Novel Vulgarin Derivatives: Chemical Transformation, In Silico and In Vitro Studies
Abstract
:1. Introduction
2. Results and Discussion
Vulgarin | 1 | 2 | ||||
---|---|---|---|---|---|---|
# | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) |
1 | 202.1, C a | - | 154.3, C | - | 154.5, C | - |
2 | 125.9, CH | 5.86, d (10.4) | 103.6, CH | 6.61, d (7.8) | 109.6, CH | 6.58, d (8.4) |
3 | 152.2, CH | 6.58, d (10.4) | 126.8, CH | 7.12, d (7.8) | 128.3, CH | 6.86, d (8.4) |
4 | 70.4, C | - | 126.1, C | - | 125.8, C | - |
5 | 54.9, CH | 2.40, d (11.5) | 133.6, C | - | 133.4, C | - |
6 | 79.9, CH | 4.15, dd (10.9, 10.9) | 122.7, CH | 7.72, d (1.2) | 121.3, CH | 6.43, dd (2.4, 1.2) |
7 | 52.7, CH | 1.67, dddd (12.6, 12.6, 12.6, 3.5) | 138.6, C | - | 140.1, C | - |
8 | 23.0, CH2 | 1.96, m 1.46, dddd (12.9, 12.9, 12.9, 3.2) | 124.7, CH | 7.36, dd (8.4, 1.8) | 24.4, CH2 | 2.16, m 2.16, m |
9 | 34.6, CH2 | 1.99, m 1.56, ddd (13.6, 13.6, 3.5) | 123.2, CH | 8.17, d (8.4) | 21.0, CH2 | 2.74, m 2.68, m |
10 | 46.6, C | - | 125.0 C | - | 123.0, C | - |
11 | 40.9, CH | 2.34, dq (13.7, 6.9) | 46.1, CH | 3.84, q (7.2) | 47.1, CH | 3.30, q (7.8) |
12 | 178.7, C | 175.3, C | - | 174.9, C | - | |
13 | 12.8, CH3 | 1.22, d (6.9) | 18.9 b, CH3 | 1.53, d (6.6) | 15.9, CH3 | 1.31, d (7.2) |
14 | 20.1, CH3 | 1.19, s | 55.7, CH3 | 3.89, s | 55.8, CH3 | 3.72, s |
15 | 24.1, CH3 | 1.53, s | 19.0 b, CH3 | 2.52, s | 18.7, CH3 | 2.20, s |
16 | - | - | 52.3, CH3 | 3.59, s | 52.1, CH3 | 3.62, s |
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Plant Material
3.3. Synthesis of Derivatives 1 and 2
3.4. Purification of Derivatives 1 and 2
3.5. Molecular Docking Studies
3.6. Molecular Dynamics Simulations
3.7. Cytotoxicity Assay
3.8. Web-Based Prediction of the Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Orabi, K.Y.; El-Feraly, F.S.; Al-Sulmy, W.A.; Al-Yahya, M.A. Biotransformation of vulgarin. Mini Rev. Med. Chem. 2013, 13, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, M.; Celik, S.; Nahar, L.; MacManus, S.M.; Kong-Thu-lin, P.; Jaspars, M.; Sarker, S.D. Two salonitenolide derivatives from the aerial parts of Centaurea gigantea inhibit the growth of colorectal cancer cells in vitro. Nat. Prod. Commun. 2007, 2, 121–125. [Google Scholar] [CrossRef]
- Rodriguez, E.; Towers, G.; Mitchell, J. Biological activities of sesquiterpene lactones. Phytochemistry 1976, 15, 1573–1580. [Google Scholar] [CrossRef]
- Fischer, N.H.; Olivier, E.J.; Fischer, H.D. Progress in the Chemistry of Organic Natural Products; Springer: New York, NY, USA, 1979; Volume 38. [Google Scholar]
- Seaman, F.C. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot. Rev. 1982, 48, 521–595. [Google Scholar] [CrossRef]
- Picman, A.K. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 1986, 14, 255–281. [Google Scholar] [CrossRef]
- Robles, M.; Aregullin, M.; West, J.; Rodriguez, E. Recent studies on the zoopharmacognosy, pharmacology and neurotoxicology of sesquiterpene lactones. Planta Med. 1995, 61, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Ugur, A.; Sarac, N.; Duru, M.E.; Beyatli, Y. In vitro study of antibacterial activity on multi-resistant bacteria and chemical composition of the chloroform extract of endemic Centaurea drabifolia subsp. cappadocica. Nat. Prod. Commun. 2009, 4, 1267–1270. [Google Scholar] [CrossRef] [PubMed]
- Milošević, T.; Argyropoulou, C.; Solujić, S.; Murat-Spahić, D.; Skaltsa, H. Chemical composition and antimicrobial activity of essential oils from Centaurea pannonica and C. jacea. Nat. Prod. Commun. 2010, 5, 1663–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Shandi, K.; Al-Soufi, H.; Al-Marahleh, H. Isolation and characterization of the phytoconstituents in the aerial parts of wild and home planted Artemisia vulgaris by gas chromatography-mass spectrometry. J. Chem. Pharm. Res. 2017, 9, 126–133. [Google Scholar]
- Klayman, D.L. Qinghaosu (artemisinin): An antimalarial drug from China. Science 1985, 228, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Pfaffenrath, V.; Diener, H.; Fischer, M.; Friede, M.; Henneicke-von Zepelin, H. The efficacy and safety of Tanacetum parthenium (feverfew) in migraine prophylaxis—A double-blind, multicentre, randomized placebo-controlled dose–response study. Cephalalgia 2002, 22, 523–532. [Google Scholar] [CrossRef]
- Tassorelli, C.; Greco, R.; Morazzoni, P.; Riva, A.; Sandrini, G.; Nappi, G. Parthenolide is the component of Tanacetum parthenium that inhibits nitroglycerin-induced Fos activation: Studies in an animal model of migraine. Cephalalgia 2005, 25, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Kalsi, P.S.; Kaur, G.; Sharma, S.; Talwar, K.K. Dehydrocostuslactone and plant growth activity of derived guaianolides. Phytochemistry 1984, 23, 2855–2861. [Google Scholar] [CrossRef]
- Singh, R.; Mandrah, K.; Asati, A.; Patel, D.K.; Goel, B.; Vishwakarma, R.A.; Roy, S.K.; Jain, S.K. Transformation of santonin to a naproxen analogue with anti-inflammatory activity. J. Nat. Prod. 2019, 82, 1710–1713. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Tang, J.J.; Zhang, C.C.; Tian, J.M.; Guo, J.T.; Zhang, Q.; Li, H.; Gao, J.M. Semisynthesis and in vitro cytotoxic evaluation of new analogues of 1-O-acetylbritannilactone, a sesquiterpene from Inula britannica. Eur. J. Med. Chem. 2014, 80, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Abegaz, B.; Camps, F.; Coll, J.; Feliz, M.; Jacobsson, U.; Miravitlles, C.; Molins, E.; Torramillans, J. The structure of vulgarin and its isomers—A reinvestigation. Tetrahedron 1986, 42, 6003–6009. [Google Scholar] [CrossRef]
- Geissman, T.A.; Ellestad, G.A. Vulgarin, A sesquiterpene lactone from Artemisia vulgaris L. J. Org. Chem. 1962, 27, 1855–1859. [Google Scholar] [CrossRef]
- Khan, A.U.; Gilani, A.H. Antispasmodic and bronchodilator activities of Artemisia vulgaris are mediated through dual blockade of muscarinic receptors and calcium influx. J. Ethnopharmacol. 2009, 126, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Khafagy, S.M.; Tosson, S. Crystallographic, optical and chromatographic studies of judaicin, bitter principal of Artemisia judaica. Planta Med. 1968, 16, 446–449. [Google Scholar] [CrossRef]
- Al-Said, M.S.; Khalifa, S.I.; El-Feraly, F.S.; Hufford, C.D. Biogenetic-type synthesis of vulgarin and peroxyvulgarin. Phytochemistry 1989, 28, 107–108. [Google Scholar] [CrossRef]
- Goanzalez, A.G.; Bermejo, J.; Zaragoza, T. Eudesmanolides from Artemisia canariensis. Phytochemistry 1983, 22, 1509–1510. [Google Scholar] [CrossRef]
- Ohno, N.; Gershenzon, J.; Roane, C.; Mabry, T.J. 11,13-Dehydrodesacetylmatricarin and other sesquiterpene lactones from Artemisia ludoviciana var. ludoviciana and the identity of artecanin and chyrsartemin B. Phytochemistry 1980, 19, 103–106. [Google Scholar] [CrossRef]
- Arias, J.M.; Bretón, J.L.; Gavín, J.A.; García-Granados, A.; Martínez, A.; Onorato, M.E. Microbial transformations of sesquiterpenoids: Conversion of deoxyvulgarin by Rhizopus nigricans and Aspergillus ochraceous. J. Chem. Soc. Perkin Transl. 1987, 471–474. [Google Scholar] [CrossRef]
- Lee, K.H.; Huang, E.S.; Piantadosi, C.; Pagano, J.S.; Geissman, T.A. Cytotoxicity of sesquiterpene lactones. Cancer Res. 1971, 31, 1649–1654. [Google Scholar]
- Zafra-Polo, M.C.; Blazquez, M.A. Antiinflammatory activity of sesquiterpene lactones from Artemisia barrelieri in rats. Phytother. Res. 1991, 5, 91–93. [Google Scholar] [CrossRef]
- De-Vera, C.R.; Mesa, S.P.; De-Diego, A.M.; Del-Fresno, A.V. Preliminary study of the effect of vulgarin (a new natural, oral hypoglycemic agent) on the lipid level of several organs of the rat. Boll. Chim. Farm. 1976, 115, 455–456. [Google Scholar]
- Galal, E.E.; Kandil, A.; Abdel Latif, M.; Khedr, T.; Khafagy, S.M. Cardiac pharmaco-toxicologcal studies of judaicin, isolated from Artemisia judaica. Planta Med. 1974, 25, 88–91. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadaş, Y.; Coşkun, G.; Bingol Ozakpinar, O.; Ozsavci, D.; Küçükgüzel, Ş.G. Synthesis and anticancer activity of some novel tolmetin thiosemicarbazides. Marmara Pharm. J. 2015, 19, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, Y.; Yashima, K.; Morisawa, T.; Shiota, G.; Kawasaki, H.; Hasegawa, J. Effects of cyclooxygenase-2 inhibitor NS-398 on APC and c-myc expression in rat colon carcinogenesis induced by azoxymethane. J. Gastroenterol. 2002, 37, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, S.; Shi, L.; Zhang, S.; Ren, J.; Yao, S.; Yun, D.; Huang, L.; Wang, J.; Li, W.; et al. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer. Eur. J. Med. Chem. 2017, 125, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Tawa, G.; Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today 2012, 17, 310–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, A.; Verma, S.; Pradhan, D.; Raza, K.; Qazi, S.; Jain, A.K. Computational screening for finding new potent COX-2 inhibitors as anticancer agents. Lett. Drug Des. Discov. 2022, 20, 213–224. [Google Scholar]
- Ettarh, R.; Cullen, A.; Calamai, A. NSAIDs and cell proliferation in colorectal cancer. Pharmaceuticals 2010, 3, 2007–2021. [Google Scholar] [CrossRef] [Green Version]
- Hiľovská, L.; Jendželovský, R.; Fedoročko, P. Potency of non-steroidal anti-inflammatory drugs in chemotherapy. Mol. Clin. Oncol. 2015, 3, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front. Oncol. 2013, 3, 181. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K. Rearrangement of b-ionone to 1,1,6-trimethyltetralin. Ind. J. Chem. Sec. B. 1984, 23, 87–88. [Google Scholar]
- Ho, T.L. Synthesis of dl-methyl nidorellaurinate. Synth. Commun. 1981, 11, 605–607. [Google Scholar] [CrossRef]
- Domingo, V.; Prieto, C.; Silva, L.; Rodilla, J.I.; Quilez del moral, J.F.; Barrero, A.J. Iodine, a mild reagent for the aromatization of terpenoids. J. Nat. Prod. 2016, 79, 831–837. [Google Scholar] [CrossRef]
- Duggan, K.C.; Walters, M.J.; Musee, J.; Harp, J.M.; Kiefer, J.R.; Oates, J.A.; Marnett, L.J. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J. Biol. Chem. 2010, 285, 34950–34959. [Google Scholar] [CrossRef] [Green Version]
- Aboul-Fadl, T.; Al-Hamad, S.S.; Lee, K.; Li, N.; Gary, B.D.; Keeton, A.B.; Piazza, G.A.; Abdel-Hamid, M.K. Novel non-cyclooxygenase inhibitory derivatives of naproxen for colorectal cancer chemoprevention. Med. Chem. Res. 2014, 23, 4177–4188. [Google Scholar] [CrossRef]
- Cao, Y.; Khan, A.; Soltani, A.; Erfani-Moghadam, V.; Lup, A.K.; Aghaei, M.; Abdolahi, N.; Khalili, M.; Cordani, M.; Balakheyli, H.; et al. Spectroscopic, density functional theory, cytotoxicity and antioxidant activities of sulfasalazine and naproxen drugs combination. Arab. J. Chem. 2021, 14, 103190. [Google Scholar] [CrossRef]
- Deb, J.; Majumder, J.; Bhattacharyya, S.; Jana, S.S. A novel naproxen derivative capable of displaying anti-cancer and anti-migratory properties against human breast cancer cells. BMC Cancer 2014, 14, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, K.; Saito, Y.; Narumi, K.; Furugen, A.; Iseki, K.; Kobayashi, M. Anticancer effects of non-steroidal anti-inflammatory drugs against cancer cells and cancer stem cells. Toxicol. Vitr. 2021, 74, 105155. [Google Scholar] [CrossRef] [PubMed]
- Özlem Sultan, A. In vitro cytotoxicity and cell viability assays: Principles, advantages, and disadvantages. In Genotoxicity; Marcelo, L.L., Sonia, S., Eds.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, J.; Zou, Y.; Zhang, X.; Xiao, W. Chemical space and biological target network of anti-Inflammatory natural products. J. Chem. Inf. Model. 2019, 59, 66–73. [Google Scholar] [CrossRef] [PubMed]
Compounds | London ΔG (kcal/mol) | GBVI/WSA ΔG | Affinity ΔG |
---|---|---|---|
Vulgarin | −6.74 | −18.09 | −7.87 |
Derivative 1 | −7.73 | −20.01 | −10.13 |
Derivative 2 | −7.58 | −19.11 | −8.20 |
Naproxen | −7.04 | −19.45 | −9.82 |
Cell Lines | CC50 (µM) | ||
---|---|---|---|
Vulgarin | 1 | 2 | |
HepG-2 | 770 ± 23 | 151 ± 11 | 540 ± 23 |
HCT-116 | 723 ± 24 | 207 ± 11 | 310 ± 13 |
MCF-7 | 1061 ± 36 | 304 ± 13 | 925 ± 28 |
A-549 | 835 ± 27 | 264 ± 15 | 472 ± 16 |
Compounds | Predicted IC50 (µM) |
---|---|
Vulgarin | 0.65 |
Derivative 1 | 0.34 |
Derivative 2 | 0.45 |
Naproxen | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sary, H.G.; Khedr, M.A.; Orabi, K.Y. Novel Vulgarin Derivatives: Chemical Transformation, In Silico and In Vitro Studies. Molecules 2023, 28, 3421. https://doi.org/10.3390/molecules28083421
Sary HG, Khedr MA, Orabi KY. Novel Vulgarin Derivatives: Chemical Transformation, In Silico and In Vitro Studies. Molecules. 2023; 28(8):3421. https://doi.org/10.3390/molecules28083421
Chicago/Turabian StyleSary, Hanan G., Mohammed A. Khedr, and Khaled Y. Orabi. 2023. "Novel Vulgarin Derivatives: Chemical Transformation, In Silico and In Vitro Studies" Molecules 28, no. 8: 3421. https://doi.org/10.3390/molecules28083421
APA StyleSary, H. G., Khedr, M. A., & Orabi, K. Y. (2023). Novel Vulgarin Derivatives: Chemical Transformation, In Silico and In Vitro Studies. Molecules, 28(8), 3421. https://doi.org/10.3390/molecules28083421