The Antibacterial Activity of Rhazya stricta Extracts against Klebsiella pneumoniae Isolated from Some Soil Invertebrates at High Altitudes
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of K. pneumoniae Isolates
2.1.1. Isolation of K. pneumoniae Isolates
2.1.2. Molecular Genotyping of K. pneumoniae
2.1.3. Antimicrobial Susceptibility
2.1.4. Detection of Virulence Genes in K. pneumoniae
2.2. The Potential of R. stricta Extract against K. pneumoniae
2.2.1. Chemical Composition of R. stricta Leaf Extracts
2.2.2. Antibacterial Activity of R. stricta Extracts against K. pneumoniae
Disc Diffusion
Determination of (MIC) and (MBC)
2.3. Biofilm Formation and Inhibition
2.3.1. Biofilm Formation on Polystyrene Surface
2.3.2. Biofilm Inhibition
2.3.3. Antibiofilm Activity
3. Discussion
4. Materials and Methods
4.1. Isolation and Identification of K. pneumoniae Strains
4.1.1. Isolation of K. pneumoniae Strains
4.1.2. Application of 16S rDNA Gene Sequencing
4.1.3. Antimicrobial Susceptibility Test
4.1.4. Detection of Virulence and Antibiotic Resistance Genes of K. pneumoniae
4.2. Leaf Extraction of R. stricta, HPLC Analysis, and Antibacterial Activity
4.2.1. R. stricta Leaves Collection and Extraction Procedure
4.2.2. HPLC (High Performance Liquid Chromatography) Analysis
4.2.3. Antibacterial Activity of R. stricta Extracts
Disc Diffusion
Determination of Minimal Inhibitory Concentrations (MICs) and Minimal Bactericidal Concentrations (MBCs)
4.3. Biofilm Formation and Inhibition
4.3.1. Biofilm Formation
4.3.2. Biofilm Inhibition
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sridhar, K.R.; Ashwini, K.M. Diversity, restoration and conservation of millipedes. In Biodiversity in India; Pullaiah, T., Ed.; Regency Publications: New Delhi, India, 2016; Volume 5, Chapter 1; pp. 1–38. [Google Scholar]
- Byzov, B.A.; Claus, H.; Tretyakova, E.B.; Zvyagintsev, D.G.; Filip, Z. Effects of soil invertebrates on the survival of some 28 genetically engineered bacteria in leaf litter and soil. Biol. Fertlity Soils 1996, 23, 221–228. [Google Scholar] [CrossRef]
- Zenova, G.M.; Babkina, N.I.; Polyanskaya, L.M.; Zvyagintsev, D.G. Actinomycetes in the intestinal tract of soil invertebrates fed with vermicompost or litter. Microbiology 1996, 65, 360–365. [Google Scholar]
- Alsanie, W.F. Molecular diversity and profile analysis of virulence-associated genes in some Klebsiella pneumoniae isolates. Pract. Lab. Med. 2020, 19, e00152. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.K.; Farag, M.M.; Abbadi, S.H.; Hassan, M.M.; Gaber, A.; Abdel-Moneima, A.S. Antibiotic resistance profile and random amplification typing of β-lactamase-producing Enterobacteriaceae from the local area of Al-Taif and nearby cities in Saudi Arabia. Asian Biomed. 2016, 10, 219–228. [Google Scholar]
- Ranjbar, R.; Fatahian Kelishadrokhi, A.; Chehelgerdi, M. Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infect. Drug. Resist. 2019, 12, 603–611. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Li, Y.; Shen, Q.; Jiang, W.; Zhao, K.; He, Y.; Dai, P.; Nie, Z.; Xu, X.; et al. Diversity and frequency of resistance and virulence genes in blaKPC and blaNDM co-producing Klebsiella pneumoniae strains from China. Infect. Drug. Resist. 2019, 12, 2819–2826. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, K.; Chen, W.; Chen, J.; Zheng, J.; Liu, C.; Cheng, L.; Zhou, W.; Shen, H.; Cao, X. Epidemiological characteristics of carbapenem-resistant Enterobacteriaceae collected from 17 hospitals in Nanjing district of China. Antimicrob. Resist. Infect. Control 2020, 9, 15. [Google Scholar] [CrossRef]
- Bagley, S.T. Habitat association of Klebsiella species. Infect. Control 1985, 6, 52–58. [Google Scholar] [CrossRef]
- Yang, F.; Deng, B.; Liao, W.; Wang, P.; Chen, P.; Wei, J. High rate of multi resistant Klebsiella pneumoniae from human and animal origin. Infect. Drug. Resist. 2019, 12, 2729–2737. [Google Scholar] [CrossRef]
- Podschun, R.; Ullmann, U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Berglund, B.; Zou, H.; Zheng, B.; Börjesson, S.; Ji, X.; Ottoson, J.; Lundborg, C.S.; Li, X.; Nilsson, L.E. Characterization of clinically relevant strains of extended-spectrum β-Lactamase-Producing Klebsiella pneumoniae occurring in environmental sources in a rural area of China by using whole-genome sequencing. Front. Microbiol. 2019, 12, 211. [Google Scholar] [CrossRef]
- Rocha, J.; Ferreira, C.; Mil-Homens, D.; Busquets, A.; Fialho, A.M.; Henriques, I.; Gomila, M.; Manaia, C.M. Third generation cephalosporin-resistant Klebsiella pneumoniae thriving in patients and in wastewater: What do they have in common? BMC Genom. 2022, 23, 72. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Xu, W.Y. An investigation of food poisoning caused by Klebsiella pneumoniae. Chin. Pract. Med. 2013, 8, 275–276. [Google Scholar]
- Cao, X.; Xu, X.; Zhang, Z.; Han, S.; Chen, J.; Zhang, K. Molecular characterization of clinical multidrug-resistant Klebsiella pneumoniae isolates. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 16. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, S.; Zhan, L.; Jin, Y.; Duan, J.; Hao, Z.; Lv, J.; Qi, X.; Chen, L.; Kreiswirth, B.N.; et al. Microbiological and clinical characteristics of hypermucoviscous Klebsiella pneumoniae isolates associated with invasive infections in China. Front. Cell. Infect. Microbiol. 2017, 7, 24. [Google Scholar] [CrossRef]
- Haryani, Y.; Noorzaleha, A.S.; Fatimah, A.B.; Noorjahan, B.A.; Patrick, G.B.; Shamsinar, A.T.; Laila, R.A.S.; Son, R. Incidence of Klebsiella pneumoniae in street foods sold in Malaysia and their characterization by antibiotic resistance, plasmid profiling, and RAPD–PCR analysis. Food Control 2007, 18, 847–853. [Google Scholar] [CrossRef]
- Sun, F.; Wu, D.; Qiu, Z.; Jin, M.; Wang, X.; Li, J. Development of real time PCR systems based on SYBR Green fro specific detection and quantification of Klebsiella pneumoniae in infant formula. Food Control 2010, 21, 487–491. [Google Scholar] [CrossRef]
- Puspanadan, S.; Afsahhejri, L.; Loo, Y.Y.; Nillian, E.; Kuan, C.H.; Goh, S.G.; Chang, W.S.; Lye, Y.L.; John, Y.H.T.; Rukayadi, Y.; et al. Detection of Klebsiella pneumoniae in raw vegetables using most probable number-polymerase chain reaction (MPN-PCR). Int. Food Res. J. 2012, 19, 1757–1762. [Google Scholar]
- Overdevest, I.T.; Heck, M.; van der Zwaluw, K.; Huijsdens, X.; van Santen, M.; Rijnsburger, M.; Eustace, A.; Xu, L.; Hawkey, P.; Savelkoul, P.; et al. Extended-spectrum β-lactamase producing Klebsiella spp. in chicken meat and humans: A comparison of typing methods. Clin. Microbiol. Infect. 2014, 20, 251–255. [Google Scholar] [CrossRef]
- Kim, H.S.; Chon, J.W.; Kim, Y.J.; Kim, D.H.; Kim, M.S.; Seo, K.H. Prevalence and characterization of extended-spectrum-β-lactamase-producing Escherichia coli, and Klebsiella pneumoniae, in ready-to-eat vegetables. Int. J. Food Microbiol. 2015, 207, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Dvis, G.S.; Price, L.B. Recent research examining links among Klebsiella pneumoniae from food, food animals, and human extraintestinal infections. Curr. Environ. Health Rep. 2016, 3, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Albeshri, A.; Baeshen, N.A.; Bouback, T.A.; Aljaddawi, A.A.A. Review of Rhazya stricta decne phytochemistry, bioactivities, pharmacological activities, toxicity, and folkloric medicinal uses. Plants 2021, 10, 2508. [Google Scholar] [CrossRef] [PubMed]
- El-Tarras, A.A.; El-Awady, A.M.; Hassan, M.M. Evaluation of the genetic effects of the in vitro antimicrobial activities of Rhazya stricta leaf extract using molecular techniques and scanning electron microscope. Afr. J. Biotech. 2013, 12, 3171–3180. [Google Scholar]
- Marwat, S.K.; Usman, K.; Shah, S.S.; Anwar, N.; Ullah, I. A review of phytochemistry, bioactivities and ethnomedicinal uses of Rhazya stricta Decsne (Apocynaceae). Afr. J. Microbiol. Res. 2012, 6, 1629–1641. [Google Scholar]
- Raziuddin, K.; Baeshen, M.N.; Kulvinder, S.S.; Roop, S.B.; Al-Hejin, A.; Nabih, A.B. Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens. Biotechnol. Biotechnol. Equip. 2018, 30, 1016–1025. [Google Scholar]
- Hassan, M.M.; Soliman, M.M.; Alotaibi, S.S.; Sayed, S.; El-Shehawi, A.M.; Ben-Abdallah, F. Ameliorative impacts of rough cocklebur leaf extracts against methicillin-resistant Staphylococcus aureus. Fres Env. Bull. 2022, 31, 6553–6560. [Google Scholar]
- Alsanie, W.F.; Felemban, E.M.; Farid, M.A.; Hassan, M.M.; Sabry, A.; Gaber, A. Molecular identification and phylogenetic analysis of multidrug-resistant bacteria using 16S rDNA sequencing. J. Pure Appl. Microbiol. 2018, 12, 489–496. [Google Scholar] [CrossRef]
- Beigomi, M.; Shahraki-Mojahed, L.; Heydari-Sadegh, B.; Dahmardeh, N.; Rouhani, R.; Javadian, F. Evaluation of antimicrobial activity of Rhazya stricta (Apocynaceae) extract prepared with different solvents on Staphylococcus aureus (Staphylococcaceae) isolated from humans. Int. J. Adv. Biol. Biomed. Res. 2021, 9, 241–253. [Google Scholar]
- Macé, S.; Hansen, L.; Rupasinghe, H. Anti-bacterial activity of phenolic compounds against Streptococcus pyogenes. Medicines 2017, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Cur. Med. Chem. 2021, 22, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, M.; Zhao, Z.; Yu, S. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens. Food Chem. 2015, 185, 112–118. [Google Scholar] [CrossRef]
- Lima, V.N.; Oliveira-Tintino, C.D.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.; Cruz, R.P.; Menezes, I.R. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 2016, 99, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, J.; Xiao, A.; Liu, L. Antibacterial activity of polyphenols: Structure-activity relationship and influence of hyperglycemic condition. Molecules 2017, 22, 1913. [Google Scholar] [CrossRef]
- Nielsen, D.W.; Klimavicz, J.; Cavender, T.; Wannemuehler, Y.; Barbieri, N.L.; Nolan, L.K.; Logue, C.M. The impact of media, phylogenetic classification, and E. coli pathotypes on biofilm formation in extraintestinal and commensal E. coli from humans and animals. Front. Microbiol. 2018, 9, 902. [Google Scholar] [CrossRef]
- Zaixiang, L.; Hongxin, W.; Shengqi, R.; Juntao, S.; Chaoyang, M.; Jing, L. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Cont. 2012, 25, 550–554. [Google Scholar]
- Ma, C.; He, N.; Zhao, Y.; Xia, D.; Wei, J.; Kang, W. Antimicrobial mechanism of hydroquinone. Appl. Biochem. Biotechnol. 2019, 189, 1291–1303. [Google Scholar] [CrossRef]
- Ben Abdallah, F.; Lagha, R.; Gaber, A. Biofilm inhibition and eradication properties of medicinal plant essential oils against methicillin-resistant Staphylococcus aureus clinical isolates. Pharmaceuticals 2020, 13, 369. [Google Scholar] [CrossRef]
- Römling, U.; Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Int. Med. 2012, 272, 541–561. [Google Scholar] [CrossRef]
- Saadatian, F.A.; Nowroozi, J.; Eslami, G.; Sabokbar, A. RAPD PCR profile, antibiotic resistance, prevalence of armA gene, and detection of KPC enzyme in Klebsiella pneumoniae isolates. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 6183162. [Google Scholar] [CrossRef] [PubMed]
- Aljanaby, A. Role of rmpA, wabG, uge, Ycfm, fimh1, EntB, Ybt-irp2 and kfu genes in pathogenicity of Klebsiella pneumoniae: An overview. Int. J. Chemtech. Res. 2017, 10, 391–398. [Google Scholar]
- Padilla, E.; Llobet, E.; Doménech-Sánchez, A.; Martínez-Martínez, L.; Bengoechea, J.A.; Albertí, S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 2010, 54, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Gharrah, M.M.; El-Mahdy, A.M.; Barwa, R.F. Association between Virulence Factors and Extended Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Compared to Nonproducing Isolates. Interdiscip. Perspect. Infect. Dis. 2017, 2017, 7279830. [Google Scholar] [CrossRef] [PubMed]
- Wayne, P. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement M100–S25; Clinical and Laboratory Standards Institute: Wayne, NY, USA, 2018; p. 240. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agriculture Research, 2nd ed.; John Willey: New York, NY, USA, 1984; p. 680. [Google Scholar]
Isolates | Species | Source | Locations |
---|---|---|---|
KTU-1 | Klebsiella pneumoniae | millipedes | Shafa, Taif |
KTU-2 | Klebsiella pneumoniae | millipedes | Shafa, Taif |
KTU-3 | Klebsiella pneumoniae | millipedes | Shafa, Taif |
KTU-4 | Klebsiella pneumoniae | soft isopods | Hawia, Taif |
KTU-5 | Klebsiella pneumoniae | soft isopods | Hawia, Taif |
KTU-6 | Klebsiella pneumoniae | soft isopods | Hawia, Taif |
KTU-7 | Klebsiella pneumoniae | soft isopods | Hawia, Taif |
KTU-8 | Klebsiella pneumoniae | soft isopods | Hawia, Taif |
KTU-9 | Klebsiella pneumoniae | hard isopods | Hawia, Taif |
KTU-10 | Klebsiella pneumoniae | millipedes | Wady Ghazal, Taif |
KTU-11 | Klebsiella pneumoniae | millipedes | Wady Ghazal, Taif |
KTU-12 | Klebsiella pneumoniae | millipedes | Wady Ghazal, Taif |
KTU-13 | Klebsiella pneumoniae | millipedes | Shafa, Taif |
KTU-14 | Klebsiella pneumoniae | millipedes | Shafa, Taif |
KTU-15 | Klebsiella pneumoniae | millipedes | Shafa, Taif |
Isolates | Species | Query Coverage% | E Value | Ident% | Accession Number | Reference Accession No. |
---|---|---|---|---|---|---|
KTU-1 | Klebsiella pneumoniae | 100.00 | 0.00 | 99.00 | ON077036 | MN314310 |
KTU-2 | Klebsiella pneumoniae | 100.00 | 0.00 | 100.00 | ON077037 | MT349064 |
KTU-3 | Klebsiella pneumoniae | 99.00 | 0.00 | 99.00 | ON077038 | MN749610 |
KTU-4 | Klebsiella pneumoniae | 100.00 | 0.00 | 100.00 | ON077039 | MF076897 |
KTU-5 | Klebsiella pneumoniae | 99.00 | 0.00 | 99.00 | ON077040 | MF076897 |
KTU-6 | Klebsiella pneumoniae | 100.00 | 0.00 | 100.00 | ON077041 | MF076897 |
KTU-7 | Klebsiella pneumoniae | 99.00 | 0.00 | 100.00 | ON077042 | MF076897 |
KTU-8 | Klebsiella pneumoniae | 100.00 | 0.00 | 99.00 | ON077043 | MF076897 |
KTU-9 | Klebsiella pneumoniae | 100.00 | 0.00 | 99.00 | ON077044 | MF076897 |
KTU-10 | Klebsiella pneumoniae | 99.00 | 0.00 | 100.00 | ON077045 | MT349064 |
KTU-11 | Klebsiella pneumoniae | 98.00 | 0.00 | 99.00 | ON077046 | MF076897 |
KTU-12 | Klebsiella pneumoniae | 100.00 | 0.00 | 99.00 | ON077047 | MF076897 |
KTU-13 | Klebsiella pneumoniae | 100.00 | 0.00 | 99.00 | ON077048 | MF076897 |
KTU-14 | Klebsiella pneumoniae | 99.00 | 0.00 | 100.00 | ON077049 | MT349064 |
KTU-15 | Klebsiella pneumoniae | 100.00 | 0.00 | 100.00 | ON077050 | MN749610 |
Isolates | Antibiotic Profile |
---|---|
KTU-1 | Amp, Car, Caz, Oxa, Pen, Fox, Eth, Amc |
KTU-2 | Amp, Car, Caz, Oxa, Pen, Fox, Eth, Amc |
KTU-3 | Amp, Car, Caz, Oxa, Pen, Fox, Eth, Amc |
KTU-4 | Sxt, Amp, Car, Caz, Oxa, Pen, Fox, Amc |
KTU-5 | Amp, Car, Caz, Oxa, Pen, Fox, Amc |
KTU-6 | Car, Amk, Oxa, Pen, Fox, Eth, Amc |
KTU-7 | Car, Amk, Oxa, Pen, Fox, Eth, Amc |
KTU-8 | Car, Amk, Caz, Oxa, Pen, Fox, Amc |
KTU-9 | Amp, Car, Oxa, Pen, Fox, Eth, Amc |
KTU-10 | Car, Amk, Oxa, Fox, Eth, Amc |
KTU-11 | Car, Amk, Caz, Oxa, Pen, Fox, Eth, Amc |
KTU-12 | Car, Amk, Caz, Oxa, Pen, Fox, Eth, Amc |
KTU-13 | Sxt, Car, Amk, Caz, Oxa, Pen, Fox, Eth, Amc |
KTU-14 | Sxt, Car, Amk, Oxa, Pen, Fox, Eth, Amc |
KTU-15 | Sxt, Car, Amk, Oxa, Pen, Fox, Eth, Amc |
Isolates | Virulence Genes |
---|---|
KTU-1 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-2 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-3 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-4 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-5 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, SHV, TEM |
KTU-6 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-7 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, K1, SHV, TEM |
KTU-8 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, K1, SHV, TEM, CTX |
KTU-9 | AcrAB, mdtk, Ompk35, FimH, RmpA, K1, SHV, TEM, CTX |
KTU-10 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM, CTX |
KTU-11 | AcrAB, mdtk, Ompk35, FimH, RmpA, K1, SHV, TEM |
KTU-12 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-13 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-14 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
KTU-15 | AcrAB, TolC, mdtk, Ompk35, FimH, RmpA, Aea, SHV, TEM |
Compounds | R. stricta Ethanolic Extract | R. stricta Methanolic Extract |
---|---|---|
Quinol | 596.7 | - |
Resveratrol | 823.35 | 1286.6 |
Chlorogenic acid | 17.59 | - |
Vanillic acid | - | 14.4 |
Caffeic acid | 14.89 | 67.98 |
Syringic acid | 58.4 | 109.5 |
p-Coumaric acid | 662.9 | 10.43 |
Benzoic acid | 1030.3 | 6334.8 |
Ferulic acid | 424.6 | 1568.26 |
Ellagic acid | - | 693,3 |
o-Coumaric acid | 219.7 | 677.09 |
Cinnamic acid | 139.6 | 445.06 |
Rosmarinic acid | 200.59 | 485.3 |
Catechin | 11.12 | 135.6 |
Rutin | 793.8 | 1859.46 |
Quercitin | 1256.7 | 2452.34 |
Neringein | 316.15 | 8361 |
Myricetin | 761.8 | 300.4 |
Kaempferol | 7964.7 | 8249.13 |
Totals | 15,292.89 | 33,050.65 |
R. stricta Extract | Klebsiella Isolates | ||||
---|---|---|---|---|---|
(+ + + +) n (%) | (+ + +) n (%) | (+ +) n (%) | (+) n (%) | (−) n (%) | |
Ethanolic extract | 6 (40.0) | 5 (33.3) | 3 (20.0) | 1 (6.7) | - |
Methanolic extract | 5 (33.3) | 4 (26.7) | 4 (26.7) | 2 (13.3) | - |
Isolates | Biofilm Formation OD570 ± SD | Ethanolic Extract OD570 ± SD | Inhibition (%) | Methanolic Extract OD570 ± SD | Inhibition (%) |
---|---|---|---|---|---|
KTU-1 | 0.812 ± 0.081 | 0.150 ± 0.006 * | 81.5 | 0.169 ± 0.073 * | 79.2 |
KTU-2 | 0.448 ± 0.102 | 0.034 ± 0.021 * | 92.4 | 0.195 ± 0.103 * | 56.4 |
KTU-3 | 0.588 ± 0.319 | 0.031 ± 0.009 * | 94.7 | 0.084 ± 0.011 * | 85.7 |
KTU-4 | 0.808 ± 0.109 | 0.036 ± 0.019 * | 95.5 | 0.192 ± 0.146 * | 76.2 |
KTU-5 | 0.744 ± 0.286 | 0.070 ± 0.031 * | 90.5 | 0.149 ± 0.057 * | 79.7 |
KTU-6 | 0.799 ± 0.818 | 0.089 ± 0.024 * | 88.9 | 0.123 ± 0.002 * | 84.6 |
KTU-7 | 0.625 ± 0.350 | 0.027 ± 0.014 * | 95.6 | 0.132 ± 0.106 * | 78.8 |
KTU-8 | 1.015 ± 0.158 | 0.028 ± 0.024 *** | 94.3 | 0.211 ± 0.089 ** | 79.2 |
KTU-9 | 0.987 ± 0.025 | 0.072 ± 0.046 * | 91.1 | 0.265 ± 0.063 ** | 67.2 |
KTU-10 | 1.053 ± 0.041 | 0.120 ± 0.066 ** | 97.2 | 0.237 ± 0.230 ** | 85.8 |
KTU-11 | 0.971 ± 0.226 | 0.042 ± 0.079 ** | 95.7 | 0.204 ± 0.253 ** | 78.9 |
KTU-12 | 0.802 ± 0.444 | 0.038 ± 0.016 * | 95.2 | 0.194 ± 0.260 * | 75.8 |
KTU-13 | 1.060 ± 0.006 | 0.014 ± 0.132 *** | 98.7 | 0.206 ± 0.097 ** | 80.4 |
KTU-14 | 0.422 ± 0.115 | 0.030 ± 0.001 * | 92.8 | 0.274 ± 0.385 * | 35.1 |
KTU-15 | 0.631 ± 0.014 | 0.037 ± 0.001 * | 94.1 | 0.190 ± 0.111 * | 69.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.M.; Albogami, B.; Mwabvu, T.; Awad, M.F.; Kadi, R.H.; Mohamed, A.A.; Al-Orabi, J.A.; Hassan, M.M.; Elsharkawy, M.M. The Antibacterial Activity of Rhazya stricta Extracts against Klebsiella pneumoniae Isolated from Some Soil Invertebrates at High Altitudes. Molecules 2023, 28, 3613. https://doi.org/10.3390/molecules28083613
Hassan MM, Albogami B, Mwabvu T, Awad MF, Kadi RH, Mohamed AA, Al-Orabi JA, Hassan MM, Elsharkawy MM. The Antibacterial Activity of Rhazya stricta Extracts against Klebsiella pneumoniae Isolated from Some Soil Invertebrates at High Altitudes. Molecules. 2023; 28(8):3613. https://doi.org/10.3390/molecules28083613
Chicago/Turabian StyleHassan, Mohamed M., Bander Albogami, Tarombera Mwabvu, Mohamed F. Awad, Roqayah H. Kadi, Alaa A. Mohamed, Jamal A. Al-Orabi, Montaser M. Hassan, and Mohsen Mohamed Elsharkawy. 2023. "The Antibacterial Activity of Rhazya stricta Extracts against Klebsiella pneumoniae Isolated from Some Soil Invertebrates at High Altitudes" Molecules 28, no. 8: 3613. https://doi.org/10.3390/molecules28083613
APA StyleHassan, M. M., Albogami, B., Mwabvu, T., Awad, M. F., Kadi, R. H., Mohamed, A. A., Al-Orabi, J. A., Hassan, M. M., & Elsharkawy, M. M. (2023). The Antibacterial Activity of Rhazya stricta Extracts against Klebsiella pneumoniae Isolated from Some Soil Invertebrates at High Altitudes. Molecules, 28(8), 3613. https://doi.org/10.3390/molecules28083613