Importance of Inactivation Methodology in Enzymatic Processing of Raw Potato Starch: NaOCl as Efficient α-Amylase Inactivation Agent
Abstract
:1. Introduction
2. Results
2.1. Inactivation Using pH Adjustment
2.2. Inactivation Using NaOCl
2.3. Inactivation by Multistep Washing
3. Discussion and Conclusions
4. Materials and Methods
4.1. Materials
4.2. Enzyme Production and Purification
4.3. Inactivation Using pH Adjustment
4.4. Inactivation Using NaOCl
4.5. Inactivation by Multistep Washing
4.6. Assessment of Molecular Weight Distribution by High-Performance Size-Exclusion Chromatography
4.7. Reducing Sugar Quantification by Bicinchoninic Acid Assay
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Reyniers, S.; Ooms, N.; Gomand, S.V.; Delcour, J.A. What Makes Starch from Potato (Solanum tuberosum L.) Tubers Unique: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2588–2612. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Colussi, R.; McCarthy, O.J.; Kaur, L. Potato Starch and Its Modification. In Advances in Potato Chemistry and Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 195–247. [Google Scholar]
- Park, S.; Kim, Y.R. Clean Label Starch: Production, Physicochemical Characteristics, and Industrial Applications. Food Sci. Biotechnol. 2021, 30, 1–17. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Ashogbon, A.O.; Singh, A.; Chaudhary, V.; Whiteside, W.S. Enzymatic Modification of Starch: A Green Approach for Starch Applications. Carbohydr. Polym. 2022, 287, 119265. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xu, J.; Liu, X.; Ding, L.; Svensson, B.; Herburger, K.; Guo, K.; Pang, C.; Blennow, A. Recent Advances in Enzyme Biotechnology on Modifying Gelatinized and Granular Starch. Trends Food Sci. Technol. 2022, 123, 343–354. [Google Scholar] [CrossRef]
- Uthumporn, U.; Shariffa, Y.N.; Karim, A.A. Hydrolysis of Native and Heat-Treated Starches at Sub-Gelatinization Temperature Using Granular Starch Hydrolyzing Enzyme. Appl. Biochem. Biotechnol. 2012, 166, 1167–1182. [Google Scholar] [CrossRef] [PubMed]
- Uthumporn, U.; Zaidul, I.S.M.; Karim, A.A. Hydrolysis of Granular Starch at Sub-Gelatinization Temperature Using a Mixture of Amylolytic Enzymes. Food Bioprod. Process. 2010, 88, 47–54. [Google Scholar] [CrossRef]
- Robertson, G.H.; Wong, D.W.S.; Lee, C.C.; Wagschal, K.; Smith, M.R.; Orts, W.J. Native or Raw Starch Digestion: A Key Step in Energy Efficient Biorefining of Grain. J. Agric. Food Chem. 2006, 54, 353–365. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, P.; Ge, X.; Xia, Y.; Hao, Z.; Liu, J.; Peng, M. Recent Advances in Microbial Raw Starch Degrading Enzymes. Appl. Biochem. Biotechnol. 2010, 160, 988–1003. [Google Scholar] [CrossRef]
- Sun, H.; Ge, X.; Wang, L.; Zhao, P.; Peng, M. Microbial Production of Raw Starch Digesting Enzymes. Afr. J. Biotechnol. 2009, 8, 1734–1739. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Božić, N.; Lončar, N.; Slavić, M.Š.; Vujčić, Z. Raw Starch Degrading α-Amylases: An Unsolved Riddle. Amylase 2017, 1, 12–25. [Google Scholar] [CrossRef]
- de Souza, P.M.; de Oliveira Magalhães, P. Application of Microbial α-Amylase in Industry—A Review. Braz. J. Microbiol. 2010, 41, 850–861. [Google Scholar] [CrossRef]
- Koyama, K.; Shono, J.; Taguchi, H.; Toriba, A.; Hayakawa, K. Effect of Starch on the Inactivation of Amylase in Starch-Containing Foods. Food Sci. Technol. Res. 2013, 19, 989–993. [Google Scholar] [CrossRef]
- Rosenblum, J.L.; Irwin, C.L.; Alpers, D.H. Starch and Glucose Oligosaccharides Protect Salivary-Type Amylase Activity at Acid pH. Am. J. Physiol. 1988, 2549, 775–780. [Google Scholar] [CrossRef]
- Song, Z.; Zhong, Y.; Tian, W.; Zhang, C.; Hansen, A.R.; Blennow, A.; Liang, W.; Guo, D. Structural and Functional Characterizations of α-Amylase-Treated Porous Popcorn Starch. Food Hydrocoll. 2020, 108, 105606. [Google Scholar] [CrossRef]
- Gui, Y.; Zou, F.; Li, J.; Tang, J.; Guo, L.; Cui, B. Corn Starch Modification during Endogenous Malt Amylases: The Impact of Synergistic Hydrolysis Time of α-Amylase and β-Amylase and Limit Dextrinase. Int. J. Biol. Macromol. 2021, 190, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Sufha, E.H.; Zaidul, I.S.M. Dual Modification of Starch via Partial Enzymatic Hydrolysis in the Granular State and Subsequent Hydroxypropylation. J. Agric. Food Chem. 2008, 56, 10901–10907. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Maltogenic α-Amylase Hydrolysis of Wheat Starch Granules: Mechanism and Relation to Starch Retrogradation. Food Hydrocoll. 2022, 124, 107256. [Google Scholar] [CrossRef]
- Guo, L.; Deng, Y.; Lu, L.; Zou, F.; Cui, B. Synergistic Effects of Branching Enzyme and Transglucosidase on the Modification of Potato Starch Granules. Int. J. Biol. Macromol. 2019, 130, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cui, B.; Janaswamy, S.; Guo, L. Structural and Functional Modifications of Kudzu Starch Modified by Branching Enzyme. Int. J. Food Prop. 2019, 22, 952–966. [Google Scholar] [CrossRef] [Green Version]
- Asiri, S.A.; Ulbrich, M.; Flöter, E. Partial Hydrolysis of Granular Potato Starch Using α-Amylase—Effect on Physicochemical, Molecular, and Functional Properties. Starch/Staerke 2019, 71, 1800253. [Google Scholar] [CrossRef]
- Li, J.H.; Vasanthan, T.; Hoover, R.; Rossnagel, B.G. Starch from Hull-Less Barley: V. In-Vitro Susceptibility of Waxy, Normal, and High-Amylose Starches towards Hydrolysis by Alpha-Amylases and Amyloglucosidase. Food Chem. 2004, 84, 621–632. [Google Scholar] [CrossRef]
- Benavent-Gil, Y.; Rosell, C.M. Comparison of Porous Starches Obtained from Different Enzyme Types and Levels. Carbohydr. Polym. 2017, 157, 533–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apinan, S.; Yujiro, I.; Hidefumi, Y.; Takeshi, F.; Myllärinen, P.; Forssell, P.; Poutanen, K. Visual Observation of Hydrolyzed Potato Starch Granules by α-Amylase with Confocal Laser Scanning Microscopy. Starch/Staerke 2007, 59, 543–548. [Google Scholar] [CrossRef]
- Sarikaya, E.; Higasa, T.; Adachi, M.; Mikami, B. Comparison of Degradation Abilities of α- and β-Amylases on Raw Starch Granules. Process Biochem. 2000, 35, 711–715. [Google Scholar] [CrossRef]
- Asiri, S.A.; Flöter, E.; Ulbrich, M. Enzymatic Modification of Granular Potato Starch—Effect of Debranching on Morphological, Molecular, and Functional Properties. Starch/Staerke 2019, 71, 1900060. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, C.; Huang, H.; Wang, S.; Wang, S.; Wang, S.; Copeland, L. Revisiting Mechanisms Underlying Digestion of Starches. J. Agric. Food Chem. 2019, 67, 8212–8226. [Google Scholar] [CrossRef] [PubMed]
- Hoerle, R.D. Differential Inactivation of Amylase in Amylase-Protease Mixtures. U.S. Patent US4086139A, 25 April 1978. [Google Scholar]
- Lin, L.L.; Chyau, C.C.; Hsu, W.H. Production and Properties of a Raw-Starch-Degrading Amylase from the Thermophilic and Alkaliphilic Bacillus Sp. TS-23. Biotechnol. Appl. Biochem. 1998, 28, 61–68. [Google Scholar] [CrossRef]
- Lei, Y.; Peng, H.; Wang, Y.; Liu, Y.; Han, F.; Xiao, Y.; Gao, Y. Preferential and Rapid Degradation of Raw Rice Starch by an α-Amylase of Glycoside Hydrolase Subfamily GH13-37. Appl. Microbiol. Biotechnol. 2012, 94, 1577–1584. [Google Scholar] [CrossRef]
- Li, X.; Yu, Z.; Bian, Z.; Xu, J.; Zhang, L.; Qiao, M. Physiochemical Characterization of α-Amylase as Crosslinked Enzyme Aggregates. Catalysts 2018, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, C.L.; Davies, M.J. Hypochlorite-Induced Damage to Proteins: Formation of Nitrogen-Centred Radicals from Lysine Residues and Their Role in Protein Fragmentation. Biochem. J. 1998, 332, 617–625. [Google Scholar] [CrossRef]
- Kantouch, A.; Abdel-Fattah, S.H. Action of Sodium Hypochlorite on α-Amino Acids. Chem. Zvesti 1971, 25, 222–230. [Google Scholar]
- Sarian, F.D.; Van Der Kaaij, R.M.; Kralj, S.; Wijbenga, D.J.; Binnema, D.J.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Enzymatic Degradation of Granular Potato Starch by Microbacterium Aurum Strain B8.A. Appl. Microbiol. Biotechnol. 2012, 93, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Rocha, T.D.S.; Carneiro, A.P.D.A.; Franco, C.M.L. Effect of Enzymatic Hydrolysis on Some Physicochemical Properties of Root and Tuber Granular Starches. Ciência e Tecnol. Aliment. 2010, 30, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Gérard, C.; Colonna, P.; Buléon, A.; Planchot, V. Amylolysis of Maize Mutant Starches. J. Sci. Food Agric. 2001, 81, 1281–1287. [Google Scholar] [CrossRef]
- Christensen, S.J.; Madsen, M.S.; Zinck, S.S.; Hedberg, C.; Sørensen, O.B.; Svensson, B.; Meyer, A.S. Enzymatic Potato Starch Modification and Structure-Function Analysis of Six Diverse GH77 4-Alpha-Glucanotransferases. Int. J. Biol. Macromol. 2022, 224, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Biel-Nielsen, T.L.; Li, K.; Sørensen, S.O.; Sejberg, J.J.P.; Meyer, A.S.; Holck, J. Utilization of Industrial Citrus Pectin Side Streams for Enzymatic Production of Human Milk Oligosaccharides. Carbohydr. Res. 2022, 519, 108627. [Google Scholar] [CrossRef]
- Garcia, E.; Johnston, D.; Whitaker, J.R.; Shoemaker, S.P. Assessment of Endo-1,4-Beta-D-Glucanase Activity By a Rapid Colorimetric Assay Using Disodium 2,2′-Bicinchoninate. J. Food Biochem. 1993, 17, 135–145. [Google Scholar] [CrossRef]
Enzyme Name | Species | Subfamily | GenBank Accession No. | Product Code (Megazyme) |
---|---|---|---|---|
Commercial α-Amylases | ||||
Bl-αAmy | Bacillus licheniformis | GH13_5 | - | E-BLAAM |
Ba-αAmy | BacillusAmyloliquefaciens | GH13_5 | - | E-BAASS |
Ao-αAmy | Aspergillus oryzae | GH13_1 | - | E-ANAAM |
Non-Commercial α-Amylases | ||||
Bt-αAmy | Bacillus TS-23 | GH13_5 | AAA63900.1 | - |
Um-αAmy | Uncultured marine bacterium | GH13_37 | AEM89278.1 | - |
Hydrolysis Yield (%) I | |||
---|---|---|---|
pH | α-Amylase | Incubation at Extreme pH II | Incubation for 5 min at Extreme pH Followed by Incubation at pH 6.5 III |
pH 1.5 | Bl-αAmy | ND B | 42.3 ± 5.4 A,c |
Ba-αAmy | ND B | 66.2 ± 4.7 A,b,c | |
Ao-αAmy | ND B | 75.7 ± 9.6 A,a,b | |
Bt-αAmy | <0.1 B | 99.5 ± 1.5 A,a | |
Um-αAmy | 3.7 ± 0.9 B | 69.3 ± 5.8 A,b,c | |
pH 12 | Bl-αAmy | 0.5 ± 0.1 B | 151.2 ± 1.3 A,c |
Ba-αAmy | <0.1 B | 103.9 ± 2.4 A,d | |
Ao-αAmy | 0.5 ± 0.2 B | 251.2 ± 14.7 A,b | |
Bt-αAmy | <0.1 B | 125.9 ± 6.1 A,c,d | |
Um-αAmy | 6.1 ± 0.9 B | 815.8 ± 8.1 A,a |
Hydrolysis Yield (%) I | |||
---|---|---|---|
α-Amylase | +NaOCl−NaHSO3 II | +NaOCl+NaHSO3 III | −NaOCl+NaHSO3 IV |
Bl-αAmy | ND B | <<0.1 B | 76.8 ± 1.6 A,b,c |
Ba-αAmy | 0.8 ± 0.2 B | ND B | 74.8 ± 0.6 A,c |
Ao-αAmy | ND B | ND B | 104 ± 1.7 A,a,b |
Bt-αAmy | ND B | ND B | 96.6 ± 13.6 A,b,c |
Um-αAmy | ND B | ND B | 125 ± 6.6 A,a |
Reducing Sugars (µM) I | ||
---|---|---|
Incubation Time (h) | Wash Only II | Inactivation with 7 mM NaOCl for 5 min Prior to Wash III |
0.5 | 477.9 ± 7.2 A,a | 10.6 ± 0.9 B,c |
1 | 375.8 ± 10.5 A,c | 14.8 ± 1.5 B,b |
2 | 308.7 ± 11.7 A,d | 15.9 ± 1.2 B,b |
4 | 428.0 ± 14.5 A,b | 17.9 ± 1.2 B,a |
Reducing Sugars (µM) | |
---|---|
Incubation Time (h) | Inactivation with 7 mM NaOCl for 5 min Prior to Wash |
1 | 18.7 ± 0.4 c |
2 | 23.3 ± 0.9 b |
4 | 51.4 ± 3.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinck, S.S.; Christensen, S.J.; Sørensen, O.B.; Svensson, B.; Meyer, A.S. Importance of Inactivation Methodology in Enzymatic Processing of Raw Potato Starch: NaOCl as Efficient α-Amylase Inactivation Agent. Molecules 2023, 28, 2947. https://doi.org/10.3390/molecules28072947
Zinck SS, Christensen SJ, Sørensen OB, Svensson B, Meyer AS. Importance of Inactivation Methodology in Enzymatic Processing of Raw Potato Starch: NaOCl as Efficient α-Amylase Inactivation Agent. Molecules. 2023; 28(7):2947. https://doi.org/10.3390/molecules28072947
Chicago/Turabian StyleZinck, Signe Schram, Stefan Jarl Christensen, Ole Bandsholm Sørensen, Birte Svensson, and Anne S. Meyer. 2023. "Importance of Inactivation Methodology in Enzymatic Processing of Raw Potato Starch: NaOCl as Efficient α-Amylase Inactivation Agent" Molecules 28, no. 7: 2947. https://doi.org/10.3390/molecules28072947
APA StyleZinck, S. S., Christensen, S. J., Sørensen, O. B., Svensson, B., & Meyer, A. S. (2023). Importance of Inactivation Methodology in Enzymatic Processing of Raw Potato Starch: NaOCl as Efficient α-Amylase Inactivation Agent. Molecules, 28(7), 2947. https://doi.org/10.3390/molecules28072947