Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Grape Pomace
2.2. Preliminary Screening of Solvents
2.3. Grape Pomace Extraction Optimization
2.3.1. Ethanol as Extraction Solvent
2.3.2. Acetone as Extraction Solvent
2.4. Validation of the Models
2.5. Grape Pomace Extraction Performance
3. Material and Methods
3.1. Materials
3.2. Extraction Experiments and Preliminary Screening of Solvents
3.3. Optimization of Grape Pomace Extraction
3.4. Analytical Methods
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, M.; Duarte, E.D.A. Integrated approach to winery waste: Waste generation and data consolidation. Front. Environ. Sci. Eng. 2016, 10, 168–176. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2002, 12, 401–413. [Google Scholar] [CrossRef]
- Zacharof, M.-P. Grape Winery Waste as Feedstock for Bioconversions: Applying the Biorefinery Concept. Waste Biomass Valor. 2017, 8, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022, 27, 4709. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.-Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013, 53, 1202–1225. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Stathopoulos, C.E.; Golding, J.B.; Roach, P.D. Fate of the phenolic compounds during olive oil production with the traditional press method. Int. Food Res. J. 2014, 21, 101–109. [Google Scholar]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Gondim, S.; Gómez-García, R.; Ribeiro, T.; Pintado, M. Olive leaf phenolic extract from two Portuguese cultivars –bioactivities for potential food and cosmetic application. J. Environ. Chem. Eng. 2021, 9, 106175. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zhang, M.; Sun, B. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box–Behnken design optimization. J. Food Sci. Technol. 2019, 56, 4879–4890. [Google Scholar] [CrossRef]
- Martiny, T.R.; Raghavan, V.; de Moraes, C.C.; da Rosa, G.S.; Dotto, G.L. Optimization of green extraction for the recovery of bioactive compounds from Brazilian olive crops and evaluation of its potential as a natural preservative. J. Environ. Chem. Eng. 2021, 9, 105130. [Google Scholar] [CrossRef]
- Costa, J.M.; Ampese, L.C.; Ziero, H.D.D.; Sganzerla, W.G.; Forster-Carneiro, T. Apple pomace biorefinery: Integrated approaches for the production of bioenergy, biochemicals, and value-added products–An updated review. J. Environ. Chem. Eng. 2022, 10, 108358. [Google Scholar] [CrossRef]
- Da Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Gośliński, M. Phenolic compounds from winemaking waste and its antioxidant activity towards oxidation of rapeseed oil. Int. J. Food Sci. Technol. 2010, 45, 2272–2280. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Papaioannou, E.H.; Mitrouli, S.T.; Patsios, S.I.; Kazakli, M.; Karabelas, A.J. Valorization of pomegranate husk–Integration of extraction with nanofiltration for concentrated polyphenols recovery. J. Environ. Chem. Eng. 2020, 8, 103951. [Google Scholar] [CrossRef]
- Vatai, T.; Škerget, M.; Knez, Ž.; Kareth, S.; Wehowski, M.; Weidner, E. Extraction and formulation of anthocyanin-concentrates from grape residues. J. Supercrit. Fluids 2008, 45, 32–36. [Google Scholar] [CrossRef]
- Casagrande, M.; Zanela, J.; Pereira, D.; de Lima, V.A.; Oldoni, T.L.C.; Carpes, S.T. Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. J. Food Meas. Charact. 2019, 13, 1120–1129. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Vatai, T.; Škerget, M.; Knez, Ž. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 2009, 90, 246–254. [Google Scholar] [CrossRef]
- Amdoun, R.; Khelifi, L.; Khelifi-Slaoui, M.; Amroune, S.; Asch, M.; Assaf-Ducrocq, C.; Gontier, E. The desirability optimization methodology; a tool to predict two antagonist responses in biotechnological systems: Case of biomass growth and hyoscyamine content in elicited datura stramonium hairy roots. Iran. J. Biotechnol. 2018, 16, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Teles, A.S.C.; Chávez, D.W.H.; Coelho, M.A.Z.; Rosenthal, A.; Gottschalk, L.M.F.; Tonon, R.V. Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J. Food Eng. 2021, 288, 110128. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Bordiga, M. Valorization of Winemaking by-Products; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; De Morais, S.M.; De Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Casalles, J.; Pérez-Murcia, M.D. Agrochemical characterization of the solid by-products and residues from the winery and distillery industry. Waste Manag. 2018, 28, 372–380. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lores, M.; Insam, H.; Domínguez, J. Strategies for recycling and valorization of grape marc. Crit. Rev. Biotechnol. 2019, 39, 437–450. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston., C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- El Achkar, J.H.; Lendormi, T.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L.; Hobaika, Z. Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour. Technol. 2018, 247, 881–889. [Google Scholar] [CrossRef]
- Lafka, T.-I.; Sinanoglou, V.; Lazos, E.S. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007, 104, 1206–1214. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L. Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters. Waste Manag. 2016, 50, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.; Martínez-Cordeiro, H.; Lores, M. Earthworms and Grape Marc: Simultaneous Production of a High-Quality Biofertilizer and Bioactive-Rich Seeds. In Grape and Wine Biotechnology; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef]
- Gowman, A.C.; Picard, M.C.; Rodriguez-Uribe, A.; Misra, M.; Khalil, H.; Thimmanagari, M.; Mohanty, A.K. Physicochemical analysis of apple and grape pomaces. Bioresources 2019, 14, 3210–3230. [Google Scholar] [CrossRef]
- GlaxoSmithKlein. Royal Society of Chemistry. 2010. Available online: http://www.rsc.org/suppdata/gc/c0/c0gc00918k/c0gc00918k.pdf (accessed on 12 March 2022).
- Gandolpho, B.; Almeida, A.; Gandolpho, G.; Freitas, D.; Gasparini, O.; Machado, M.; Barreto, P. Optimization of brewing waste’s (trub) phenolic compounds extraction by ultrasound assisted using response surface methodology. Quim. Nova 2021, 44, 478–483. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. J. Supercrit. Fluids 2017, 130, 239–245. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Kravchuk, O.; Skouroumounis, G.K.; Taylor, D.K. Response surface parallel optimization of extraction of total phenolics from separate white and red grape skin mixtures with microwave-assisted and conventional thermal methods. J. Clean. Prod. 2020, 251, 119563. [Google Scholar] [CrossRef]
- Adeyi, O.; Oke, E.O.; Okolo, B.I.; Adeyi, A.J.; Otolorin, J.A.; Nwosu-Obieogu, K.; Adeyanju, J.A.; Dzarma, G.W.; Okhale, S.; Ogu, D.; et al. Process optimization, scale-up studies, economic analysis and risk assessment of phenolic rich bioactive extracts production from Carica papaya L. leaves via heat-assisted extraction technology. Heliyon 2022, 8, e09216. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; AWWA; WPCF: Washington, DC, USA, 1998. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L.A.P. Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure. Tech. Rep. NREL 2008, 1617, 1–16. [Google Scholar]
- Gaspar, M.C.; Mendes, C.V.T.; Pinela, S.R.; Moreira, R.; Carvalho, M.G.V.; Quina, M.J.; Braga, M.E.M.; Portugal, A.T. Assessment of agroforestry residues: Their potential within the biorefinery context. ACS Sustain. Chem. Eng. 2019, 7, 17154–17165. [Google Scholar] [CrossRef]
- Rodríguez-Rojo, S.; Visentin, A.; Maestri, D.; Cocero, M. Assisted extraction of rosemary antioxidants with green solvents. J. Food Eng. 2012, 109, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Mulinacci, N.; Innocenti, M.; Gallori, S.; Romani, A.; La Marca, G.; Vincieri, F.F. Optimization of the chromatographic determination of polyphenols in the aerial parts of Cichorium intybus L. Chromatographia 2001, 54, 455–461. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
pH | 3.88 ± 0.02 | TS (%) | 76.30 ± 5.30 |
EC (mS/cm) | 4.20 ± 0.05 | VS (%) a | 92.51 ± 0.06 |
COD (mg O2/g) a | 1397 ± 50 | Lignin (%) a | 50.62 ± 1.40 |
C (%) a | 48.04 ± 0.01 | Cellulose (%) a | 19.04 ± 0.31 |
N (%) a | 1.42 ± 0.01 | Hemicellulose (%) a | 8.18 ± 0.02 |
O (%) a | 34.60 ± 0.03 | TKN (mgN/g) a | 22.51 ± 2.13 |
H (%) a | 6.15 ± 0.02 | Empirical formula | C39.3H60.5O21.2N |
T (°C) | t (h) | L/S (mL/g Dry GP) | Solvent (%) | TPh (mg GAE/g Dry GP) | |
---|---|---|---|---|---|
Experimental | Predicted | ||||
Ethanol extraction | |||||
60 | 1.50 | 25 | 50 | 40.4 ± 1.8 | 43. 6 |
50 | 1.50 | 25 | 50 | 34.4 ± 1.0 | 36.6 |
50 | 1.25 | 15 | 30 | 28.3 ± 2.9 | 27.2 |
40 | 0.75 | 15 | 30 | 20.6 ± 0.1 | 21.7 |
50 | 1.00 | 20 | 70 | 27.5 ± 0.01 | 30.0 |
Acetone extraction | |||||
50 | 1.50 | 25 | 50 | 54. 6 ± 3.4 | 55.6 |
40 | 1.50 | 25 | 50 | 49.4 ± 0.9 | 48.9 |
45 | 1.25 | 15 | 30 | 35.9 ± 1.4 | 38.2 |
35 | 0.75 | 15 | 30 | 34.9 ± 0.6 | 34.7 |
40 | 1.00 | 20 | 70 | 40.9 ± 4.1 | 40.4 |
Solvent | TPh (mg GAE/g Dry GP) | TFC (mg Cat/g Dry GP) | IC50 (mg/mL) |
---|---|---|---|
50% Ethanol | 38.70 ± 3.64 a | 14.94 ± 2.29 b | 22.25 ± 3.00 c |
50% Acetone | 45.18 ± 9.51 a | 18.29 ± 3.07 b | 14.93 ± 3.81 c |
Solvent | Compounds | Retention Time (min) | Concentration (mg/100 Dry g GP) |
---|---|---|---|
50% Ethanol | Gallic acid | 6.767 | 22.83 ± 0.23 |
Chlorogenic acid | 12.193 | 2.06 ± 0.11 | |
Vanillic acid | 14.302 | 5.98 ± 0.06 | |
Caffeic acid | 14.762 | 20.00 ± 0.09 | |
Syringic acid | 16.113 | 16.36 ± 0.03 | |
p-Coumaric acid | 25.568 | 1.67 ± 0.13 | |
50% Acetone | Gallic acid | 6.869 | 25.01 ± 0.19 |
Chlorogenic acid | 12.230 | 2.75 ± 0.09 | |
Vanillic acid | 14.358 | 6.42 ± 0.04 | |
Caffeic acid | 14.789 | 38.22 ± 0.25 | |
Syringic acid | 16.140 | 16.18 ± 0.04 | |
p-Coumaric acid | 25.570 | 1.03 ± 0.12 |
Factors | Code Units | Coded Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Ethanol extraction | ||||
Temperature (°C) | T | 30 | 45 | 60 |
Time (h) | t | 0.5 | 1.0 | 1.5 |
Liquid–solid ratio (mL/g dry GP) | L/S | 10 | 20 | 30 |
Ethanol concentration (% v/v) | Eth | 20 | 55 | 90 |
Acetone extraction | ||||
Temperature (°C) | T | 30 | 40 | 50 |
Time (h) | t | 0.5 | 1.0 | 1.5 |
Liquid–solid ratio (mL/g dry GP) | L/S | 10 | 20 | 30 |
Acetone concentration (% v/v) | Ac | 20 | 55 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, R.P.; Sousa, A.M.; Gando-Ferreira, L.M.; Quina, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. https://doi.org/10.3390/molecules28062715
Rodrigues RP, Sousa AM, Gando-Ferreira LM, Quina MJ. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules. 2023; 28(6):2715. https://doi.org/10.3390/molecules28062715
Chicago/Turabian StyleRodrigues, Rafaela P., Ana M. Sousa, Licínio M. Gando-Ferreira, and Margarida J. Quina. 2023. "Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization" Molecules 28, no. 6: 2715. https://doi.org/10.3390/molecules28062715
APA StyleRodrigues, R. P., Sousa, A. M., Gando-Ferreira, L. M., & Quina, M. J. (2023). Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules, 28(6), 2715. https://doi.org/10.3390/molecules28062715