucoid partitioning in aqueous two-phase systems. Biochem. Eng. J. 2009, 47, 55–60. [Google Scholar] [CrossRef]
- Plancken, I.V.d.; Van Remoortere, M.; Van Loey, A.; Hendrickx, M.E. Trypsin inhibition activity of heat-denatured ovomucoid: A kinetic study. Biotechnol. Prog. 2004, 20, 82–86. [Google Scholar] [CrossRef]
- Porta, R.; Giosafatto, C.V.L.; di Pierro, P.; Sorrentino, A.; Mariniello, L. Transglutaminase-mediated modification of ovomucoid: Effects on its trypsin inhibitory activity and antigenic properties. Amino Acids 2013, 44, 285–292. [Google Scholar] [CrossRef]
- Crespo, J.B.; Domingo, M.V.; Arauzo, N.H.; Castillo, M.J.; Delavalle, M.B.; Foix, M.P.S.; Sánchez, D.V.; Izquierdo-Domínguez, A. Real life study of the use of omalizumab for pediatric patients with multiple food allergies. Allergol. Immunopathol. 2021, 49, 15–22. [Google Scholar] [CrossRef]
- Hao, M.; Yang, S.; Han, S.; Che, H. The amino acids differences in epitopes may promote the different allergenicity of ovomucoid derived from hen eggs and quail eggs. Food Sci. Hum. Wellness 2023, 12, 861–870. [Google Scholar] [CrossRef]
- Pontone, M.; Giovannini, M.; Barni, S.; Mori, F.; Venturini, E.; Galli, L.; Valleriani, C.; De las Vecillas, L.; Sackesen, C.; Lopata, A.L. IgE-mediated Anisakis allergy in children. Allergol. Immunopathol. 2023, 51, 98–109. [Google Scholar] [CrossRef]
- Xu, D.; Wang, M. Research progress of statins on immune regulation of multiple sclerosis and experimental allergic encephalomyelitis. Allergol. Immunopathol. 2022, 50, 76–83. [Google Scholar] [CrossRef]
- Zhou, X.L.; Le Chen, L.; Wang, J.F. Study on the antipruritic mechanism of Zanthoxylum bungeanum and Zanthoxylum schinifolium volatile oil on chronic eczema based on H1R and PAR-2 mediated GRPR pathway. Allergol. Immunopathol. 2022, 50, 83–96. [Google Scholar] [CrossRef]
- Li, L.; Zhang, B.; Li, Y.; Huang, L.; Li, S.; Liu, D.; Yu, Y.; Li, H. The Heterogeneity of Ovomucoid-Specific IgE Idiotype Is Associated With Egg Allergy Symptom Severity. Allergy Asthma Immunol. Res. 2023, 15, 109–118. [Google Scholar] [CrossRef]
- Yu, Z.; Cao, Y.; Kan, R.; Ji, H.; Zhao, W.; Wu, S.; Liu, J.; Shiuan, D. Identification of egg protein-derived peptides as xanthine oxidase inhibitors: Virtual hydrolysis, molecular docking, and in vitro activity evaluation. Food Sci. Hum. Wellness 2022, 11, 1591–1597. [Google Scholar] [CrossRef]
- Geng, F.; Huang, X.; Ma, M.-H.; Li, Z.; Zhang, X.-W. Simple Two-step Chromatographic Method for Purification of Ovomacroglobulin. Asian J. Chem. 2013, 25, 2683. [Google Scholar] [CrossRef]
- Jain, A.; Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Control. Release 2017, 245, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Guoning, C.; Pengqi, G.; Yan, W.; Lu, W.; Hua, S.; Yunzhe, L.; Wanghui, J.; Chun, C.; Qiang, F. Preparation of molecularly imprinted polymers and application in a biomimetic biotin-avidin-ELISA for the detection of bovine serum albumin. Talanta 2019, 198, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Coskun, O. Separation techniques: Chromatography. North. Clin. Istanb. 2016, 3, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, P.M.; Rochfort, K.D.; O’Connor, B.F. Ion-exchange chromatography: Basic principles and application. In Protein Chromatography. Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1485, pp. 209–223. [Google Scholar] [CrossRef]
- Carrillo, W.; Tubón, J.; Vilcacundo, R. Isolation of hen egg white lysozyme by cation exchange chromatography, analysis of its digestibility and evaluation of the inhibition lipid peroxidation in the zebrafish model. Asian J. Pharm. Clin. Res. 2016, 9, 345–349. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Cheng, H.-I.; Ooi, C.W.; Song, C.P.; Liu, B.-L. Adsorption and purification performance of lysozyme from chicken egg white using ion exchange nanofiber membrane modified by ethylene diamine and bromoacetic acid. Food Chem. 2021, 358, 129914. [Google Scholar] [CrossRef]
- Vachier, M.; Piot, M.; Awade, A. Isolation of hen egg white lysozyme, ovotransferrin and ovalbumin, using a quaternary ammonium bound to a highly crosslinked agarose matrix. J. Chromatogr. B Biomed. Appl. 1995, 664, 201–210. [Google Scholar] [CrossRef]
- Awade, A.; Moreau, S.; Mollé, D.; Brulé, G.; Maubois, J.-L. Two-step chromatographic procedure for the purification of hen egg white ovomucin, lysozyme, ovotransferrin and ovalbumin and characterization of purified proteins. J. Chromatogr. A 1994, 677, 279–288. [Google Scholar] [CrossRef]
- Awade, A.C. On hen egg fractionation: Applications of liquid chromatography to the isolation and the purification of hen egg white and egg yolk proteins. Z. Lebensm. Unters. Forsch. 1996, 202, 1–14. [Google Scholar] [CrossRef]
- Wen, W.; Wan, J.; Cao, X.; Xia, J. Preparation of a Light-Sensitive and Reversible Dissolution Copolymer and Its Application in Lysozyme Purification. Biotechnol. Prog. 2007, 23, 1124–1129. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Tekinay, T.; Ozalp, V.C.; Arica, M.Y. Fibrous polymer grafted magnetic chitosan beads with strong poly (cation-exchange) groups for single step purification of lysozyme. J. Chromatogr. B 2015, 990, 84–95. [Google Scholar] [CrossRef]
- Hirsch, D.B.; Baieli, M.F.; Urtasun, N.; Lázaro-Martínez, J.M.; Glisoni, R.J.; Miranda, M.V.; Cascone, O.; Wolman, F.J. Sulfanilic acid-modified chitosan mini-spheres and their application for lysozyme purification from egg white. Biotechnol. Prog. 2018, 34, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.-F.; Lai, S.-Y.; Lin, C.-S.; Suen, S.-Y.; Wang, M.-Y. Purification of lysozyme from chicken egg white using diatom frustules. Food Chem. 2019, 286, 483–490. [Google Scholar] [CrossRef]
- Łącki, K.M.; Riske, F.J. Affinity chromatography: An enabling technology for large-scale bioprocessing. Biotechnol. J. 2020, 15, 1800397. [Google Scholar] [CrossRef]
- Wolman, F.J.; Copello, G.J.; Mebert, A.M.; Targovnik, A.M.; Miranda, M.V.; Navarro del Cañizo, A.A.; Díaz, L.E.; Cascone, O. Egg white lysozyme purification with a chitin–silica-based affinity chromatographic matrix. Eur. Food Res. Technol. 2010, 231, 181–188. [Google Scholar] [CrossRef]
- Al-Mashikiii, S.; Nakai, S. Separation of ovotransferrin from egg white by immobilized metal affinity chromatography. Agric. Biol. Chem. 1987, 51, 2881–2887. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cao, M.; Zhang, W.; Liu, L.; Wang, J.; Ge, W.; Yuan, Y.; Yue, T.; Li, R.; William, W.Y. Affinity adsorption of lysozyme with Reactive Red 120 modified magnetic chitosan microspheres. Food Chem. 2014, 145, 749–755. [Google Scholar] [CrossRef]
- Ramos-de-la-Peña, A.M.; González-Valdez, J.; Aguilar, O. Protein A chromatography: Challenges and progress in the purification of monoclonal antibodies. J. Sep. Sci. 2019, 42, 1816–1827. [Google Scholar] [CrossRef]
- Baydemir, G.; Türkoğlu, E.A.; Andaç, M.; Perçin, I.; Denizli, A. Composite cryogels for lysozyme purification. Biotechnol. Appl. Biochem. 2015, 62, 200–207. [Google Scholar] [CrossRef]
- Chen, K.-H.; Chou, S.-Y.; Chang, Y.-K. Rapid purification of lysozyme by mixed-mode adsorption chromatography in stirred fluidized bed. Food Chem. 2019, 272, 619–627. [Google Scholar] [CrossRef]
- Sun, L.; Feng, X.; Zhong, T.; Zhang, X. Preparation of supermacroporous cryogels with improved mechanical strength for efficient purification of lysozyme from chicken egg white. J. Sep. Sci. 2020, 43, 3315–3326. [Google Scholar] [CrossRef]
- Show, P.L.; Ooi, C.W.; Song, C.P.; Chai, W.S.; Lin, G.-T.; Liu, B.-L.; Chang, Y.-K. Purification of lysozyme from chicken egg white by high-density cation exchange adsorbents in stirred fluidized bed adsorption system. Food Chem. 2021, 343, 128543. [Google Scholar] [CrossRef]
- Duong-Ly, K.C.; Gabelli, S.B. Gel filtration chromatography (size exclusion chromatography) of proteins. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 541, pp. 105–114. [Google Scholar] [CrossRef]
- Ó’Fágáin, C.; Cummins, P.M.; O’Connor, B.F. Gel-filtration chromatography. In Protein Chromatography. Methods in Molecular Biology; Walls, D., Loughran, S., Eds.; Humana Press: New York, NY, USA, 2017; Volume 1485, pp. 15–25. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, A.; Tang, D.; Shan, Y. Effectively preparing soluble ovomucin with high antiviral activity from egg white. Int. J. Biol. Macromol. 2018, 118, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Huang, X.; Yan, N.; Jia, L.; Ma, M. Purification of hen egg white ovomacroglobulin using one-step chromatography. J. Sep. Sci. 2013, 36, 3717–3722. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, E.S.; Koza, S.M. Advances in size-exclusion separations of proteins and polymers by UHPLC. TrAC Trends Anal. Chem. 2014, 63, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Omana, D.; Wu, J. Effect of different concentrations of calcium chloride and potassium chloride on egg white proteins during isoelectric precipitation of ovomucin. Poult. Sci. 2009, 88, 2224–2234. [Google Scholar] [CrossRef]
- Abeyrathne, E.; Lee, H.; Ahn, D.U. Separation of ovotransferrin and ovomucoid from chicken egg white. Poult. Sci. 2014, 93, 1010–1017. [Google Scholar] [CrossRef]
- Ji, S.; Ahn, D.U.; Zhao, Y.; Li, K.; Li, S.; Huang, X. An easy and rapid separation method for five major proteins from egg white: Successive extraction and MALDI-TOF-MS identification. Food Chem. 2020, 315, 126207. [Google Scholar] [CrossRef]
- Geng, F.; Xie, Y.; Wang, J.; Li, S.; Jin, Y.; Ma, M. Large-scale purification of ovalbumin using polyethylene glycol precipitation and isoelectric precipitation. Poult. Sci. 2019, 98, 1545–1550. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, T.; Wu, N.; Tu, Y.; Huang, X.; Ahn, D.U. An efficient, scalable and environmentally friendly separation method for ovoinhibitor from chicken egg white. LWT 2020, 127, 109367. [Google Scholar] [CrossRef]
- Rathore, A.; Shirke, A. Recent developments in membrane-based separations in biotechnology processes. Prep. Biochem. Biotechnol. 2011, 41, 398–421. [Google Scholar] [CrossRef]
- Sheng-Shih Wang, S.; Yang, S.-M.; Hsin, A.; Chang, Y.-K. Dye-affinity nanofibrous membrane for adsorption of lysozyme: Preparation and performance evaluation. Food Technol. Biotechnol. 2018, 56, 40–50. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Zhu, J.; Bo, C.; Wei, Y. Tetrazole-functionalized cation-exchange membrane adsorbers with high binding capacity and unique separation feature for protein. J. Chromatogr. B 2018, 1097, 18–26. [Google Scholar] [CrossRef]
- Madadkar, P.; Sadavarte, R.; Ghosh, R. Performance comparison of a laterally-fed membrane chromatography (LFMC) device with a commercial resin packed column. Membranes 2019, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Shimazaki, Y.; Ochi, Y.; Fujimura, K. Microscale isolation of native forms of lysozyme from chicken egg white by gel isoelectric focusing. Electrophoresis 2018, 39, 1054–1061. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Takahashi, A. Antibacterial activity of lysozyme-binding proteins from chicken egg white. J. Microbiol. Methods 2018, 154, 19–24. [Google Scholar] [CrossRef]
- Dong, S.; Jiang, Z.; Liu, Z.; Chen, L.; Zhang, Q.; Tian, Y.; Sohail, A.; Khan, M.I.; Xiao, H.; Liu, X. Purification of low-abundance lysozyme in egg white via free-flow electrophoresis with gel-filtration chromatography. Electrophoresis 2020, 41, 1529–1538. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Sun, H.; Chu, Z.; Chen, H.; Zhao, Y.; Zhang, W. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein. Electrophoresis 2019, 40, 2610–2617. [Google Scholar] [CrossRef]
- Diederich, P.; Amrhein, S.; Hämmerling, F.; Hubbuch, J. Evaluation of PEG/phosphate aqueous two-phase systems for the purification of the chicken egg white protein avidin by using high-throughput techniques. Chem. Eng. Sci. 2013, 104, 945–956. [Google Scholar] [CrossRef]
- Pereira, M.M.; Cruz, R.A.; Almeida, M.R.; Lima, Á.S.; Coutinho, J.A.; Freire, M.G. Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochem. 2016, 51, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Belchior, D.C.; Quental, M.V.; Pereira, M.M.; Mendonça, C.M.; Duarte, I.F.; Freire, M.G. Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic systems in the extraction of ovalbumin and lysozyme. Sep. Purif. Technol. 2020, 233, 116019. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, N.; Xu, Y.; Li, Z.; Yan, C.; Mei, K.; Ding, M.; Ding, S.; Guan, P.; Qian, L. Molecularly imprinted materials for selective biological recognition. Macromol. Rapid Commun. 2019, 40, 1900096. [Google Scholar] [CrossRef]
- Wang, C.; Hu, X.; Guan, P.; Wu, D.; Yang, L.; Du, C. Preparation of molecularly imprinted regenerated cellulose composite membranes by surface-initiated atom transfer radical polymerization method for selective recognition of lysozyme. Adsorpt. Sci. Technol. 2015, 33, 411–425. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.W.; Mao, J.; Li, W.Y.; Zhang, Y.K. Preparation and application of hollow molecularly imprinted polymers with a super-high selectivity to the template protein. J. Sep. Sci. 2013, 36, 3449–3456. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, S.; Bai, Q. Preparation of lysozyme molecularly imprinted polymers and purification of lysozyme from egg white. Biomed. Chromatogr. 2014, 28, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Zhang, L.; Hao, Y.; Cui, X.; Liu, D.; Zhang, M.; Tang, Y. Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white. Talanta 2015, 144, 1125–1132. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Zhou, Y. Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Microchim. Acta 2018, 185, 146. [Google Scholar] [CrossRef]
- Mc Bee, L.; Cotterill, O. Ion-exchange chromatography and electrophoresis of egg yolk proteins. J. Food Sci. 1979, 44, 656–667. [Google Scholar] [CrossRef]
- Juneja, L.; Kim, M. Egg yolk proteins. In Hen Eggs; CRC Press: Boca Raton, FL, USA, 2018; pp. 57–71. [Google Scholar]
- Amano, H.; Fujita, T.; Hiramatsu, N.; Shimizu, M.; Sawaguchi, S.; Matsubara, T.; Kagawa, H.; Nagae, M.; Sullivan, C.V.; Hara, A. Egg yolk proteins in grey mullet (Mugil cephalus): Purification and classification of multiple lipovitellins and other vitellogenin-derived yolk proteins and molecular cloning of the parent vitellogenin genes. J. Exp. Zool. A Ecol. Genet. Physiol. 2007, 307, 324–341. [Google Scholar] [CrossRef]
- Huang, H.; Wang, H.; Wang, M.; Zhang, L. Isolation and characterization of lipovitellin from hen egg yolk. J. Agric. Food Chem. 2015, 63, 6935–6941. [Google Scholar]
- Luo, Y.; Xiong, R.; Hou, L.; Li, J.; Chen, J. Process for coproduction of crude immunoglobulin y and high-density lipoproteins from hen egg yolk. J. Agric. Food Chem. 2010, 58, 11420–11427. [Google Scholar] [CrossRef]
- Andersen, C.J. Bioactive egg components and inflammation. Nutrients 2015, 7, 7889–7913. [Google Scholar] [CrossRef] [Green Version]
- Anton, M.; Castellani, O.; Guérin-Dubiard, C. Phosvitin. In Bioactive Egg Compounds; Huopalahti, R., López-Fandiño, R., Anton, M., Schade, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 17–24. [Google Scholar] [CrossRef]
- Young, D.; Nau, F.; Pasco, M.; Mine, Y. Identification of hen egg yolk-derived phosvitin phosphopeptides and their effects on gene expression profiling against oxidative stress-induced Caco-2 cells. J. Agric. Food Chem. 2011, 59, 9207–9218. [Google Scholar] [CrossRef]
- Marcet, I.; Sáez-Orviz, S.; Rendueles, M.; Díaz, M. Egg yolk granules and phosvitin. Recent advances in food technology and applications. LWT 2022, 153, 112442. [Google Scholar] [CrossRef]
- Ren, J. Phosvitin Extraction from Egg Yolk and Its Potential as a Functional Food Ingredient for Improving Bone Health. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2019. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Hu, S.; Liu, X.; Duan, X. Consequences of ball-milling treatment on the physicochemical, rheological and emulsifying properties of egg phosvitin. Food Hydrocoll. 2019, 95, 418–425. [Google Scholar] [CrossRef]
- Gujral, N.; Yoo, H.; Bamdad, F.; Lee, K.Y.; Suh, J.-W.; Sunwoo, H. A combination of egg yolk IgY and phosvitin inhibits the growth of enterotoxigenic escherichia coli K88 and K99. Curr. Pharm. Biotechnol. 2017, 18, 400–409. [Google Scholar] [CrossRef]
- Jung, S.; Jo, C.-R.; Kang, M.-G.; Ahn, D.-U.; Nam, K.-C. Elucidation of antioxidant activity of phosvitin extracted from egg yolk using ground meat. Food Sci. Anim. Resour. 2012, 32, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Hu, Y.; Li, J.; Li, B. Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition. Int. J. Biol. Macromol. 2014, 64, 402–408. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, Q.; Li, M.; Liu, H.; Wang, Q.; Wu, Y.; Niu, L.; Liu, Z. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism. Food Res. Int. 2021, 141, 110169. [Google Scholar] [CrossRef]
- Abdelkebir, K.; Gaudière, F.; Morin-Grognet, S.; Coquerel, G.; Atmani, H.; Labat, B.; Ladam, G. Protein-triggered instant disassembly of biomimetic layer-by-layer films. Langmuir 2011, 27, 14370–14379. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, Y.; Paik, H.-D.; Park, E. Antioxidant and Immune-Modulating Activities of Egg Yolk Protein Extracts. Food Sci. Anim. Resour. 2022, 42, 321. [Google Scholar] [CrossRef]
- Ren, J.; Wu, J. Preparation of high purity egg phosvitin using anion exchange chromatography. Food Chem. 2014, 158, 186–191. [Google Scholar] [CrossRef]
- Ko, K.; Nam, K.; Jo, C.; Lee, E.; Ahn, D. A simple and efficient method for preparing partially purified phosvitin from egg yolk using ethanol and salts. Poult. Sci. 2011, 90, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Anton, M.; Martinet, V.; Dalgalarrondo, M.; Beaumal, V.; David-Briand, E.; Rabesona, H. Chemical and structural characterisation of low-density lipoproteins purified from hen egg yolk. Food Chem. 2003, 83, 175–183. [Google Scholar] [CrossRef]
- Laca, A.; Paredes, B.; Rendueles, M.; Díaz, M. Egg yolk plasma: Separation, characteristics and future prospects. LWT 2015, 62, 7–10. [Google Scholar] [CrossRef]
- Zhou, M.; Khen, K.; Wang, T.; Hu, Q.; Xue, J.; Luo, Y. Chemical crosslinking improves the gastrointestinal stability and enhances nutrient delivery potentials of egg yolk LDL/polysaccharide nanogels. Food Chem. 2018, 239, 840–847. [Google Scholar] [CrossRef]
- Liangsupree, T.; Multia, E.; Metso, J.; Jauhiainen, M.; Forssén, P.; Fornstedt, T.; Öörni, K.; Podgornik, A.; Riekkola, M.-L. Rapid affinity chromatographic isolation method for LDL in human plasma by immobilized chondroitin-6-sulfate and anti-apoB-100 antibody monolithic disks in tandem. Sci. Rep. 2019, 9, 11235. [Google Scholar] [CrossRef] [Green Version]
- Almeida, M.R.; Ferreira, F.; Domingues, P.; Coutinho, J.A.; Freire, M.G. Towards the purification of IgY from egg yolk by centrifugal partition chromatography. Sep. Purif. Technol. 2022, 299, 121697. [Google Scholar] [CrossRef]
- Zambrowicz, A.; Zabłocka, A.; Macała, J.; Janusz, M.; Polanowski, A.; Trziszka, T. A simple and rapid method of isolation of active polypeptide complex, yolkin, from chicken egg yolk. Food Chem. 2017, 230, 705–711. [Google Scholar] [CrossRef]
- Xiao, N.; Huang, X.; He, W.; Yao, Y.; Wu, N.; Xu, M.; Du, H.; Zhao, Y.; Tu, Y. A review on recent advances of egg byproducts: Preparation, functional properties, biological activities and food applications. Food Res. Int. 2021, 147, 110563. [Google Scholar] [CrossRef]
- Karachaliou, C.-E.; Vassilakopoulou, V.; Livaniou, E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World J. Methodol. 2021, 11, 243. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.; Hernández-Mendoza, A.; González-Córdova, A.; Vallejo-Cordoba, B.; Liceaga, A. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Tu, Y.; Zhao, Y.; Luo, X.; Wang, J.; Wang, M. Changes in gel characteristics of egg white under strong alkali treatment. Food Hydrocoll. 2015, 45, 1–8. [Google Scholar] [CrossRef]
- Zambrowicz, A.; Pokora, M.; Setner, B.; Dąbrowska, A.; Szołtysik, M.; Babij, K.; Szewczuk, Z.; Trziszka, T.; Lubec, G.; Chrzanowska, J. Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization. Amino Acids 2015, 47, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, Z.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Recent advances on protein separation and purification methods. Adv. Colloid Interface Sci. 2020, 284, 102254. [Google Scholar] [CrossRef]
- Ahn, D.-U.; Lee, S.-H.; Singam, H.; Lee, E.-J.; Kim, J.-C. Sequential separation of main components from chicken egg yolk. Food Sci. Biotechnol. 2006, 15, 189–195. [Google Scholar]
- Amro, W.A.; Al-Qaisi, W.; Al-Razem, F. Production and purification of IgY antibodies from chicken egg yolk. J. Genet. Eng. Biotechnol. 2018, 16, 99–103. [Google Scholar] [CrossRef]
- Castellani, O.; Martinet, V.; David-Briand, E.; Guerin-Dubiard, C.; Anton, M. Egg yolk phosvitin: Preparation of metal-free purified protein by fast protein liquid chromatography using aqueous solvents. J. Chromatogr. B 2003, 791, 273–284. [Google Scholar] [CrossRef]
- Chay Pak Ting, B.P.; Mine, Y.; Juneja, L.R.; Okubo, T.; Gauthier, S.F.; Pouliot, Y. Comparative composition and antioxidant activity of peptide fractions obtained by ultrafiltration of egg yolk protein enzymatic hydrolysates. Membranes 2011, 1, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Gao, S.; Huang, J.; Gong, S.; Lin, J.; Ding, G.; Shen, Q.; Wang, W.; Yang, M.; Wang, H. Analysis of factors influencing the determination of indications for allergen-specific immunotherapy. Allergol. Immunopathol. 2023, 51, 168–176. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, J.; He, J.; Wu, L.; Li, S.; Cheng, B.; Shao, Y.; Zhang, Y.; Wang, Y.; Tang, L. Effects of subcutaneous immunotherapy in allergic rhinitis children sensitive to dust mites. Allergol. Immunopathol. 2023, 51, 84–91. [Google Scholar] [CrossRef]
- Cruz, R.H.; de Pontes, L.G.; Condino-Neto, A. Allergy, asthma, and proteomics: Opportunities with immediate impact. Allergol. Immunopathol. 2023, 51, 16–21. [Google Scholar] [CrossRef]
- Mo, S.; Deng, H.; Xie, Y.; Yang, L.; Wen, L. Chryseriol attenuates the progression of OVA-induced asthma in mice through NF-κB/HIF-1α and MAPK/STAT1 pathways. Allergol. Immunopathol. 2023, 51, 146–153. [Google Scholar] [CrossRef]
- Sato, K.; Tatsunami, R.; Wakame, K. Epalrestat suppresses inflammatory response in lipopolysaccharide-stimulated RAW264. 7 cells. Allergol. Immunopathol. 2021, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Szczawinska-Poplonyk, A.; Begier, K.; Dorota, A.; Dabrowska, M.; Galecka, D.; Wawrzeniak, K.; Wroblewski, K. Syndromic immunodeficiencies: A pediatrician’s perspective on selected diseases. Allergol. Immunopathol. 2021, 49, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Köse, S.; Akelmaa, A.; Özmena, S. Severity of disease and the quality of life indexes in infants with atopic dermatitis. Allergol. Immunopathol. 2022, 50, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Urrutia-Pereira, M.; Badellino, H.; Ansotegui, I.J.; Guidos, G.; Solé, D. Climate change and allergic diseases in children and adolescents. Allergol. Immunopathol. 2022, 50, 7–16. [Google Scholar] [CrossRef]
- Yavuz, S.T.; Akin, O.; Koc, O.; Güngör, A.; Bolat, A.; Gülec, M. Mosquito hypersensitivity may be associated with atopic background in children. Allergol. Immunopathol. 2021, 49, 67–72. [Google Scholar] [CrossRef]
- Scarcella, A.; Barnia, S.; Giovanninia, M.; Sartia, L.; Licciolia, G.; Paladinia, E.; Tomeia, L.; Trapania, S.; Moria, F. Appearance of food-dependent exercise-induced anaphylaxis as an inflammatory disease. Allergol. Immunopathol. 2023, 51, 52–58. [Google Scholar] [CrossRef]
- Celiksoy, M.H.; Ozmen, A.H.; Topal, E. Prevalence of atopic diseases in children with papular urticaria. Allergol. Immunopathol. 2021, 49, 62–67. [Google Scholar] [CrossRef]
- Aksoy, A.G.; Boran, P.; Karakoc-Aydiner, E.; Gokcay, G.; Tamay, Z.U.; Devecioglu, E.; Baris, S.; Ozen, A. Prevalence of allergic disorders and risk factors associated with food allergy in Turkish preschoolers. Allergol. Immunopathol. 2021, 49, 11–16. [Google Scholar] [CrossRef]
- Esteban-Gorgojo, I.; Gorgojo, M.P.; Sastre, J.; Quirce, S. Food allergy as an asthma comorbidity in children and adolescents: A practical approach through a real-world study. Allergol. Immunopathol. 2021, 49, 68–78. [Google Scholar] [CrossRef]
- Pouessel, G.; Lezmi, G. Oral immunotherapy for food allergy: Translation from studies to clinical practice? World Allergy Organ. J. 2023, 16, 100747. [Google Scholar] [CrossRef]
- de Fariaa, D.P.B.; de Sillosa, M.D.; Leite Speridiãob, P.d.G.; de Morais, M.B. Real-life data on the effectiveness of extensively hydrolyzed protein-based formula and amino acid-based formula in regaining weight and height in infants on a cow’s milk protein elimination diet. Allergol. Immunopathol. 2023, 51, 177–183. [Google Scholar] [CrossRef]
- Brand, P.L.; Brohet, R.M.; Schwantje, O.; Dikkeschei, L.D. Association between allergen component sensitisation and clinical allergic disease in children. Allergol. Immunopathol. 2022, 50, 131–141. [Google Scholar] [CrossRef]
- Nevid, M.Z.; Leung, D.Y.; Crooks, J.L.; Lanser, B.J. The diagnostic challenge of sesame allergy: A review of sesame oral food challenges in a pediatric clinic. Ann. Allergy Asthma Immunol. 2023, 130, 118–119. [Google Scholar] [CrossRef]
- Rodríguez-Catalán, J.; González-Arias, A.M.; Casas, A.V.; Camacho, G.D.R. Specific IgE levels as an outcome predictor in egg-allergic children. Allergol. Immunopathol. 2021, 49, 79–86. [Google Scholar] [CrossRef]
- de Lima, J.H.P.; de Oliveira Jorge, P.P.; Solé, D.; Wandalsen, G.F. Impulse oscillometry in children and adolescents with persistent asthma and its correlation with spirometry. Allergol. Immunopathol. 2022, 50, 10–16. [Google Scholar] [CrossRef]
- Dang, T.D.; Peters, R.L.; Koplin, J.J.; Dharmage, S.C.; Gurrin, L.C.; Ponsonby, A.L.; Martino, D.J.; Neeland, M.; Tang, M.L.; Allen, K.J. Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort HealthNuts. Allergy 2019, 74, 318–326. [Google Scholar] [CrossRef]
- Ensina, L.F.; Felix, M.M.R.; da Cunha, F.S.; Caubet, J.-C. Desensitization to drugs in children. Allergol. Immunopathol. 2022, 50, 48–57. [Google Scholar] [CrossRef]
- Ertugrul, A.; Cavkaytar, O.; Bostanci, İ.; Özmen, S. Revaccination following suspected vaccine-triggered hypersensitivity reactions: Experience of a tertiary care centre. Allergol. Immunopathol. 2021, 49, 128–134. [Google Scholar] [CrossRef]
- Iannotti, L.L.; Lutter, C.K.; Bunn, D.A.; Stewart, C.P. Eggs: The uncracked potential for improving maternal and young child nutrition among the world’s poor. Nutr. Rev. 2014, 72, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Kilic, M.; Çilkol, L.; Taşkın, E. Evaluation of some predictive parameters for baked-milk tolerance in children with cow’s milk allergy. Allergol. Immunopathol. 2021, 49, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Lemon-Mulé, H.; Sampson, H.A.; Sicherer, S.H.; Shreffler, W.G.; Noone, S.; Nowak-Wegrzyn, A. Immunologic changes in children with egg allergy ingesting extensively heated egg. J. Allergy Clin. Immunol. 2008, 122, 977–983.e1. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.L.; Dharmage, S.C.; Gurrin, L.C.; Koplin, J.J.; Ponsonby, A.-L.; Lowe, A.J.; Tang, M.L.; Tey, D.; Robinson, M.; Hill, D. The natural history and clinical predictors of egg allergy in the first 2 years of life: A prospective, population-based cohort study. J. Allergy Clin. Immunol. 2014, 133, 485–491.e6. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zheng, Y.; Wu, Y.; Chen, H.; Tong, P.; Gao, J. Double enzyme hydrolysis for producing antioxidant peptide from egg white: Optimization, evaluation, and potential allergenicity. J. Food Biochem. 2020, 44, e13113. [Google Scholar] [CrossRef] [PubMed]
- Jardim-Botelho, A.; de Oliveira, L.C.L.; Motta-Franco, J.; Solé, D. Nutritional management of immediate hypersensitivity to legumes in vegetarians. Allergol. Immunopathol. 2022, 50, 37–45. [Google Scholar] [CrossRef]
- Pablos-Tanarro, A.; Lozano-Ojalvo, D.; Martínez-Blanco, M.; López-Fandiño, R.; Molina, E. Sensitizing and eliciting capacity of egg white proteins in BALB/c mice as affected by processing. J. Agric. Food Chem. 2017, 65, 4500–4508. [Google Scholar] [CrossRef]
- Clark, A.; Islam, S.; King, Y.; Deighton, J.; Szun, S.; Anagnostou, K.; Ewan, P. A longitudinal study of resolution of allergy to well-cooked and uncooked egg. Clin. Exp. Allergy 2011, 41, 706–712. [Google Scholar] [CrossRef]
- AbdulAal, N.; Alalwan, T. The reported prevalence of food allergy among school-aged children in Bahrain. Allergol. Immunopathol. 2023, 51, 90–98. [Google Scholar] [CrossRef]
- Dona, D.W.; Suphioglu, C. Egg allergy: Diagnosis and immunotherapy. Int. J. Mol. Sci. 2020, 21, 5010. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Chen, Y.H.; Luo, Y.H.; Lin, C.H.; Chen, M.J. Antioxidant and antiglycation properties of egg white protein hydrolysates and their selected fractions. J. Sci. Food Agric. 2017, 97, 2288–2295. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.-T.; Ibáñez, L.; Buendía, E.; Sabido, M.P.; Bartoll, E.; Nieto, M.; Selva, B.; Uixera, S.; Nieto, A.; Mazón, Á. Food allergy in adolescents. Allergol. Immunopathol. 2023, 51, 71–81. [Google Scholar] [CrossRef]
- de Faria, D.P.B.; Sillos, M.D.; Speridião, P.d.G.L.; de Morais, M.B. Outcome of food intake and nutritional status after discontinuation of a cow’s-milk-free diet post negative oral food challenge in infants and children. Allergol. Immunopathol. 2022, 50, 1–8. [Google Scholar] [CrossRef]
- De Filippo, M.; Votto, M.; Caminiti, L.; Carella, F.; De Castro, G.; Landi, M.; Olcese, R.; Panasiti, I.; Vernich, M.; Barberi, S. Omalizumab and allergen immunotherapy for respiratory allergies: A mini-review from the Allergen-Immunotherapy Committee of the Italian Society of Pediatric Allergy and Immunology (SIAIP). Allergol. Immunopathol. 2022, 50, 47–52. [Google Scholar] [CrossRef]
- Barni, S.; Giovannini, M.; Sarti, L.; Liccioli, G.; Biagioni, B.; Novembre, E.; Mori, F. Managing food allergy immunotherapy in children during the COVID-19 pandemic. Allergol. Immunopathol. 2021, 49, 150–152. [Google Scholar] [CrossRef]
- Mao, K.; Li, D.; Liu, J.; Sun, J.; Zhang, R. Investigation of serum IL-12, IL-16, and IL-17A as diagnostic biomarkers in children with cow’s milk protein allergy. Allergol. Immunopathol. 2022, 50, 162–168. [Google Scholar] [CrossRef]
- Watanabe, H.; Takushi, S.; Nakajima-Adachi, H.; Hachimura, S.; Vieths, S.; Toda, M. Physiological, biochemical, and allergenic properties of egg allergens. In Handbook of Eggs in Human Function; Watson, R.R., De Meester, F., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 124–127. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, B. PTPRO activates TLR4/NF-κB signaling to intensify lipopolysaccharide-induced pneumonia cell injury. Allergol. Immunopathol. 2022, 50, 119–124. [Google Scholar] [CrossRef]
- Maeno, A.; Matsuo, H.; Akasaka, K. Tyrosine/tyrosinate fluorescence at 700 MPa: A pressure unfolding study of chicken ovomucoid at pH 12. Biophys. Chem. 2013, 183, 57–63. [Google Scholar] [CrossRef]
- Sala Cunill, A.; Almeida-Sánchez, Z.M.; García-Núñez, I.; Laín, S.; Martínez-Tadeo, J.A.; Martos, M.D. Real-world safety and effectiveness evidence of a microcrystalline tyrosine-associated mite allergoid in children and adolescents with allergic rhinitis. Allergol. Immunopathol. 2021, 49, 98–108. [Google Scholar] [CrossRef]
- Shah, R.B.; Khan, M.A. Protection of salmon calcitonin breakdown with serine proteases by various ovomucoid species for oral drug delivery. J. Pharm. Sci. 2004, 93, 392–406. [Google Scholar] [CrossRef]
- Hirose, J.; Kitabatake, N.; Kimura, A.; Narita, H. Recognition of native and/or thermally induced denatured forms of the major food allergen, ovomucoid, by human IgE and mouse monoclonal IgG antibodies. Biosci. Biotechnol. Biochem. 2004, 68, 2490–2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hr, T.N.; Barlıanto, W.; Wıyasa, I.W.A.; Kusuma, H.C.; Sari, T.L.; Bachtıar, N.S. Analysis of specific antibody and cellular immune response to first-dose measles vaccine Edmonston-Zagreb in 9-month-old infants. Allergol. Immunopathol. 2021, 49, 193–201. [Google Scholar] [CrossRef]
- Jin, Y.; Zeng, Q.; Geng, F.; Ma, M. Characterization of the interaction between hen egg white lysozyme and ovalbumin: Interaction between lysozyme and ovalbumin. Food Biosci. 2020, 36, 100674. [Google Scholar] [CrossRef]
- dos Santos Pereira, A.P.; Mendonça, R.B.; Fonseca, F.L.A.; Mallozi, M.C.; Sarni, R.O.S. Vitamin D deficiency in children and adolescents with food allergy: Association with number of allergens, sun exposure and nutritional status. Allergol. Immunopathol. 2022, 50, 10–16. [Google Scholar] [CrossRef]
- Jiang, X.; Mu, H.; Hsieh, Y.-H.P.; Rao, Q. Isolation and Characterization of Chicken Serum Albumin (Hen Egg Alpha-Livetin, Gal d 5). Foods 2022, 11, 1637. [Google Scholar] [CrossRef]
- Cruz, R.H.; Ynoue, L.H.; Aranda, C.S.; Solé, D.; Condino-Neto, A. Antibodies to Der p 1 and Der p 2 in allergic patients. Allergol. Immunopathol. 2021, 49, 46–52. [Google Scholar] [CrossRef]
- De Silva, C.; Dhanapala, P.; Doran, T.; Tang, M.L.; Suphioglu, C. Molecular and immunological analysis of hen’s egg yolk allergens with a focus on YGP42 (Gal d 6). Mol. Immunol. 2016, 71, 152–160. [Google Scholar] [CrossRef]
- Vapor, A.; Mendonça, A.; Tomaz, C.T. Processes for reducing egg allergenicity: Advances and different approaches. Food Chem. 2022, 367, 130568. [Google Scholar] [CrossRef]
- Zhu, Y.; Vanga, S.K.; Wang, J.; Raghavan, V. Impact of food processing on the structural and allergenic properties of egg white. Trends Food Sci. Technol. 2018, 78, 188–196. [Google Scholar] [CrossRef]
- Verhoeckx, K.C.; Vissers, Y.M.; Baumert, J.L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N. Food processing and allergenicity. Food Chem. Toxicol. 2015, 80, 223–240. [Google Scholar] [CrossRef]
- Nepolo, E.P.; Nkambule, B.B.; Dludla, P.V.; Ndevahoma, F.; Nyambuya, T.M. Association between the type of allergen and T-helper 2 mediated inflammation in allergic reactions: A systematic review and a meta-analysis. Allergol. Immunopathol. 2022, 50, 37–50. [Google Scholar] [CrossRef]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
- Shi, T.; Li, Y. Producing high Fischer ratio peptides from milk protein and its application in infant formula milk powder. Qual. Assur. Saf. Crop. Foods 2021, 13, 49–58. [Google Scholar] [CrossRef]
- Noonim, P.; Venkatachalam, K. Quality changes and shelf life of salted duck egg white meringues stored in alternative packages at two temperatures. Qual. Assur. Saf. Crop. Foods 2021, 13, 62–73. [Google Scholar] [CrossRef]
- Jiménez-Saiz, R.; Belloque, J.; Molina, E.; López-Fandino, R. Human immunoglobulin E (IgE) binding to heated and glycated ovalbumin and ovomucoid before and after in vitro digestion. J. Agric. Food Chem. 2011, 59, 10044–10051. [Google Scholar] [CrossRef]
- Naqash, S.; Naik, H.; Hussain, S.; Makroo, H.; Dar, B. Effect of thermal treatment on physicochemical, phytochemical, and microbiological characteristics of brown Spanish onion paste. Qual. Assur. Saf. Crop. Foods 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Vichakshana, G.A.D.; Young, D.J.; Choo, W.S. Extraction, purification, food applications, and recent advances for enhancing the bioavailability of 6-gingerol from ginger–A review. Qual. Assur. Saf. Crop. Foods 2022, 14, 67–83. [Google Scholar] [CrossRef]
- Sabadin, I.S.; Villas-Boas, M.B.; de Lima Zollner, R.; Netto, F.M. Effect of combined treatment of hydrolysis and polymerization with transglutaminase on β-lactoglobulin antigenicity. Eur. Food Res. Technol. 2012, 235, 801–809. [Google Scholar] [CrossRef]
- López-Expósito, I.; Chicón, R.; Belloque, J.; Recio, I.; Alonso, E.; López-Fandiño, R. Changes in the ovalbumin proteolysis profile by high pressure and its effect on IgG and IgE binding. J. Agric. Food Chem. 2008, 56, 11809–11816. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yoshimaru, T.; Matsui, T.; Osajima, Y. Enzymatic Degradation of Ovalbumin by Various Proteases; Kyushu University: Fukuoka, Japan, 1997. [Google Scholar] [CrossRef]
- Jiménez-Saiz, R.; Benedé, S.; Miralles, B.; López-Expósito, I.; Molina, E.; López-Fandiño, R. Immunological behavior of in vitro digested egg-white lysozyme. Mol. Nutr. Food Res. 2014, 58, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Akita, E.; Jang, C.; Kitts, D.; Nakai, S. Evaluation of allergenicity of egg yolk immunoglobulin Y and other egg proteins by passive cutaneous anaphylaxis. Food Agric. Immunol. 1999, 11, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Arkin, M.R.; Wells, J.A. Small-molecule inhibitors of protein–protein interactions: Progressing towards the dream. Nat. Rev. Drug Discov. 2004, 3, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Abeyrathne, E.; Lee, H.; Jo, C.; Suh, J.; Ahn, D. Enzymatic hydrolysis of ovomucoid and the functional properties of its hydrolysates. Poult. Sci. 2015, 94, 2280–2287. [Google Scholar] [CrossRef] [PubMed]
- Mine, Y.; Sasaki, E.; Zhang, J.W. Reduction of antigenicity and allergenicity of genetically modified egg white allergen, ovomucoid third domain. Biochem. Biophys. Res. Commun. 2003, 302, 133–137. [Google Scholar] [CrossRef]
- HAN, D.; Matsuno, M.; Ikeuchi, Y.; Suzuki, A. Effects of heat and high-pressure treatments on antigenicity of beef extract. Biosci. Biotechnol. Biochem. 2002, 66, 202–205. [Google Scholar] [CrossRef]
- Tang, Z.-X.; Ying, R.-F.; Lv, B.-F.; Yang, L.-H.; Xu, Z.; Yan, L.-Q.; Bu, J.-Z.; Wei, Y.-S. Flaxseed oil: Extraction, Health benefits and products. Qual. Assur. Saf. Crop. Foods 2021, 13, 1–19. [Google Scholar] [CrossRef]
- YL Aua, E.; Chianga, V.; Chun Kanb, A.K.; Lama, K.; Wongb, J.C.Y.; Yeunga, H.H.Y.; Hei Li, P. A case of persistent IgE sensitisation almost two decades following ampicillin anaphylaxis. Allergol. Immunopathol. 2023, 51, 126–129. [Google Scholar] [CrossRef]
- Odani, S.; Kanda, Y.; Hara, T.; Matuno, M.; Suzuki, A. Effects of high hydrostatic pressure treatment on the allergenicity and structure of chicken egg white ovomucoid. High Press. Biosci. Biotechnol. 2007, 1, 252–258. [Google Scholar] [CrossRef]
- Bucka-Kolendo, J.; Sokołowska, B. Impact of high hydrostatic pressure on the single nucleotide polymorphism of stress-related dnaK, hrcA, and ctsR in the Lactobacillus strains. Qual. Assur. Saf. Crop. Foods 2022, 14, 54–66. [Google Scholar] [CrossRef]
- Acero-Lopez, A.; Ullah, A.; Offengenden, M.; Jung, S.; Wu, J. Effect of high pressure treatment on ovotransferrin. Food Chem. 2012, 135, 2245–2252. [Google Scholar] [CrossRef]
- Sun, T.; Yang, Z.; He, H. Heat and mass transfer law during microwave vacuum drying of rice. Qual. Assur. Saf. Crop. Foods 2023, 15, 1–10. [Google Scholar] [CrossRef]
- Huang, H.; Gao, S.; Xu, X. Echinococcus multilocularis induces surface high expression of inhibitory killer immunoglobulin-like receptor on natural killer cells. Allergol. Immunopathol. 2021, 49, 78–86. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Zhou, R.; Yang, J.; Sheng, W.; Guo, J.; Wang, S. Effects of heating, autoclaving and ultra-high pressure on the solubility, immunoreactivity and structure of major allergens in egg. Food Agric. Immunol. 2018, 29, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Lv, J.; Guo, Y.; Bian, Z.; Si, J.; Yang, L.; Chen, Y.; Zhou, Y.; Zhang, H.; Liu, J. Associations of egg consumption with cardiovascular disease in a cohort study of 0.5 million Chinese adults. Heart 2018, 104, 1756–1763. [Google Scholar] [CrossRef] [Green Version]
- Geiker, N.R.W.; Larsen, M.L.; Dyerberg, J.; Stender, S.; Astrup, A. Egg consumption, cardiovascular diseases and type 2 diabetes. Eur. J. Clin. Nutr. 2018, 72, 44–56. [Google Scholar] [CrossRef]
- Bishop, N.J.; Zuniga, K.E. Egg consumption, multi-domain cognitive performance, and short-term cognitive change in a representative sample of older US adults. J. Am. Coll. Nutr. 2019, 38, 537–546. [Google Scholar] [CrossRef]
- An, R.; Li, D.; McCaffrey, J.; Khan, N. Whole egg consumption and cognitive function among US older adults. J. Hum. Nutr. Diet. 2022, 35, 554–565. [Google Scholar] [CrossRef]
- Matsuoka, R.; Sugano, M. Health Functions of Egg Protein. Foods 2022, 11, 2309. [Google Scholar] [CrossRef]
- Mesas, A.E.; Garrido-Miguel, M.; Fernández-Rodríguez, R.; Fernández-Franco, S.; Lugones-Sánchez, C.; García-Ortiz, L.; Martínez-Vizcaíno, V. The association of egg consumption with blood pressure levels and glycated hemoglobin in Spanish adults according to body mass index. Sci. Rep. 2022, 12, 17465. [Google Scholar] [CrossRef]
- Sanlier, N.; Üstün, D. Egg consumption and health effects: A narrative review. J. Food Sci. 2021, 86, 4250–4261. [Google Scholar] [CrossRef]
- Agaeva, G.; Agaeva, U.; Godjaev, N. Conformational particularities study of Ovokinin (2-7) peptide and its analogue by molecular mechanics simulation. In Proceedings of the Control and Optimization with Industrial Applications, Baku, Azerbaijan, 26–28 August 2020; Volume 29. [Google Scholar]
- Khueychai, S.; Jangpromma, N.; Choowongkomon, K.; Joompang, A.; Daduang, S.; Vesaratchavest, M.; Payoungkiattikun, W.; Tachibana, S.; Klaynongsruang, S. A novel ACE inhibitory peptide derived from alkaline hydrolysis of ostrich (Struthio camelus) egg white ovalbumin. Process Biochem. 2018, 73, 235–245. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, H.; Peng, H.; Wu, X.; Fang, J. The utility of ovotransferrin and ovotransferrin-derived peptides as possible candidates in the clinical treatment of cardiovascular diseases. Oxid. Med. Cell. Longev. 2017, 2017, 6504518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucey, A.J.; Heneghan, C.; Manning, E.; Kroon, P.A.; Kiely, M.E. Effect of an egg ovalbumin-derived protein hydrolysate on blood pressure and cardiovascular risk in adults with a mildly elevated blood pressure: A randomized placebo-controlled crossover trial. Eur. J. Nutr. 2019, 58, 2823–2833. [Google Scholar] [CrossRef] [PubMed]
- Hiidenhovi, J. Isolation and Characterization of Ovomucin-a Bioactive Agent of Egg White. Ph.D. Thesis, The University of Turku, Turku, Finland, 2015. [Google Scholar]
- Ercan, D.; Demirci, A. Recent advances for the production and recovery methods of lysozyme. Crit. Rev. Biotechnol. 2016, 36, 1078–1088. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Joshi, K.B. Biotin–avidin interaction triggers conversion of triskelion peptide nanotori into nanochains. New J. Chem. 2018, 42, 3452–3458. [Google Scholar] [CrossRef]
- Bloom, K.A.; Huang, F.R.; Bencharitiwong, R.; Bardina, L.; Ross, A.; Sampson, H.A.; Nowak-Węgrzyn, A. Effect of heat treatment on milk and egg proteins allergenicity. Pediatr. Allergy Immunol. 2014, 25, 740–746. [Google Scholar] [CrossRef]
- Belchior, D.C.; Freire, M.G. Simultaneous separation of egg white proteins using aqueous three-phase partitioning systems. J. Mol. Liq. 2021, 336, 116245. [Google Scholar] [CrossRef]
- Martínez-Maqueda, D.; Hernández-Ledesma, B.; Amigo, L.; Miralles, B.; Gómez-Ruiz, J.Á. Extraction/fractionation techniques for proteins and peptides and protein digestion. In Proteomics in Foods: Principles Applications; Toldrá, F., Nollet, L., Eds.; Springer: Boston, MA, USA, 2013; Volume 2, pp. 21–50. [Google Scholar] [CrossRef]
- Eckert, E.; Zambrowicz, A.; Pokora, M.; Polanowski, A.; Chrzanowska, J.; Szoltysik, M.; Dąbrowska, A.; Różański, H.; Trziszka, T. Biologically active peptides derived from egg proteins. World’s Poult. Sci. J. 2013, 69, 375–386. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J.; Chang, C.; Wang, C.; Yang, Y.; Su, Y. Effect of enzymatic hydrolysis on heat stability and emulsifying properties of egg yolk. Food Hydrocoll. 2019, 97, 105224. [Google Scholar] [CrossRef]
- Marciniak, A.; Suwal, S.; Naderi, N.; Pouliot, Y.; Doyen, A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends Food Sci. Technol. 2018, 80, 187–198. [Google Scholar] [CrossRef]
- Bai-Ngew, S.; Chuensun, T.; Wangtueai, S.; Phongthai, S.; Jantanasakulwong, K.; Rachtanapun, P.; Sakdatorn, V.; Klunklin, W.; Regenstein, J.M.; Phimolsiripol, Y. Antimicrobial activity of a crude peptide extract from lablab bean (Dolichos lablab) for semi-dried rice noodles shelf-life. Qual. Assur. Saf. Crop. Foods 2021, 13, 25–33. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Liu, C.; Liu, B.; Yu, Y.; Zhang, T. Bifunctional peptides with antioxidant and angiotensin-converting enzyme inhibitory activity in vitro from egg white hydrolysates. J. Food Biochem. 2020, 44, e13347. [Google Scholar] [CrossRef]
- Bao, Z.-j.; Zhao, Y.; Wang, X.-y.; Chi, Y.-J. Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. J. Food Sci. Technol. 2017, 54, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Yu, W.; Liao, W.; Wu, J. Spent hen protein hydrolysate with good gastrointestinal stability and permeability in caco-2 cells shows antihypertensive activity in SHR. Foods 2020, 9, 1384. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Bandara, N.; Wu, J. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chem. 2015, 188, 467–472. [Google Scholar] [CrossRef]
- Altintaş, D.; Türktaş, İ.; Arga, M.; Çokuğraş, H.; Civelek, E.; KESKİN, Ö.; Buyuktiryaki, B.; Ertem Şahinoğlu, D.; Aydoğan, M.; Ecevit, C. COmparisoN of TastES of Available NutriTional integrated or non-integrated formulas for infants older than 1 year of age with cow’s milk allergy: A multicenter, prospective, single blind, cross-sectional observational clinical study (CONTEST Study). Allergol. Immunopathol. 2022, 50, 97–104. [Google Scholar] [CrossRef]
- Liao, W.; Jahandideh, F.; Fan, H.; Son, M.; Wu, J. Egg protein-derived bioactive peptides: Preparation, efficacy, and absorption. Adv. Food Nutr. Res. 2018, 85, 1–58. [Google Scholar] [CrossRef]
- Morgan, P.T.; Breen, L. The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation: A current perspective. Nutr. Metab. 2021, 18, 44. [Google Scholar] [CrossRef]
- Cintineo, H.P.; Arent, M.A.; Antonio, J.; Arent, S.M. Effects of protein supplementation on performance and recovery in resistance and endurance training. Front. Nutr. 2018, 5, 83. [Google Scholar] [CrossRef]
- Phillips, S.M. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr. Metab. 2016, 13, 64. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Park, H.-Y.; Kim, J.; Hwang, H.; Jung, Y.; Kreider, R.; Lim, K. Effects of whey protein supplementation prior to, and following, resistance exercise on body composition and training responses: A randomized double-blind placebo-controlled study. J. Exerc. Nutr. Biochem. 2019, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.T.; Pan, B.J.; Toh, D.W.K.; Sutanto, C.N.; Kim, J.E. Animal protein versus plant protein in supporting lean mass and muscle strength: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 661. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Kimura, Y.; Shirouchi, B.; Tanaka, Y.; Tsai, W.-t.; Yuan, X.; Sato, M. Dietary egg white protein hydrolysate improves orotic acid-induced fatty liver in rats by promoting hepatic phospholipid synthesis and microsomal triglyceride transfer protein expression. J. Nutr. Biochem. 2021, 98, 108820. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, M.J.; Fernandez, M.L. The Health Benefits of Egg Protein. Nutrients 2022, 14, 2904. [Google Scholar] [CrossRef] [PubMed]
- Dhurandhar, N.; Dhurandhar, E.J. The role of eggs in weight management. In Handbook of Eggs in Human Function; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 30–36. [Google Scholar] [CrossRef]
- Kumar, M.S. Peptides and peptidomimetics as potential antiobesity agents: Overview of current status. Front. Nutr. 2019, 6, 11. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The effects of hydrolyzed egg protein supplementation on muscle mass and strength in healthy adults: A systematic review and meta-analysis. J. Int. Soc. Sport. Nutr. 2019, 16, 15. [Google Scholar] [CrossRef]
- Bagheri, R.; Moghadam, B.H.; Jo, E.; Tinsley, G.M.; Stratton, M.T.; Ashtary-Larky, D.; Eskandari, M.; Wong, A. Comparison of whole egg v. egg white ingestion during 12 weeks of resistance training on skeletal muscle regulatory markers in resistance-trained men. Br. J. Nutr. 2020, 124, 1035–1043. [Google Scholar] [CrossRef]
- Koshinaka, K.; Honda, A.; Iizumi, R.; Miyazawa, Y.; Kawanaka, K.; Sato, A. Egg White Protein Feeding Facilitates Skeletal Muscle Gain in Young Rats with/without Clenbuterol Treatment. Nutrients 2021, 13, 2042. [Google Scholar] [CrossRef]
- Williams, M.B.; Palmer, J.W.; Chehade, S.B.; Hall, A.J.; Barry, R.J.; Powell, M.L.; Harris, M.L.; Sun, L.Y.; Watts, S.A. Effect of Long-Term Consumption of Poultry Egg Products on Growth, Body Composition, and Liver Gene Expression in Zebrafish, Danio rerio. Curr. Dev. Nutr. 2021, 5, nzab134. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Zhang, X.; Zeng, Q.; Huang, X.; Sheng, L.; Ahn, D.U.; Cai, Z. Restoration of immunity by whole egg was superior to egg white or egg yolk in a cyclophosphamide-induced immunocompromised mouse model. Food Biosci. 2022, 50, 102013. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, F.; Su, Y.; Chang, C.; Li, J.; Gu, L.; Yang, Y. Immunomodulatory effects of egg white peptides on immunosuppressed mice and sequence identification of immunomodulatory peptides. Food Biosci. 2022, 49, 101873. [Google Scholar] [CrossRef]
- Lozano-Ojalvo, D.; Molina, E.; López-Fandiño, R. Regulation of exacerbated immune responses in human peripheral blood cells by hydrolysed egg white proteins. PLoS ONE 2016, 11, e0151813. [Google Scholar] [CrossRef]
- López-Martínez, M.I.; Miguel, M.; Garcés-Rimón, M. Protein and sport: Alternative sources and strategies for bioactive and sustainable sports nutrition. Front. Nutr. 2022, 9, 926043. [Google Scholar] [CrossRef]
- Chen, Y.; Han, P.; Ma, B.; Wang, X.; Ma, M.; Qiu, N.; Fu, X. Effect of thermal treatment on the antioxidant activity of egg white hydrolysate and the preparation of novel antioxidant peptides. Int. J. Food Sci. Technol. 2022, 57, 2590–2599. [Google Scholar] [CrossRef]
- Dlask, O.; Václavíková, N. Electrodialysis with ultrafiltration membranes for peptide separation. Chem. Pap. 2018, 72, 261–271. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Inungaray, M.L.; Martínez-Salas, J.A.; Michel, M.; Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zárate, P. Recent Trends in Extraction, Purification, and Characterization of Bioactive Peptides. In Handbook of Research on Food Science Technology; Apple Academic Press: New York, NY, USA, 2019; Volume 3, pp. 49–76. [Google Scholar] [CrossRef]
- Eichler, J. Protein glycosylation. Curr. Biol. 2019, 29, R229–R231. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Kinoshita, M.; Suzuki, S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J. Pharm. Biomed. 2016, 130, 273–300. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Wu, J. Chicken Egg: Wholesome Nutrition Packed with Antioxidants. In Eggs as Functional Foods Nutraceuticals for Human Health; Royal Society of Chemistry: London, UK, 2019; Volume 14, p. 154. [Google Scholar]
- Li, M.; Li, X.; Fan, D.; Zhang, Q. Advances in the preparation, purification and bioactivity of glycosylated egg-derived peptides. Food Funct. 2021, 12, 4146–4161. [Google Scholar] [CrossRef]
- Guo, J.; Wu, J.; Yang, X.; Chen, J.; Liu, B. The application of glycosylation for the improvement of the biological functions of egg-derived peptides: A review. J. Food Sci. Technol. 2021, 58, 1247–1256. [Google Scholar] [CrossRef]
- Belamri, M.; Sila, A.; Haddar, A.; Bougatef, A.; Dhulster, P. Recent advances in the purification of bioactive peptides from egg proteins. J. Food Sci. Technol. 2018, 55, 441–453. [Google Scholar] [CrossRef]
- Rusli, H.; Putri, R.M.; Alni, A. Recent developments of liquid chromatography stationary phases for compound separation: From proteins to small organic compounds. Molecules 2022, 27, 907. [Google Scholar] [CrossRef] [PubMed]
Method | Processing Conditions | Target Protein | % Yield | Advantages | Disadvantages | Efficiency |
---|---|---|---|---|---|---|
Precipitation with Ammonium Sulfate | pH 7.0–8.0, 25 °C | Ovalbumin | 70–80% | Low cost, Simple procedure | Loss of biological activity, Contamination with other proteins | Low to moderate |
Ion-Exchange Chromatography | pH 4.5–5.5, 25 °C | Lysozyme | 60–80% | High purity, Large-scale preparation | High cost, Requires specialized equipment | High |
Gel-Filtration Chromatography | pH 7.0–8.0, 25 °C | Ovomucin | 50–70% | Separation of high molecular weight proteins | Limited resolution for closely related proteins | Moderate |
Hydrophobic Interaction Chromatography | pH 5.5–7.0, 25 °C | Ovotransferrin | 50–70% | High purity, Mild conditions | Low yield, Requires specialized equipment | Moderate |
High Performance Liquid Chromatography (HPLC) | pH 4.0–5.5, 25 °C | Ovomucoid | 20–40% | High purity, Separation of closely related proteins | High cost, Requires specialized equipment | High |
Method | Processing Conditions | Target Protein | Yield (%) | Advantages | Disadvantages | Efficiency |
---|---|---|---|---|---|---|
Precipitation with ethanol or ammonium sulfate | pH adjustment, precipitation with ethanol or ammonium sulfate | Lipovitellin | 50–60 | Simple and low cost | Co-precipitation of other proteins and impurities | Medium |
Ion exchange chromatography | Equilibration, loading, washing, and elution with salt gradient | Phosvitin | 20–30 | High purity | High cost and low yield | High |
Hydrophobic interaction chromatography | Equilibration, loading, washing, and elution with salt and hydrophobicity gradients | Livetin | 20–30 | High purity | High cost and low yield | High |
Gel filtration chromatography | Equilibration, loading, washing, and elution based on molecular size | Vitellin | 10–20 | High purity and gentle separation | Low yield and low resolution | Medium |
Ultracentrifugation | Differential centrifugation based on density and size | Phospholipid transfer protein | 5–10 | High purity and gentle separation | High cost and low yield | Medium |
Processing Method | Effect on Allergenicity | Processing Conditions | Advantages | Disadvantages |
---|---|---|---|---|
Thermal (boiling, baking, frying) | Decreases allergenicity by denaturation of proteins | Varies based on type and duration of heat treatment | Widely used, simple, effective | May affect sensory properties of food, high temperatures may cause advanced glycation end products (AGEs) |
High pressure processing (HPP) | Decreases allergenicity by altering protein structure | Pressure up to 900 MPa for 1–10 min | Maintains nutritional and sensory quality of food, no chemicals used | May require specialized equipment, high cost |
Pulsed electric fields (PEF) | Decreases allergenicity by altering protein structure | Electric field strength of 20–40 kV/cm for 1–100 µs | Maintains nutritional and sensory quality of food, no chemicals used | May require specialized equipment, limited research on long-term effects |
Irradiation | Decreases allergenicity by altering protein structure | Gamma radiation up to 10 kGy or electron beam radiation up to 3.0 MeV | Effective at eliminating bacteria and parasites, no residual chemicals | Negative perception by some consumers, potential for product quality changes |
Ultrasound | Decreases allergenicity by altering protein structure | Frequency of 20–100 kHz for 1–20 min | Non-thermal, low energy, no chemicals used | May require specialized equipment, limited research on long-term effects |
Enzymatic hydrolysis | Increases or decreases allergenicity depending on degree of hydrolysis | Varies based on type of enzyme and degree of hydrolysis | Can generate bioactive peptides with functional properties | Difficult to control hydrolysis reaction, may generate bitter peptides |
Fermentation | Decreases allergenicity by microbial action | Time and temperature vary based on specific fermentation process | Can generate bioactive peptides with functional properties, may enhance nutritional quality | Requires specific microbial strains and conditions, long processing times |
Supercritical fluid extraction (SFE) | Reduces allergenicity by removing lipids and altering protein structure | Temperature of 40–60 °C and pressure of 150–400 bar for 1–2 h | No residual chemicals, low energy consumption | May require specialized equipment, limited research on long-term effects |
Microwave-assisted processing | Reduces allergenicity by denaturation of proteins | Power level and time vary based on specific process | Rapid processing time, uniform heating, no residual chemicals | May affect sensory properties of food, limited research on long-term effects |
Plasma processing | Alters protein structure and reduces allergenicity | Plasma power and treatment time vary based on specific process | No residual chemicals, can be used on a variety of materials | Requires specialized equipment, limited research on long-term effects |
Egg Protein | Extraction Method | Mechanism & Conditions | Target Proteins | Biological Activity | Peptides | Allergenicity | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|---|
Ovalbumin | Enzymatic Hydrolysis | Alcalase enzyme at pH 9.5, 60 °C for 4 h | ACE inhibitory peptides | Hypotensive, Hypocholesterolemic | LKALPMHIR, IQWLEPK, YPAL | Low | High yield, specific peptide extraction | May produce bitter peptides |
Ovotransferrin | Thermal Extraction | 75 °C for 30 min | Lactoferricin B, ovotransferrin-derived peptides | Antimicrobial, Anticancer | IRW, IQW, IQ | Low | Simple method, low cost | Low yield |
Ovotransferrin | Enzymatic Hydrolysis | Hydrolysis by trypsin, chymotrypsin, or pepsin at specific pH and temperature | Ovotransferrin | Antimicrobial, immunomodulatory, antioxidant | OV-6, OV-8, OV-16, OV-17 | Low | high yield, mild conditions | requires enzyme, time-consuming |
Ovomucin | Membrane Extraction | Ultrafiltration, 10–50 kDa cutoff | Ovomucoid-derived peptides | Antioxidant, ACE inhibitory | LK, DPLV | Moderate | Efficient separation, high yield | High cost of equipment |
Lysozyme | Enzymatic Hydrolysis | Pepsin at pH 2, 37 °C for 4 h | ACE inhibitory peptides | Hypotensive, Hypocholesterolemic | LPVP, VPP, LPLP | Low | High yield, simple method | Low bioavailability of peptides |
Lysozyme | Electrodialysis | Electrodialysis using a cation exchange membrane | Ovalbumin, ovotransferrin, ovomucin | Antimicrobial, immunomodulatory, antioxidant | Lysozyme-derived peptides | No known allergenicity | Scalable process | Expensive equipment and |
Phosvitin | Enzymatic Hydrolysis | Alcalase enzyme at pH 9.5, 55 °C for 6 h | Phosvitin-derived peptides | Antioxidant, Anticancer | RGL, LVG | High | High yield, rich in essential amino acids | Strong fishy odor |
Phosvitin | Glycosylation | Glycosylation using lactose and α-galactosidase | None specified | Antioxidant, ACE inhibition, antihypertensive | Phosvitin-derived peptides | No known allergenicity | Mild process conditions | Limited yield |
Avidin | Thermal Extraction | 85 °C for 10 min | Avidin-derived peptides | Antimicrobial, Anticancer | WYVERN, VYP | Low | Simple method, high yield | High risk of biotin deficiency |
Avidin | Chromatography | Affinity chromatography using biotin-agarose resin | None specified | Antimicrobial, antitumor | Avidin-derived peptides | No known allergenicity | High purity | Expensive resin |
Egg Yolk Proteins | Enzymatic Hydrolysis | Alcalase enzyme at pH 9.0, 55 °C for 5 h | ACE inhibitory peptides | Hypotensive, Hypocholesterolemic | RVPSL, GSPG | Low | High yield, simple method | Low bioavailability of peptides |
Egg White Proteins | Membrane Extraction | Ultrafiltration, 3–10 kDa cutoff | Ovotransferrin-derived peptides | Antimicrobial, Anticancer | VVYP, LFR, IQW | Low | Efficient separation, high yield | Limited diversity of peptides |
Egg Shell Membrane Proteins | Enzymatic Hydrolysis | Flavourzyme enzyme at pH 7.5, 50 °C for 4 h | Collagen-derived peptides | Anti-inflammatory, Antioxidant | GPAGP, GAAGP | Low | High yield, rich in hydroxyproline | High cost of enzyme |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostashari, P.; Marszałek, K.; Aliyeva, A.; Mousavi Khaneghah, A. The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023, 28, 2658. https://doi.org/10.3390/molecules28062658
Mostashari P, Marszałek K, Aliyeva A, Mousavi Khaneghah A. The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules. 2023; 28(6):2658. https://doi.org/10.3390/molecules28062658
Chicago/Turabian StyleMostashari, Parisa, Krystian Marszałek, Aynura Aliyeva, and Amin Mousavi Khaneghah. 2023. "The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg" Molecules 28, no. 6: 2658. https://doi.org/10.3390/molecules28062658
APA StyleMostashari, P., Marszałek, K., Aliyeva, A., & Mousavi Khaneghah, A. (2023). The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules, 28(6), 2658. https://doi.org/10.3390/molecules28062658