Ex Vivo Antiplatelet and Thrombolytic Activity of Bioactive Fractions from the New-Fangled Stem Buds of Ficus religiosa L. with Simultaneous GC-MS Examination
Abstract
:1. Introduction
2. Results
2.1. Antiplatelet Activity Testing
2.2. Thrombolytic and Antithrombotic Activity
2.3. Effect of Stem Bud Extract on the Peroxidation of Linoleic Acid
2.4. Toxicity Studies
2.5. GC-MS Analysis of Methanol Fraction of Stem Bud Extract
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Drugs
4.3. Instruments
4.4. Extraction and Fractionation
4.5. Blood Sample
4.6. Antiplatelet Activity Testing
4.7. Thrombolytic and Antithrombotic Activity
4.8. Effect of Stem Bud Extract on Linoleic Acid Peroxidation
4.9. Toxicity Studies
4.10. GC-MS Analysis of Methanol Fraction of Stem Bud Extract
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L. Role of antiplatelet therapy across the spectrum of patients with coronary artery disease. Am. J. Cardiol. 2009, 103, 11A–19A. [Google Scholar] [CrossRef]
- Ren, Y.; Patel, K.; Crane, T. A review of antiplatelet drugs, coronary artery diseases and cardiopulmonary bypass. J. Extra Corpor. Technol. 2010, 42, 103–113. [Google Scholar]
- Mega, J.L.; Simon, T. Pharmacology of antithrombotic drugs: An assessment of oral antiplatelet and anticoagulant treatments. Lancet 2015, 386, 281–291. [Google Scholar] [CrossRef]
- Osunsanmi, F.O.; Zaharare, G.E.; Oyinloye, B.E.; Mosa, R.A.; Ikhile, M.I.; Shode, F.O.; Ogunyinka, I.B.; Opoku, A.R. Antithrombotic, anticoagulant and antiplatelet activity of betulinic acid and 3β-acetoxybetulinic acid from Melaleuca bracteata ‘Revolution Gold’(Myrtaceae) Muell leaf. Tropical. J. Pharma Res. 2018, 17, 1983–1989. [Google Scholar] [CrossRef]
- Kamal, M.; Arif, M.; Jawaid, T. Adaptogenic medicinal plants utilized for strengthening the power of resistance during chemotherapy–a review. Orient. Pharm Exp. Med. 2017, 17, 1–18. [Google Scholar] [CrossRef]
- Kumar, S.; Arif, M.; Shafi, S.; Al-Jaber, N.; Alsultan, A.A. Potential phytoconstituents of Ficus religiosa L. and Ficus benghalensis L. with special reference to the treatment of blood disorders. Med. Plants-Int. J. Phytomed. Related Ind. 2022, 14, 221–232. [Google Scholar] [CrossRef]
- Parihar, S.; Sharma, D. Navagraha (nine planets) plants: The traditional uses and the therapeutic potential of nine sacred plants of india that symbolises nine planets. IJRAR 2021, 8, 96–108. [Google Scholar]
- Sharma, N.; Kumar, V.; Gupta, N. Phytochemical analysis, antimicrobial and antioxidant activity of methanolic extract of Cuscuta reflexa stem and its fractions. Vegetos 2021, 34, 876–881. [Google Scholar] [CrossRef]
- Woo, H.H.; Kuleck, G.; Hirsch, A.M.; Hawes, M.C. Flavonoids: Signal molecules in plant development. Flavonoids Cell Funct. Adv. Exp. Med. Biol. 2002, 505, 51–60. [Google Scholar]
- Lamponi, S. Bioactive natural compounds with antiplatelet and anticoagulant activity and their potential role in the treatment of thrombotic disorders. Life 2021, 11, 1095. [Google Scholar] [CrossRef] [PubMed]
- Elango, J.; Hou, C.; Bao, B.; Wang, S.; Maté Sánchez de Val, J.E.; Wenhui, W. The Molecular interaction of collagen with cell receptors for biological function. Polymers 2022, 14, 876. [Google Scholar] [CrossRef]
- Warner, T.D.; Nylander, S.; Whatling, C. Anti-platelet therapy: Cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. Br. J. Clin. Pharmacol. 2011, 72, 619–633. [Google Scholar] [CrossRef]
- Fisher, M.; Weiner, B.; Ockene, I.S.; Hoogasian, J.S.; Natale, A.M.; Arsenault, J.R.; Johnson, M.H.; Levine, P.H. Selective thromboxane inhibition: A new approach to antiplatelet therapy. Stroke 1984, 15, 813–816. [Google Scholar] [CrossRef]
- Asif, M.; Singh, A.; Siddiqui, A.A. The effect of pyridazine compounds on the cardiovascular system. Med. Chem. Res. 2012, 21, 3336–3346. [Google Scholar] [CrossRef]
- Arif, M.; Fareed, S.; Hussain, S. Estimation of antioxidant activity of microwave assisted extraction of total phenolics and flavonoids contents of the fruit Spondias mangifera. Asian. J. Trad. Med. 2011, 6, 146–155. [Google Scholar]
- Singh, P.; Arif, M.; Qadir, A.; Kannojia, P. Simultaneous analytical efficiency evaluation using HPTLC method for analysis of syringic acid and vanillic acid and their anti-oxidant capacity from methanol extract of Ricinus communis Linn. and Euphorbia hirta Linn. J. AOAC INT. 2021, 104, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, S.L.; Mujahid, M.; Sayed, M.F.; Khalid, M.; Arif, M.; Bagga, P.; Akhtar, J.; Md. Rahman, A. Protection of hepatotoxicity using Spondias pinnata by prevention of ethanol induced oxidative stress, DNA-damage and altered biochemical markers in Wistar rat. Integ. Med. Res. 2016, 5, 267–275. [Google Scholar]
- Chahoud, I.; Ligensa, A.; Dietzel, L.; Faqi, A.S. Correlation between maternal toxicity and embryo/fetal effects. Rep. Toxicol. 1999, 13, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Sachan, N.K.; Zaman, K.; Kumar, Y. Anti-inflammatory, Analgesic and Antioxidant potential of the stem bark of Spondias mangifera Willd. Arch. Biol. Sci. Belg. 2011, 63, 413–419. [Google Scholar]
- Arif, M.; Zaman, K.; Fareed, S. Pharmacognostical studies and evaluation of total phenolic contents of trunk bark of Spondias mangifera Willd. Nat. Prod. Rad. 2009, 2, 146–150. [Google Scholar]
- Ansari, V.A.; Arif, M.; Siddiqui, H.H.; Dixit, R.K. Antiplatelet activity and isolation of triterpenoidal glycoside from ethanolic extract of Nepeta hindostana. Orient. Pharm. Exp. Med. 2016, 16, 333–337. [Google Scholar] [CrossRef]
- Ansari, V.A.; Arif, M.; Hussain, F.; Siddiqui, H.H.; Dixit, R.K. New 4′-substituted benzoyl-β-D glycoside from the fruit pulp of Terminalia belerica with antiplatelet and antioxidant potency. Integ. Med. Res. 2016, 5, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, M.; Guizzardi, S.; Calanni, F.; Marchi, E.; Babbini, M. Antithrombotic and thrombolytic activity of sulodexide in rats. Int. J. Clin. Lab. Res. 1992, 22, 179–184. [Google Scholar] [CrossRef]
- Chaudhary, S.; Godatwar, P.K.; Sharma, R. In vitro thrombolytic activity of Dhamasa (Fagonia arabica Linn.), Kushta (Saussurea lappa Decne.), and Guduchi (Tinospora cordifolia Thunb.). Ayu 2015, 36, 421. [Google Scholar]
- OECD. Test No. 452: Chronic Toxicity Studies, OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Arif, M.; Fareed, S.; Hussain, T.; Ali, M. Adaptogenic activity of lanostane triterpenoid isolated from Carissa carandas fruit against physically and chemically challenged experimental mice. Pharmacog. J. 2013, 5, 216–220. [Google Scholar] [CrossRef]
- Arif, M.; Fareed, S.; Rahman, M.A. Stress relaxant and antioxidant activities of acid glycoside from Spondias mangifera fruit against physically and chemically challenged albino mice. J. Pharm. Bioal. Sci. 2016, 8, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Qadir, A.; Khan, N.; Arif, M.; Ullah, S.N.M.N.; Khan, S.A.; Ali, A.; Imran, M. GC–MS analysis of phytoconstituents present in Trigonella foenumgraecum L. seeds extract and its antioxidant activity. J. Chem. Soc. 2022, 99, 100354. [Google Scholar] [CrossRef]
Tube No. | Conc. of Aspirin (µg/mL) | Conc. of Test Sample (µg/mL) | Absorbance | ||
---|---|---|---|---|---|
CFFR | Aspirin | MFFR | |||
1. | 0.0 | 0.0 | 0.119 ± 0.021 | 0.119 ± 0.021 | 0.119 ± 0.021 |
2. | 2 | 5 | 0.123 ± 0.035 ns | 0.194 ± 0.054 * | 0.164 ± 0.058 ns |
3. | 4 | 10 | 0.134 ± 0.027 ns | 0.236 ± 0.047 * | 0.218 ± 0.026 * |
4. | 6 | 15 | 0.146 ± 0.047 ns | 0.394 ± 0.074 * | 0.349 ± 0.048 * |
5. | 8 | 20 | 0.159 ± 0.058 ns | 0.517 ± 0.038 * | 0.478 ± 0.042 * |
6. | 10 | 25 | 0.166 ± 0.031 ns | 0.594 ± 0.038 * | 0.539 ± 0.053 * |
7. | 12 | 30 | 0.184 ± 0.062 ns | 0.686 ± 0.075 * | 0.611 ± 0.062 * |
8. | 14 | 35 | 0.199 ± 0.029 ns | 0.791 ± 0.069 ** | 0.698 ± 0.055 * |
9. | 16 | 40 | 0.217 ± 0.044 * | 0.887 ± 0.048 ** | 0.744 ± 0.064 ** |
10. | 18 | 50 | 0.259 ± 0.050 * | 0.958 ± 0.056 ** | 0.889 ± 0.059 ** |
Sample No. | Antithrombotic Activity | Thrombolytic Activity | ||||
---|---|---|---|---|---|---|
Conc. of Tested Sample (µg/mL) | Clot Formation Delayed Time (min.) | Conc. of Tested Sample (µg/mL) | Clot Dissolution Time (min.) | |||
CFFR | MFFR | CFFR | MFFR | |||
1 | 0.0 (Blank) | 4.20 | 4.20 | 0.0 (Blank) | NO | NO |
2 | 5 | 4.50 | 10.40 | 5 | NO | NO |
3 | 10 | 5.10 | 13.20 | 10 | NO | NO |
4 | 15 | 5.40 | 15.40 | 15 | NO | NO |
5 | 20 | 6.20 | 18.30 | 20 | NO | 82 # |
6 | 25 | 6.50 | 22.20 | 25 | NO | 75 # |
7 | 30 | 7.80 | 26.40 | 30 | NO | 67 # |
8 | 35 | 8.10 | 29.30 | 35 | NO | 58 # |
9 | 40 | 8.30 | 41.20 | 40 | NO | 52 # |
10 | SK | NO * | NO * | SK | 46 # | 46 # |
Treatment Group | Changes in Body Weight | Hb (g/dL) | RBC Count 106/µL | WBC Count Cells/mm3 |
---|---|---|---|---|
Control vehicle 5 mL/kg | 162.79 ± 0.86 | 16.40 ± 0.071 | 5.41 ± 0.096 | 9162 ± 2156 |
MFFR 500 mg/kg | 161.27 ± 0.83 | 16.35 ± 0.086 | 5.42 ± 0.081 | 9126 ± 2115 |
MFFR 1000 mg/kg | 154.72 ± 0.84 | 13.18 ± 0.087 | 4.71 ± 0.197 | 8814 ± 2154 |
MFFR 1500 mg/kg | 148.76 ± 0.77 * | 11.18 ± 0.126 * | 4.35 ± 0.089 * | 7872 ± 2168 * |
Treatment Group | Liver (g/1000) | Spleen (g/1000) | Kidney (g/1000) | Heart (g/1000) |
---|---|---|---|---|
Control vehicle 5 mL/kg | 12.14 ± 0.05 | 1.28 ± 0.09 | 4.14 ± 0.11 | 7.15 ± 0.09 |
MFFR 500 mg/kg | 12.17 ± 0.08 | 1.37 ± 0.16 | 4.16 ± 0.15 | 7.11 ± 0.14 |
MFFR 1000 mg/kg | 10.12 ± 0.09 | 1.46 ± 0.12 | 4.21 ± 0.12 | 6.78 ± 0.09 |
MFFR 1500 mg/kg | 08.16 ± 0.07 * | 1.54 ± 0.10 * | 4.15 ± 0.14 | 6.46 ± 0.11 * |
S. No. | R. Time | Area% | Compound Name | Nature of Compounds |
---|---|---|---|---|
1 | 4.325 | 0.52 | 3-Methylcyclopentyl acetate | Ester |
2 | 4.450 | 5.01 | 2-Hydroxypropanoic acid | Fatty acid |
3 | 4.841 | 0.38 | 2-Methyl-N-[(E)-2-methylbutylidene]-1-propanamine | Amine |
4 | 5.019 | 0.66 | 3-Methylenedihydro-2,5-furandione | Heterocyclic compounds |
5 | 6.305 | 1.77 | 1,2,3,4-Butanetetrol | Erythritol |
6 | 6.486 | 1.12 | 1-Butanamine, 2-methyl-N-(2-methylbutylidene) | Amine |
7 | 6.660 | 2.41 | Benzeneacetaldehyde | Aromatic compound |
8 | 7.785 | 2.54 | Succinic acid, monomethyl ester | Ester |
9 | 8.347 | 1.76 | 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one | Sugar |
10 | 8.549 | 0.68 | Dehydromevalonic lactone | Lactone |
11 | 8.799 | 1.78 | Benzoic acid | Aromatic acid |
12 | 9.524 | 1.48 | 2,5-Dimethyl-2-hexanol | Alcohol |
13 | 9.986 | 1.89 | Phenylmalonic acid | Aromatic acid |
14 | 10.837 | 3.74 | Salicylic acid | Aromatic acid |
15 | 11.214 | 4.16 | 2-Acetamido-2-deoxymannosonic acid | Amide compound |
16 | 11.877 | 1.99 | 3-Acetoxy-2(1H)-pyridone | Aromatic compound |
17 | 12.358 | 0.78 | Carbobenzyloxy-dl-norvaline | Aromatic compound |
18 | 12.611 | 0.70 | 4-(1,3,3-Trimethyl-bicyclo[4]hept-2-yl)-but-3-en-2-one | Sesquiterpene |
19 | 14.596 | 1.29 | 3,4,5,6,7,8-Hexahydro-1(2H)-naphthalenone | Quinone |
20 | 14.650 | 0.40 | 3H-3,10A-methano-1,2-benzodioxocin-3-ol | Benzodioxocinol |
21 | 15.118 | 4.65 | 1,3,4,5-tetrahydroxy-cyclohexanecarboxylic acid | Cyclohexanecarboxylic acid |
22 | 15.890 | 0.24 | Ingol-12-acetate | Terpenoids |
23 | 16.305 | 1.19 | (2E)-3,7,11,15-Tetramethyl-2-hexadecene | Hydrocarbon |
24 | 16.548 | 2.06 | 2,2-Dimethyl-1-oxaspiro [2.5]octan-4-one | Oxaspiro epoxide |
25 | 16.711 | 11.86 | Pluchidiol | Phenolic compound |
26 | 16.994 | 3.35 | Cyclo(L-prolyl-L-valine) | Amino acid |
27 | 17.355 | 1.67 | Diundecyl phthalate | Phthalic acid ester |
28 | 17.828 | 2.14 | 3,3-Dimethylglutaric acid | Fatty acids |
29 | 17.975 | 1.16 | l-Leucine, N-cyclopropylcarbonyl-, dodecyl ester | Amino acid ester |
30 | 18.148 | 1.59 | 3-Isobutylhexahydropyrrolo[1,2-a]pyrazin | Alkaloids |
31 | 18.347 | 4.08 | n-Hexadecanoic acid | Fatty acids |
32 | 20.051 | 5.51 | Xanthaumin | Terpenoids |
33 | 20.857 | 0.63 | 3-Methylene-bicyclo[3.2.1]oct-6-en-8-ol | Terpenoids |
34 | 21.782 | 0.97 | (+/−)-Marmesin | Benzofuranacrylic acid |
35 | 22.283 | 0.71 | 3-Benzylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione | Alkaloids |
36 | 29.063 | 1.09 | 4,6-Cholestadien-3.beta.-ol | Steroids |
37 | 29.345 | 1.36 | Lup-20(29)-en-3.beta.-ol, acetate | Triterpenoids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Arif, M.; Kamal, M.; Jawaid, T.; Khan, M.M.; Mukhtar, B.; Khan, A.; Ahmed, S.; AlSanad, S.M.; Al-Khamees, O.A. Ex Vivo Antiplatelet and Thrombolytic Activity of Bioactive Fractions from the New-Fangled Stem Buds of Ficus religiosa L. with Simultaneous GC-MS Examination. Molecules 2023, 28, 3918. https://doi.org/10.3390/molecules28093918
Kumar S, Arif M, Kamal M, Jawaid T, Khan MM, Mukhtar B, Khan A, Ahmed S, AlSanad SM, Al-Khamees OA. Ex Vivo Antiplatelet and Thrombolytic Activity of Bioactive Fractions from the New-Fangled Stem Buds of Ficus religiosa L. with Simultaneous GC-MS Examination. Molecules. 2023; 28(9):3918. https://doi.org/10.3390/molecules28093918
Chicago/Turabian StyleKumar, Sunil, Muhammad Arif, Mehnaz Kamal, Talha Jawaid, Mohammed Moizuddin Khan, Beenish Mukhtar, Abdullah Khan, Saif Ahmed, Saud M. AlSanad, and Osama A. Al-Khamees. 2023. "Ex Vivo Antiplatelet and Thrombolytic Activity of Bioactive Fractions from the New-Fangled Stem Buds of Ficus religiosa L. with Simultaneous GC-MS Examination" Molecules 28, no. 9: 3918. https://doi.org/10.3390/molecules28093918
APA StyleKumar, S., Arif, M., Kamal, M., Jawaid, T., Khan, M. M., Mukhtar, B., Khan, A., Ahmed, S., AlSanad, S. M., & Al-Khamees, O. A. (2023). Ex Vivo Antiplatelet and Thrombolytic Activity of Bioactive Fractions from the New-Fangled Stem Buds of Ficus religiosa L. with Simultaneous GC-MS Examination. Molecules, 28(9), 3918. https://doi.org/10.3390/molecules28093918