Bioaccumulation Capacity of Onion (Allium cepa L.) Tested with Heavy Metals in Biofortification
Abstract
:1. Introduction
2. Results
2.1. Morphological Analysis
2.2. Accumulation of Metal Ions
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Samples for Determination
4.2.1. Drying Procedure
4.2.2. Mineralization Procedure
4.3. Determination of Metal Ions
4.3.1. Preparation of Solutions to Plot Calibration Curves
4.3.2. F-AAS Conditions
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alemu, D.; Kitila, C.; Garedew, W.; Jule, L.; Badassa, B.; Nagaprasad, N.; Seenivasan, V.; Saka, A.; Ramaswamy, K. Growth, yield, and yield variables of onion (Allium cepa L.) varieties as influenced by plantspacing at DambiDollo, Western Ethiopia. Sci. Rep. 2022, 12, 20563. [Google Scholar] [CrossRef]
- Hanelt, P. Taxonomy, evolution and history. In Onions and Allied Crops, 1st ed.; Botany, physiology and genetics; Rabinowitch, H.D., Ed.; CRC Press: Boca Raton, FL, USA, 1990; Volume 1, pp. 1–26. [Google Scholar] [CrossRef]
- Çavuşoğlu, D. Modulation of NaCl-induced osmotic, cytogenetic, oxidative and anatomic damages by coronatine treatment in onion (Allium cepa L.). Sci. Rep. 2023, 13, 1580. [Google Scholar] [CrossRef]
- Kohlmunzer, S. Farmakognozja, 5th ed.; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 2020. [Google Scholar]
- Przygocka-Cyna, K.; Barłóg, P.; Grzebisz, W.; Spiżewski, T. Onion (Allium cepa L.) Yield and Growth Dynamics Response to In-Season Patterns of Nitrogen and Sulfur Uptake. Agronomy 2020, 10, 1146. [Google Scholar] [CrossRef]
- Ko, E.Y.; Nile, S.H.; Jung, Y.S.; Keum, Y.S. Antioxidant and antiplatelet potential of different methanol fractions and flavonols extracted from onion (Allium cepa L.). 3 Biotech 2018, 8, 155. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Carrera, C.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Flavonol Composition and Antioxidant Activity of Onions (Allium cepa L.) Based on the Development of New Analytical Ultrasound-Assisted Extraction Methods. Antioxidants 2021, 10, 273. [Google Scholar] [CrossRef]
- FAO. FAO Statistical Pocketbook 2015. World Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i4691e.pdf (accessed on 19 September 2023).
- Kraciński, P. Przemiany na rynku cebuli w latach 1995–2012. Sci. J. Wars. Univ. Life Sci.-SGGW Econ. Organ. Agric.-Food Sect. 2014, 107, 143–154. [Google Scholar] [CrossRef]
- Hanci, F. Comprehensive Overview of Onion Production: Worldwide and Turkey IOSR. J. Agric. Vet. Sci. (IOSR-JAVS) 2018, 11, 17–27. [Google Scholar] [CrossRef]
- Ochar, K.; Kim, S.-H. Conservation and Global Distribution of Onion (Allium cepa L.) Germplasm for Agricultural Sustainability. Plants 2023, 12, 3294. [Google Scholar] [CrossRef]
- Vojnović, Đ.; Maksimović, I.; Tepić Horecki, A.; Karadžić Banjac, M.; Kovačević, S.; Daničić, T.; Podunavac-Kuzmanović, S.; Ilin, Ž. Onion (Allium cepa L.) Yield and Quality Depending on Biostimulants and Nitrogen Fertilization—A Chemometric Perspective. Processes 2023, 11, 684. [Google Scholar] [CrossRef]
- Mitra, J.; Shrivastava, S.L.; Rao, P.S. Onion dehydration: A review. J. Food Sci. Technol. 2012, 49, 267–277. [Google Scholar] [CrossRef]
- Santas, J.; Almajano, M.P.; Carbó, R. Antimicrobial and antioxidant activity of crude onion (Allium cepa L.) extracts. Int. J. Food Sci. Technol. 2010, 45, 403–409. [Google Scholar] [CrossRef]
- Kendler, B.S. Garlic (Allium sativum) and onion (Allium cepa): A review of their relationship to cardiovascular disease. Prev. Med. 1987, 16, 670–685. [Google Scholar] [CrossRef]
- Rumpel, J. Uprawa Cebuli; Hortpress: Warsaw, Poland, 2003. [Google Scholar]
- Barbu, I.A.; Ciorîță, A.; Carpa, R.; Moț, A.C.; Butiuc-Keul, A.; Pârvu, M. Phytochemical Characterization and Antimicrobial Activity of Several Allium Extracts. Molecules 2023, 28, 3980. [Google Scholar] [CrossRef]
- Induja, M.P.; Geetha, R.V. Antimicrobial activity of Allium cepa against bacteria causing enteric infection. Drug Invent. Today 2018, 10, 2489–2492. [Google Scholar]
- Smirnova, M.V.; Denisov, D.B. On Using the Allium Test for Waterbody Biomonitoring in the Murmansk Region. Int. J. Plant Biol. 2022, 13, 499–505. [Google Scholar] [CrossRef]
- Bhuia, M.S.; Siam, M.S.H.; Ahamed, M.R.; Roy, U.K.; Hossain, M.I.; Rokonuzzman, M.; Islam, T.; Sharafat, R.; Bappi, M.H.; Mia, M.N.; et al. Toxicity Analysis of Some Frequently Used Food Processing Chemicals Using Allium cepa Biomonitoring System. Biology 2023, 12, 637. [Google Scholar] [CrossRef]
- Feretti, D.; Zerbini, I.; Zani, C.; Ceretti, E.; Moretti, M.; Monarca, S. Allium cepa chromosome aberration and micronucleus tests applied to study genotoxicity of extracts from pesticide-treated vegetables and grapes. Food Addit. Contam. 2007, 24, 561–572. [Google Scholar] [CrossRef]
- Owolarafe, T.A.; Salawu, K.; Ihegboro, G.O.; Ononamadu, C.J.; Alhassan, A.J.; Wudil, A.M. Investigation of cytotoxicity potential of different extracts of Ziziphus mauritiana (Lam) leaf Allium cepa model. Toxicol. Rep. 2020, 7, 816–821. [Google Scholar] [CrossRef]
- Vujčić Bok, V.; Gerić, M.; Gajski, G.; Gagić, S.; Domijan, A.-M. Phytotoxicity of Bisphenol A to Allium cepa Root Cells Is Mediated through Growth Hormone Gibberellic Acid and Reactive Oxygen Species. Molecules 2023, 28, 2046. [Google Scholar] [CrossRef]
- Sumalan, R.L.; Nescu, V.; Berbecea, A.; Sumalan, R.M.; Crisan, M.; Negrea, P.; Ciulca, S. The Impact of Heavy Metal Accumulation on Some Physiological Parameters in Silphium perfoliatum L. Plants Grown in Hydroponic Systems. Plants 2023, 12, 1718. [Google Scholar] [CrossRef]
- Khandare, A.L.; Validandi, V.; Rajendran, A.; Singh, T.G.; Thingnganing, L.; Kurella, S.; Nagaraju, R.; Dheeravath, S.; Vaddi, N.; Kommu, S.; et al. Health risk assessment of heavy metals and strontium in groundwater used for drinking and cooking in 58 villages of Prakasam district, Andhra Pradesh, India. Environ. Geochem. Health 2020, 42, 3675–3701. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Yu, R.; Wen, B.; Li, X.; Liu, X.; Li, X. Identifying Anthropogenic Sources of Heavy Metals in Alpine Peatlands over the Past 150 Years: Examples from Typical Peatlands in Altay Mountains, Northwest China. Int. J. Environ. Res. Public Health 2023, 20, 5013. [Google Scholar] [CrossRef] [PubMed]
- Vácha, R. Heavy Metal Pollution and Its Effects on Agriculture. Agronomy 2021, 11, 1719. [Google Scholar] [CrossRef]
- Wen, W.-L.; Wang, C.-W.; Wu, D.-W.; Chen, S.-C.; Hung, C.-H.; Kuo, C.-H. Associations of Heavy Metals with Metabolic Syndrome and Anthropometric Indices. Nutrients 2020, 12, 2666. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Wang, C.-W.; Wu, D.-W.; Lee, W.-H.; Chen, Y.-C.; Li, C.-H.; Tsai, C.-C.; Lin, W.-Y.; Chen, S.-C.; Hung, C.-H.; et al. Association of Heavy Metals with Overall Mortality in a Taiwanese Population. Nutrients 2021, 13, 2070. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef] [PubMed]
- Garza-Lombo, C.; Posadas, Y.; Quintanar, L.; Gonsebatt, M.E.; Franco, R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: Redox Signaling and Oxidative Stress. Antioxid. Redox Signal. 2018, 28, 1669–1703. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Re-Evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide; International Agency for Research on Cancer: Lyou, France, 1999. [Google Scholar]
- Zhao, L.; Islam, R.; Wang, Y.; Zhang, X.; Liu, L.-Z. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers 2022, 14, 5768. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Islam, R.; Zhao, L.; Wang, Y.; Lu-Yao, G.; Liu, L.-Z. Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers 2022, 14, 4502. [Google Scholar] [CrossRef]
- Carver, A.; Gallicchio, V.S. Heavy Metals and Cancer. In Cancer Causing Substances; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Parida, L.; Patel, T.N. Systemic impact of heavy metals and their role in cancer development: A review. Environ. Monit. Assess. 2023, 195, 766. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Y.; DesMarais, T.; Costa, M. Metals and Mechanisms of Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 537–554. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Zamudio, R.; Ha, H.C. Environmental epigenetics in metal exposure. Epigenetics 2011, 6, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, P.; Vutukuru, M.; Ravindran, G.; Awad, M.M. Biofortification—Present Scenario, Possibilities and Challenges: A Scientometric Approach. Sustainability 2022, 14, 11632. [Google Scholar] [CrossRef]
- Buturi, C.V.; Mauro, R.P.; Fogliano, V.; Leonardi, C.; Giuffrida, F. Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods 2021, 10, 223. [Google Scholar] [CrossRef]
- Juste Contin Gomes, M.; Stampini Duarte Martino, H.; Tako, E. Effects of Iron and Zinc Biofortified Foods on Gut Microbiota In Vivo (Gallus gallus): A Systematic Review. Nutrients 2021, 13, 189. [Google Scholar] [CrossRef] [PubMed]
- Huey, S.L.; Krisher, J.T.; Bhargava, A.; Friesen, V.M.; Konieczynski, E.M.; Mbuya, M.N.N.; Mehta, N.H.; Monterrosa, E.; Nyangaresi, A.M.; Mehta, S. Review of the Impact Pathways of Biofortified Foods and Food Products. Nutrients 2022, 14, 1200. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.P.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Atherton, H.R.; Li, P. Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends. Horticulturae 2023, 9, 349. [Google Scholar] [CrossRef]
- Murali-Mugundhan, R.; Soundaria, M.; Maheswari, V.; Santhakumari, P.; Gopal, V. Hydroponics—A Novel Alternative for Geoponic Cultivation of Medicinal Plants and Food Crops. Int. J. Pharma Bio Sci. 2011, 2, 286–296. [Google Scholar]
- Zayed, A.; Lytle, C.M.; Qian, J.H.; Terry, N. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 1998, 206, 293–299. [Google Scholar] [CrossRef]
- Wierzbicka, M. Comparison of lead tolerance in Allium cepa with other plant species. Environ. Pollut. 1999, 104, 41–52. [Google Scholar] [CrossRef]
- Kim, I.S.; Kang, K.H.; Johnson-Green, P.; Lee, E.J. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ. Pollut. 2003, 126, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Solís-Domínguez, F.A.; González-Chávez, M.C.; Carrillo-González, R.; Rodríguez-Vázquez, R. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J. Hazard. Mater. 2007, 141, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Zhi-xin, N.; Sun, L.N.; Sun, T.H.; Li, Y.S.; Wang, H. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J. Environ. Sci. 2007, 19, 961–967. [Google Scholar] [CrossRef]
- Min, Y.; Boqing, T.; Meizhen, T.; Aoyama, I. Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner. Eng. 2007, 20, 188–190. [Google Scholar] [CrossRef]
- Soudek, P.; Petrová, S.; Vaněk, T. Heavy metal uptake and stress responses of hydroponically cultivated garlic (Allium sativum L.). Environ. Exp. Bot. 2011, 74, 289–295. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Brown, M.B.; Forsythe, A.B. Robust Tests for the Equality of Variances. J. Am. Stat. Assoc. 1974, 69, 364–367. [Google Scholar] [CrossRef]
- Bonett, D.G.; Woodward, J.A. Testing residual normality in the ANOVA model. J. Appl. Stat. 1990, 17, 383–387. [Google Scholar] [CrossRef]
- Badiru Adedeji, B.; Omitaomu Olufemi, A. 3.3.10 Kruskal-Wallis Test. In Handbook of Industrial Engineering Equations, Formulas, and Calculations; Taylor & Francis: Abingdon, UK, 2014; Available online: http://search.ebscohost.com/login.aspx?direct=true&db=edsknv&AN=edsknv.kt00CAQPM2&lang=pl&site=eds-live&scope=site (accessed on 29 November 2023).
- Dwivedi, A.K.; Mallawaarachchi, I.; Alvarado, L.A. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method. Stat. Med. 2017, 36, 2187–2205. [Google Scholar] [CrossRef] [PubMed]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Tallarida, R.J.; Murray, R.B. Dunnett’s Test (Comparison with a Control). In Manual of Pharmacologic Calculations; Tallarida, R.J., Murray, R.B., Eds.; Springer: New York, NY, USA, 1987; pp. 145–148. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2020. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 29 November 2023).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots. 2020. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 29 November 2023).
Metal Ions | Min. Accumulation of Metal Ions (µg g−1 DW ± SD) | Concentration of Metal Ions in Solution (mg L−1) | Max. Accumulation of Metal Ions (µg g−1 DW ± SD) | Concentration of Metal Ions in Solution (mg L−1) | Control (µg g−1 DW ± SD) |
---|---|---|---|---|---|
Mn2+ | 3589.09 ± 29.57 *** | 50 | 5912.34 ± 47.61 *** | 100 | 11.65 ± 0.01 |
Ni2+ | 1057.85 ± 5.59 *** | 50 | 2956.00 ± 43.84 *** | 100 | nd 1 |
Pb2+ | 805.10 ± 17.68 *** | 25 | 3961.00 ± 35.36 *** | 100 | nd |
Cd2+ | 5478.00 ± 22.63 *** | 25 | 5478.00 ± 22.63 *** | 25 | nd |
Zn2+ | 2015.34 ± 15.08 *** | 25 | 5743.33 ± 0.00 *** | 100 | 30.41 ± 1.32 |
Sr2+ | 8.48 ± 0.80 | 25 | 3727.27 ± 2.57 *** | 400 | nd |
Cr3+ | 459.25 ± 0.35 *** | 25 | 1008.42 ± 8.37 *** | 50 | 47.02 ± 0.02 |
Fe3+ | 97.79 ± 3.69 * | 100 | 1370.80 ± 41.01 *** | 50 | 16.80 ± 0.15 |
Co2+ | 71.80 ± 0.10 *** | 25 | 302.49 ± 2.36 *** | 100 | nd |
Cu2+ | 1347.66 ± 14.62 *** | 25 | 5013.33 ± 0.00 *** | 100 | 10.88 ± 0.18 |
Metal Ions | Min. Accumulation of Metal Ions (µg g−1 DW ± SD) | Concentration of Metal Ions in Solution (mg L−1) | Max. Accumulation of Metal Ions (µg g−1 DW ± SD) | Concentration of Metal Ions in Solution (mg L−1) | Control (µg g−1 DW ± SD) |
---|---|---|---|---|---|
Mn2+ | 5.16 ± 0.13 | 25 | 1600.92 ± 1.29 *** | 400 | 0.64 ± 0.01 |
Ni2+ | 27.94 ± 0.54 *** | 50 | 224.70 ± 1.63 *** | 100 | nd 1 |
Pb2+ | 0.70 ± 0.04 ** | 50 | 1.17 ± 0.21 *** | 25 | nd |
Cd2+ | 20.03 ± 4.03 *** | 25 | 20.03 ± 4.03 *** | 25 | nd |
Zn2+ | 62.34 ± 0.98 *** | 25 | 457.06 ± 8.68 *** | 100 | nd |
Sr2+ | 9.42 ± 0.09 | 25 | 626.64 ± 14.14 *** | 400 | nd |
Cr3+ | 0.88 ± 0.04 *** | 25 | 9.56 ± 0.04 *** | 50 | nd |
Fe3+ | 5.46 ± 0.07 | 400 | 33.49 ± 1.06 *** | 50 | 4.74 ± 0.03 |
Co2+ | 25.86 ± 0.69 *** | 25 | 37.77 ± 0.32 *** | 100 | nd |
Cu2+ | 4.74 ± 0.74 *** | 25 | 14.28 ± 0.08 *** | 100 | nd |
Metal Ions | Min. Accumulation of Metal Ions (µg g−1 DW ± SD) | Concentration of Metal Ions in Solution (mg L−1) | Max. Accumulation of Metal Ions (µg g−1 DW ± SD) | Concentration of Metal Ions in Solution (mg L−1) | Control (µg g−1 DW ± SD) |
---|---|---|---|---|---|
Mn2+ | 4.49 ± 0.48 | 25 | 186.38 ± 1.30 *** | 400 | 1.21 ± 0.01 |
Ni2+ | 17.38 ± 1.73 *** | 50 | 128.82 ± 1.56 *** | 400 | nd 1 |
Pb2+ | 2.40 ± 0.37 ** | 25 | 144.47 ± 1.09 *** | 400 | nd |
Cd2+ | 0.60 ± 0.01 | 25 | 138.08 ± 21.13 *** | 400 | nd |
Zn2+ | 39.21 ± 0.69 *** | 25 | 53.97 ± 1.57 *** | 400 | 1.52 ± 0.01 |
Sr2+ | 0.93 ± 0.13 | 25 | 55.07 ± 2.45 *** | 400 | nd |
Cr3+ | 0.92 ± 0.11 * | 25 | 66.37 ± 0.04 *** | 400 | 0.54 ± 0.01 |
Fe3+ | 5.26 ± 1.12 ** | 25 | 98.25 ± 0.24 *** | 400 | 8.70 ± 0.05 |
Co2+ | 7.51 ± 0.51 * | 50 | 49.79 ± 3.66 *** | 400 | nd |
Cu2+ | 1.38 ± 0.12 | 50 | 3.86 ± 0.33 *** | 100 | 0.51 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarnek, K.; Tatarczak-Michalewska, M.; Szopa, A.; Klimek-Szczykutowicz, M.; Jafernik, K.; Majerek, D.; Blicharska, E. Bioaccumulation Capacity of Onion (Allium cepa L.) Tested with Heavy Metals in Biofortification. Molecules 2024, 29, 101. https://doi.org/10.3390/molecules29010101
Czarnek K, Tatarczak-Michalewska M, Szopa A, Klimek-Szczykutowicz M, Jafernik K, Majerek D, Blicharska E. Bioaccumulation Capacity of Onion (Allium cepa L.) Tested with Heavy Metals in Biofortification. Molecules. 2024; 29(1):101. https://doi.org/10.3390/molecules29010101
Chicago/Turabian StyleCzarnek, Katarzyna, Małgorzata Tatarczak-Michalewska, Agnieszka Szopa, Marta Klimek-Szczykutowicz, Karolina Jafernik, Dariusz Majerek, and Eliza Blicharska. 2024. "Bioaccumulation Capacity of Onion (Allium cepa L.) Tested with Heavy Metals in Biofortification" Molecules 29, no. 1: 101. https://doi.org/10.3390/molecules29010101
APA StyleCzarnek, K., Tatarczak-Michalewska, M., Szopa, A., Klimek-Szczykutowicz, M., Jafernik, K., Majerek, D., & Blicharska, E. (2024). Bioaccumulation Capacity of Onion (Allium cepa L.) Tested with Heavy Metals in Biofortification. Molecules, 29(1), 101. https://doi.org/10.3390/molecules29010101