Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Oil-Water Emulsion with Solid Particles
2.2. Demulsification Laws of SPAN Series Emulsions Containing Solid Particles under a High-Voltage Electric Field
2.3. Demulsification Mechanism of Emulsion with Solid Particles
3. Materials and Methods
3.1. Experimental Section
3.1.1. Experimental Materials and Devices
3.1.2. Preparation and Stability Evaluation of Emulsion with Solid Particles
3.1.3. Demulsification Laws of Emulsion with Solid Particles
3.2. Molecular Dynamics Simulation
3.2.1. Establishment of the Molecular Model for Competitive Adsorption between the Demulsifier and Emulsifier
3.2.2. Simulation Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhu, Y.; Hou, Q.; Jian, G.; Ma, D.; Wang, Z. Current development and application of chemical combination flooding technique. Pet. Explor. Dev. 2013, 40, 96–103. [Google Scholar] [CrossRef]
- Liao, H.; Yu, H.; Xu, G.; Liu, P.; He, Y.; Zhou, Y. Polymer–Surfactant Flooding in Low-Permeability Reservoirs: An Experimental Study. ACS Omega 2022, 7, 4595–4605. [Google Scholar] [CrossRef]
- Khlaifat, A.L.; Dakhlallah, D.; Sufyan, F. A critical review of alkaline flooding: Mechanism, hybrid flooding methods, laboratory work, pilot projects, and field applications. Energies 2022, 15, 3820. [Google Scholar] [CrossRef]
- Bai, Y.; Cao, G.; Nan, X.; Li, S.; Wang, Z. Effect of sodium fluosilicate particles in acidification flowback fluid on emulsification stability of crude oil. J. Pet. Sci. Eng. 2021, 202, 108484. [Google Scholar] [CrossRef]
- Sharma, T.; Kumar, G.S.; Chon, B.H.; Sangwai, J. Thermal stability of oil-in-water pickering emulsion in the presence of nanoparticle, surfactant, and polymer. J. Ind. Eng. Chem. 2015, 22, 324–334. [Google Scholar] [CrossRef]
- Zhu, Y.; Lei, M.; Zhang, Y. Effects of Emulsification on Oil Recovery and Produced Liquid Handing in Chemical Combination Flooding. In Proceedings of the Spe Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11 August 2015. [Google Scholar]
- Hu, Z.; Nourafkan, E.; Gao, H.; Wen, D. Microemulsions stabilized by in-situ synthesized nanoparticles for enhanced oil recovery. Fuel 2017, 210, 272–281. [Google Scholar] [CrossRef]
- Cortés, F.B.; Lozano, M.; Santamaria, O.; Marquez, S.B.; Zapata, K.; Ospina, N.; Franco, C.A. Development and evaluation of surfactant nanocapsules for chemical Enhanced Oil Recovery (EOR) applications. Molecules 2018, 23, 1523. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Iglauer, S.; Shuler, P.; Tang, Y.; Goddard, W.A. Alkyl polyglycoside-sorbitan ester formulations for improved oil recovery. Tenside Surfactants Deterg. 2010, 47, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Bruns, F. Initial screening of new generation chemicals using sandpack flooding tests for recovery improvement of gravity driven steam applications. J. Pet. Sci. Eng. 2020, 194, 107462. [Google Scholar] [CrossRef]
- Yu, L.; Dong, M.; Ding, B.; Yuan, Y. Emulsification of heavy crude oil in brine and its plugging performance in porous media. Chem. Eng. Sci. 2017, 178, 335–347. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, M.; Li, X.; Wang, L.; Liang, S.; Guo, X. Effects of surfactant and hydrophobic nanoparticles on the crude oil-water interfacial tension. Energies 2021, 14, 6234. [Google Scholar] [CrossRef]
- Grimes, B.A. Population balance model for batch gravity separation of crude oil and water emulsions. Part I: Model formulation. J. Dispers. Sci. Technol. 2012, 33, 578–590. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Pei, X.; Zheng, G.; Zheng, L. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology. Shiyou Xuebao/Acta Pet. Sin. 2018, 39, 463–471. [Google Scholar]
- Jiang, X.; Yang, F.; Guo, Z. Superwetting surfaces for filtration separation of high-viscosity raw petroleum/water mixtures. J. Mater. Chem. A 2022, 10, 14273–14292. [Google Scholar] [CrossRef]
- Yang, D.; Wu, H.; Sun, H.; He, L.; Guo, Y. Ultra-high frequency and self-adaptive voltage technology for water separation from oil emulsion. Sep. Purif. Technol. 2021, 279, 119732. [Google Scholar] [CrossRef]
- Gupta, R.K.; Dunderdale, G.J.; England, M.W.; Hozumi, A. Oil/water separation techniques: A review of recent progresses and future directions. J. Mater. Chem. A 2017, 5, 16025–16058. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Dabros, T.; Hamza, H. Effect of demulsifier properties on destabilization of water-in-oil emulsion. Energy Fuels 2003, 17, 1554–1559. [Google Scholar] [CrossRef]
- Ma, J.; Yao, M.; Yang, Y.; Zhang, X. Comprehensive review on stability and demulsification of unconventional heavy oil-water emulsions. J. Mol. Liq. 2022, 350, 118510. [Google Scholar] [CrossRef]
- Faizullayev, S.; Adilbekova, A.; Kujawski, W.; Mirzaeian, M. Recent demulsification methods of crude oil emulsions–Brief review. J. Pet. Sci. Eng. 2022, 215, 110643. [Google Scholar] [CrossRef]
- Hassanshahi, N.; Hu, G.; Li, J. Application of ionic liquids for chemical demulsification: A review. Molecules 2020, 25, 4915. [Google Scholar] [CrossRef] [PubMed]
- Romanova, Y.N.; Maryutina, T.; Musina, N.S.; Spivakov, B.Y. Application of ultrasonic treatment for demulsification of stable water-in-oil emulsions. J. Pet. Sci. Eng. 2022, 209, 109977. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, L.; Chao, M.; Jia, X.; Liu, C.; Shi, L. Synthesis and study of a new type of nonanionic demulsifier for chemical flooding emulsion demulsification. ACS Omega 2021, 6, 17709–17719. [Google Scholar] [CrossRef]
- Qiu, Z.; Gong, H.; Peng, Y.; Chen, L.; Yu, B.; Liao, Z. Influence of different type of inlet pipe on the separation characteristic of double-field coupling demulsification and dewatering device. Sep. Sci. Technol. 2022, 57, 1813–1824. [Google Scholar] [CrossRef]
- Ping, L.I.; Zheng, X.Y.; Zhu, J.M. Research progress of the stability and demulsification mechanism of the water-in-crude oil emulsion. Fine Chem. 2001, 18, 89–93. [Google Scholar]
- Xiao, Z.H. Demulsification mechanism of crude oil emulsion and its influencial factors. J. Oil Gas Technol. 2008, 30, 165–168. [Google Scholar]
- Pensini, E.; Harbottle, D.; Yang, F.; Tchoukov, P.; Li, Z.; Kailey, I.; Behles, J.; Masliyah, J.; Xu, Z. Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide–propylene oxide demulsifier. Energy Fuels 2014, 28, 6760–6771. [Google Scholar] [CrossRef]
- Vratsanos, M.A.; Gianneschi, N.C. Direct observation of emulsion morphology, dynamics, and demulsification. ACS Nano 2022, 16, 7783–7793. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Li, X.; Sui, H.; He, L. Mechanisms on the stability and instability of water-in-oil emulsion stabilized by interfacially active asphaltenes: Role of hydrogen bonding reconstructing. Fuel 2021, 297, 120763. [Google Scholar] [CrossRef]
- Wang, D.; Yang, D.; Huang, C.; Huang, Y.; Yang, D.; Zhang, H.; Liu, Q.; Tang, T.; El-Din, M.G.; Kemppi, T.; et al. Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review. Fuel 2021, 286, 119390. [Google Scholar] [CrossRef]
- Li, D.; Gao, B.; Cui, X. Investigating the generation of ferrous sulfide nanoparticles in the produced fluid after acidizing oil wells and its influence on emulsifying stability between oil and water. Arab. J. Chem. 2022, 15, 104286. [Google Scholar] [CrossRef]
Number of the Sample | Emulsion Composition | Size of Emulsion Particles (μm) | Demulsification Rate (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Type of Surfactant | Surfactant Concentration (%) | Quality of SiO2 Nanoparticles (g) | Maximum Particle Size | Minimum Particle Size | Average Particle Size | 5 min | 10 min | 20 min | 60 min | |
1 | SPAN 20 | 0.2 | 0 | 255.7 | 61.5 | 119.73 | 95.32 | 81.22 | 68.12 | 41.25 |
2 | SPAN 20 | 0.2 | 0.1 | 3.11 | 0.51 | 1.41 | 98.61 | 96.34 | 90.28 | 77.42 |
3 | SPAN 40 | 0.2 | 0.1 | 3.62 | 0.52 | 1.29 | 98.32 | 96.76 | 93.51 | 84.81 |
4 | SPAN 60 | 0.2 | 0.1 | 3.27 | 0.59 | 1.22 | 98.11 | 96.51 | 94.65 | 87.11 |
Number | Surfactant | Solid Particles | Maximum Current (mA) | Minimum Current (mA) | Initial Demulsification Time (s) | Final Demulsification Rate (%) | ||
---|---|---|---|---|---|---|---|---|
Type | Concentration | Type | Concentration | |||||
1 | SPAN 20 | 0.2% | CaCO3 nano- particles | 0.01% | 4.32 | 0.11 | 122 | 92.14 |
2 | SPAN 40 | 5.74 | 0.13 | 62 | 90.25 | |||
3 | SPAN 60 | 8.17 | 0.11 | 11 | 87.34 | |||
4 | SPAN 20 | SiO2 nano- particles | 3.14 | 0.14 | 177 | 96.14 | ||
5 | SPAN 40 | 4.25 | 0.12 | 84 | 96.22 | |||
6 | SPAN 60 | 7.66 | 0.11 | 23 | 95.33 | |||
7 | SPAN 20 | FeS nano- particles | 15.68 | 0.11 | 0 | 87.11 | ||
8 | SPAN 40 | 21.34 | 0.12 | 0 | 85.51 | |||
9 | SPAN 60 | 25.11 | 0.11 | 0 | 82.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Cao, G.; Bai, Y.; Zhu, Z.; Zhang, N.; Li, D. Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles. Molecules 2023, 28, 3261. https://doi.org/10.3390/molecules28073261
Cheng Q, Cao G, Bai Y, Zhu Z, Zhang N, Li D. Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles. Molecules. 2023; 28(7):3261. https://doi.org/10.3390/molecules28073261
Chicago/Turabian StyleCheng, Qingchao, Guangsheng Cao, Yujie Bai, Zhixuan Zhu, Ning Zhang, and Dongju Li. 2023. "Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles" Molecules 28, no. 7: 3261. https://doi.org/10.3390/molecules28073261
APA StyleCheng, Q., Cao, G., Bai, Y., Zhu, Z., Zhang, N., & Li, D. (2023). Probing the Demulsification Mechanism of Emulsion with SPAN Series Based on the Effect of Solid Phase Particles. Molecules, 28(7), 3261. https://doi.org/10.3390/molecules28073261