Systematic Assessment of the Catalytic Reactivity of Frustrated Lewis Pairs in C-H Bond Activation
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Scope of FLPs and the Framework of the C-H Activation Mechanism
2.2. The Performance of FLPs on the C-H Bond Activation of 1-Methylpyrrole
2.3. The Performance of FLPs on C-H Bond Activation in Methane, Methylbenzene, Propylene, and Benzene
2.4. The Influence on the Reactivity of FLPs
3. Materials and Methods
Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Power, P.P. Main-group elements as transition metals. Nature 2010, 463, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Spikes, G.H.; Fettinger, J.C.; Power, P.P. Facile Activation of Dihydrogen by an Unsaturated Heavier Main Group Compound. J. Am. Chem. Soc. 2005, 127, 12232–12233. [Google Scholar] [CrossRef] [PubMed]
- Frey, G.D.; Lavallo, V.; Donnadieu, B.; Schoeller, W.W.; Bertrand, G. Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science 2007, 316, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. Diverse Uses of the Reaction of Frustrated Lewis Pair (FLP) with Hydrogen. J. Am. Chem. Soc. 2021, 143, 20002–20014. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. The broadening reach of frustrated Lewis pair chemistry. Science 2016, 354, aaf7229. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W.; Erker, G. Frustrated Lewis Pair Chemistry: Development and Perspectives. Angew. Chem. Int. Ed. 2015, 54, 6400–6441. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W. Frustrated Lewis Pairs. J. Am. Chem. Soc. 2015, 137, 10018–10032. [Google Scholar] [CrossRef]
- Welch, G.C.; Juan, R.R.S.; Masuda, J.D.; Stephan, D.W. Reversible, Metal-Free Hydrogen Activation. Science 2006, 314, 1124–1126. [Google Scholar] [CrossRef]
- Keweloh, L.; Klöcker, H.; Würthwein, E.-U.; Uhl, W. A P−H Functionalized Al/P Frustrated Lewis Pair: Substrate Activation and Selective Hydrogen Transfer. Angew. Chem. Int. Ed. 2016, 55, 3212–3215. [Google Scholar] [CrossRef]
- Uhl, W.; Appelt, C.; Backs, J.; Westenberg, H.; Wollschläger, A.; Tannert, J. Al/P-Based Frustrated Lewis Pairs: Limitations of Their Synthesis by Hydroalumination and Formation of Dialkylaluminum Hydride Adducts. Organometallics 2014, 33, 1212–1217. [Google Scholar] [CrossRef]
- Uhl, W.; Appelt, C. Reactions of an Al–P-Based Frustrated Lewis Pair with Carbonyl Compounds: Dynamic Coordination of Benzaldehyde, Activation of Benzoyl Chloride, and Al–C Bond Cleavage with Benzamide. Organometallics 2013, 32, 5008–5014. [Google Scholar] [CrossRef]
- Appelt, C.; Slootweg, J.C.; Lammertsma, K.; Uhl, W. Reaction of a P/Al-Based Frustrated Lewis Pair with Ammonia, Borane, and Amine–Boranes: Adduct Formation and Catalytic Dehydrogenation. Angew. Chem. Int. Ed. 2013, 52, 4256–4259. [Google Scholar] [CrossRef] [PubMed]
- Kolychev, E.L.; Theuergarten, E.; Tamm, M. N-Heterocyclic Carbenes in FLP Chemistry. In Frustrated Lewis Pairs II: Expanding the Scope; Erker, G., Stephan, D.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 121–155. [Google Scholar]
- Khan, S.; Alcarazo, M. Carbon-Based Frustrated Lewis Pairs. In Frustrated Lewis Pairs II: Expanding the Scope; Erker, G., Stephan, D.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 157–170. [Google Scholar]
- Wan, Q.; Lin, S.; Guo, H. Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights. Molecules 2022, 27, 3734. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Chang, C.-R.; Huang, Z.-Q.; Ho, J.C.; Qu, Y. Semi-solid and solid frustrated Lewis pair catalysts. Chem. Soc. Rev. 2018, 47, 5541–5553. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Qiu, R.; Zhu, J. Screening Carbon-Boron Frustrated Lewis Pairs for Small-Molecule Activation including N2, O2, CO, CO2, CS2, H2O and CH4: A Computational Study. Chem. Asian J. 2023, 18, e202201236. [Google Scholar] [CrossRef] [PubMed]
- Carmona, M.; Pérez, R.; Ferrer, J.; Rodríguez, R.; Passarelli, V.; Lahoz, F.J.; García-Orduña, P.; Carmona, D. Activation of H–H, HO–H, C(sp2)–H, C(sp3)–H, and RO–H Bonds by Transition-Metal Frustrated Lewis Pairs Based on M/N (M = Rh, Ir) Couples. Inorg. Chem. 2022, 61, 13149–13164. [Google Scholar] [CrossRef] [PubMed]
- Rochette, É.; Courtemanche, M.-A.; Pulis, A.P.; Bi, W.; Fontaine, F.-G. Ambiphilic Frustrated Lewis Pair Exhibiting High Robustness and Reversible Water Activation: Towards the Metal-Free Hydrogenation of Carbon Dioxide. Molecules 2015, 20, 11902–11914. [Google Scholar] [CrossRef]
- Rochette, É.; Boutin, H.; Fontaine, F.-G. Frustrated Lewis Pair Catalyzed S–H Bond Borylation. Organometallics 2017, 36, 2870–2876. [Google Scholar] [CrossRef]
- Mahdi, T.; Stephan, D.W. Frustrated Lewis Pair Catalyzed Hydroamination of Terminal Alkynes. Angew. Chem. Int. Ed. 2013, 52, 12418–12421. [Google Scholar] [CrossRef]
- Chase, P.A.; Stephan, D.W. Hydrogen and Amine Activation by a Frustrated Lewis Pair of a Bulky N-Heterocyclic Carbene and B(C6F5)3. Angew. Chem. Int. Ed. 2008, 47, 7433–7437. [Google Scholar] [CrossRef]
- Avigdori, I.; Pogoreltsev, A.; Kaushanski, A.; Fridman, N.; Gandelman, M. Frustrated Lewis Pairs Comprising Nitrogen Lewis Acids for Si–H Bond Activation. Angew. Chem. Int. Ed. 2020, 59, 23476–23479. [Google Scholar] [CrossRef] [PubMed]
- Süsse, L.; Hermeke, J.; Oestreich, M. The Asymmetric Piers Hydrosilylation. J. Am. Chem. Soc. 2016, 138, 6940–6943. [Google Scholar] [CrossRef] [PubMed]
- Declercq, R.; Bouhadir, G.; Bourissou, D.; Légaré, M.-A.; Courtemanche, M.-A.; Nahi, K.S.; Bouchard, N.; Fontaine, F.-G.; Maron, L. Hydroboration of Carbon Dioxide Using Ambiphilic Phosphine–Borane Catalysts: On the Role of the Formaldehyde Adduct. ACS Catal. 2015, 5, 2513–2520. [Google Scholar] [CrossRef]
- Courtemanche, M.-A.; Légaré, M.-A.; Maron, L.; Fontaine, F.-G. A Highly Active Phosphine–Borane Organocatalyst for the Reduction of CO2 to Methanol Using Hydroboranes. J. Am. Chem. Soc. 2013, 135, 9326–9329. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Ghara, M.; Chattaraj, P.K. Activation of Small Molecules and Hydrogenation of CO2 Catalyzed by Frustrated Lewis Pairs. Catalysts 2022, 12, 201. [Google Scholar] [CrossRef]
- Fontaine, F.-G.; Courtemanche, M.-A.; Légaré, M.-A.; Rochette, É. Design principles in frustrated Lewis pair catalysis for the functionalization of carbon dioxide and heterocycles. Coord. Chem. Rev. 2017, 334, 124–135. [Google Scholar] [CrossRef]
- Škoch, K.; Daniliuc, C.G.; Kehr, G.; Erker, G. Alkyne 1,1-Hydroboration to a Reactive Frustrated P/B-H Lewis Pair. Angew. Chem. Int. Ed. 2021, 60, 6757–6763. [Google Scholar] [CrossRef]
- Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 2013, 5, 718–723. [Google Scholar] [CrossRef]
- Appelt, C.; Westenberg, H.; Bertini, F.; Ehlers, A.W.; Slootweg, J.C.; Lammertsma, K.; Uhl, W. Geminal Phosphorus/Aluminum-Based Frustrated Lewis Pairs: C-H versus C-C Activation and CO2 Fixation. Angew. Chem. Int. Ed. 2011, 50, 3925–3928. [Google Scholar] [CrossRef]
- Jiang, C.; Blacque, O.; Berke, H. Activation of Terminal Alkynes by Frustrated Lewis Pairs. Organometallics 2010, 29, 125–133. [Google Scholar] [CrossRef]
- Grundy, M.E.; Sotorrios, L.; Bisai, M.K.; Yuan, K.; Macgregor, S.A.; Ingleson, M.J. Understanding and Expanding Zinc Cation/Amine Frustrated Lewis Pair Catalyzed C–H Borylation. ACS Catal. 2023, 13, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
- Légaré, M.-A.; Rochette, É.; Légaré Lavergne, J.; Bouchard, N.; Fontaine, F.-G. Bench-stable frustrated Lewis pair chemistry: Fluoroborate salts as precatalysts for the C–H borylation of heteroarenes. Chem. Commun. 2016, 52, 5387–5390. [Google Scholar] [CrossRef] [PubMed]
- Chernichenko, K.; Lindqvist, M.; Kótai, B.; Nieger, M.; Sorochkina, K.; Pápai, I.; Repo, T. Metal-Free sp2-C–H Borylation as a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes. J. Am. Chem. Soc. 2016, 138, 4860–4868. [Google Scholar] [CrossRef] [PubMed]
- Légaré, M.-A.; Courtemanche, M.-A.; Rochette, É.; Fontaine, F.-G. Metal-free catalytic C-H bond activation and borylation of heteroarenes. Science 2015, 349, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.K.; Marder, T.B. A leap ahead for activating C-H bonds. Science 2015, 349, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, Y.; Luo, X.; Wang, X. Nonoxidative Coupling of Methane to Produce C2 Hydrocarbons on FLPs of an Albite Surface. Molecules 2023, 28, 1037. [Google Scholar] [CrossRef]
- Frömel, S.; Daniliuc, C.G.; Bannwarth, C.; Grimme, S.; Bussmann, K.; Kehr, G.; Erker, G. Indirect synthesis of a pair of formal methane activation products at a phosphane/borane frustrated Lewis pair. Dalton Trans. 2016, 45, 19230–19233. [Google Scholar] [CrossRef]
- Prokofjevs, A.; Vedejs, E. N-Directed Aliphatic C–H Borylation Using Borenium Cation Equivalents. J. Am. Chem. Soc. 2011, 133, 20056–20059. [Google Scholar] [CrossRef]
- Rochette, É.; Courtemanche, M.-A.; Fontaine, F.-G. Frustrated Lewis Pair Mediated Csp3−H Activation. Chem. Eur. J. 2017, 23, 3567–3571. [Google Scholar] [CrossRef]
- Rokob, T.A.; Hamza, A.; Pápai, I. Rationalizing the Reactivity of Frustrated Lewis Pairs: Thermodynamics of H2 Activation and the Role of Acid−Base Properties. J. Am. Chem. Soc. 2009, 131, 10701–10710. [Google Scholar] [CrossRef]
- Simonneau, A.; Turrel, R.; Vendier, L.; Etienne, M. Group 6 Transition-Metal/Boron Frustrated Lewis Pair Templates Activate N2 and Allow its Facile Borylation and Silylation. Angew. Chem. Int. Ed. 2017, 56, 12268–12272. [Google Scholar] [CrossRef] [PubMed]
- Campos, J. Dihydrogen and Acetylene Activation by a Gold(I)/Platinum(0) Transition Metal Only Frustrated Lewis Pair. J. Am. Chem. Soc. 2017, 139, 2944–2947. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.M.; Flynn, S.R.; Wass, D.F. Unexpected Formation of Early Late Heterobimetallic Complexes from Transition Metal Frustrated Lewis Pairs. Inorg. Chem. 2016, 55, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.J.K.; Clifton, J.; Fey, N.; Pringle, P.G.; Sparkes, H.A.; Wass, D.F. Cooperative Lewis Pairs Based on Late Transition Metals: Activation of Small Molecules by Platinum(0) and B(C6F5)3. Angew. Chem. Int. Ed. 2015, 54, 2223–2227. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, L.J.C.; Pahar, S.; Richards, E.; Melen, R.L.; Slootweg, J.C. Insights into Single-Electron-Transfer Processes in Frustrated Lewis Pair Chemistry and Related Donor–Acceptor Systems in Main Group Chemistry. Chem. Rev. 2023, 123, 9653–9675. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Stephan, D.W. Radicals derived from Lewis acid/base pairs. Chem. Soc. Rev. 2019, 48, 3454–3463. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cao, L.L.; Shao, Y.; Ménard, G.; Stephan, D.W. A Radical Mechanism for Frustrated Lewis Pair Reactivity. Chem 2017, 3, 259–267. [Google Scholar] [CrossRef]
- Mo, Z.; Kolychev, E.L.; Rit, A.; Campos, J.; Niu, H.; Aldridge, S. Facile Reversibility by Design: Tuning Small Molecule Capture and Activation by Single Component Frustrated Lewis Pairs. J. Am. Chem. Soc. 2015, 137, 12227–12230. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, J.; Li, Y.; Liu, Y.; Ke, Z. Frustrated Lewis Pair Catalyzed C–H Activation of Heteroarenes: A Stepwise Carbene Mechanism Due to Distance Effect. Org. Lett. 2018, 20, 1102–1105. [Google Scholar] [CrossRef]
- Uzelac, M.; Armstrong, D.R.; Kennedy, A.R.; Hevia, E. Understanding the Subtleties of Frustrated Lewis Pair Activation of Carbonyl Compounds by N-Heterocyclic Carbene/Alkyl Gallium Pairings. Chem. Eur. J. 2016, 22, 15826–15833. [Google Scholar] [CrossRef]
- Hunter, E.P.L.; Lias, S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Ugolotti, J.; White, A.J.P. From B(C6F5)3 to B(OC6F5)3: Synthesis of (C6F5)2BOC6F5 and C6F5B(OC6F5)2 and Their Relative Lewis Acidity. Organometallics 2005, 24, 1685–1691. [Google Scholar] [CrossRef]
- Beckett, M.A.; Strickland, G.C.; Holland, J.R.; Sukumar Varma, K. A convenient n.m.r. method for the measurement of Lewis acidity at boron centres: Correlation of reaction rates of Lewis acid initiated epoxide polymerizations with Lewis acidity. Polymer 1996, 37, 4629–4631. [Google Scholar] [CrossRef]
- Gutmann, V. Empirical approach to molecular interactions. Coord. Chem. Rev. 1975, 15, 207–237. [Google Scholar] [CrossRef]
- Scott, D.J.; Fuchter, M.J.; Ashley, A.E. Designing effective ‘frustrated Lewis pair’ hydrogenation catalysts. Chem. Soc. Rev. 2017, 46, 5689–5700. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Jiang, J.; Wen, M.; Wang, Z.-X. Assessing the performance of commonly used DFT functionals in studying the chemistry of frustrated Lewis pairs. J. Theor. Comput. Chem. 2014, 13, 1350074. [Google Scholar] [CrossRef]
- Schirmer, B.; Grimme, S. Quantum Chemistry of FLPs and Their Activation of Small Molecules: Methodological Aspects. In Frustrated Lewis Pairs I: Uncovering and Understanding; Erker, G., Stephan, D.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 213–230. [Google Scholar]
- Bursch, M.; Mewes, J.-M.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew. Chem. Int. Ed. 2022, 61, e202205735. [Google Scholar] [CrossRef]
- Walker, M.; Harvey, A.J.A.; Sen, A.; Dessent, C.E.H. Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A 2013, 117, 12590–12600. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Comparative DFT Study of van der Waals Complexes: Rare-Gas Dimers, Alkaline-Earth Dimers, Zinc Dimer, and Zinc-Rare-Gas Dimers. J. Phys. Chem. A 2006, 110, 5121–5129. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Using Hessian Updating To Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. J. Chem. Theory Comput. 2005, 1, 61–69. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Accurate reaction paths using a Hessian based predictor–corrector integrator. J. Chem. Phys. 2004, 120, 9918–9924. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K. The path of chemical reactions—The IRC approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hou, C.; Jiang, J.; Zhang, Z.; Zhao, C.; Page, A.J.; Ke, Z. General H2 Activation Modes for Lewis Acid–Transition Metal Bifunctional Catalysts. ACS Catal. 2016, 6, 1655–1662. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Chernichenko, K.; Kótai, B.; Pápai, I.; Zhivonitko, V.; Nieger, M.; Leskelä, M.; Repo, T. Intramolecular Frustrated Lewis Pair with the Smallest Boryl Site: Reversible H2 Addition and Kinetic Analysis. Angew. Chem. Int. Ed. 2015, 54, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Chernichenko, K.; Nieger, M.; Leskelä, M.; Repo, T. Hydrogen activation by 2-boryl-N,N-dialkylanilines: A revision of Piers’ ansa-aminoborane. Dalton Trans. 2012, 41, 9029–9032. [Google Scholar] [CrossRef] [PubMed]
- Pla, D.; Sadek, O.; Cadet, S.; Mestre-Voegtlé, B.; Gras, E. Naphthylaminoborane: From structural switches to frustrated Lewis pair reactivity. Dalton Trans. 2015, 44, 18340–18346. [Google Scholar] [CrossRef]
- Xu, B.-H.; Bussmann, K.; Fröhlich, R.; Daniliuc, C.G.; Brandenburg, J.G.; Grimme, S.; Kehr, G.; Erker, G. An Enamine/HB(C6F5)2 Adduct as a Dormant State in Frustrated Lewis Pair Chemistry. Organometallics 2013, 32, 6745–6752. [Google Scholar] [CrossRef]
- Schwendemann, S.; Fröhlich, R.; Kehr, G.; Erker, G. Intramolecular frustrated N/B lewis pairs by enamine hydroboration. Chem. Sci. 2011, 2, 1842–1849. [Google Scholar] [CrossRef]
- Schwendemann, S.; Oishi, S.; Saito, S.; Fröhlich, R.; Kehr, G.; Erker, G. Reaction of an “Invisible” Frustrated N/B Lewis Pair with Dihydrogen. Chem. Asian J. 2013, 8, 212–217. [Google Scholar] [CrossRef]
- Lindqvist, M.; Axenov, K.; Nieger, M.; Räisänen, M.; Leskelä, M.; Repo, T. Frustrated Lewis Pair Chemistry of Chiral (+)-Camphor-Based Aminoboranes. Chem. Eur. J. 2013, 19, 10412–10418. [Google Scholar] [CrossRef] [PubMed]
- Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Rieger, B. Molecular Tweezers for Hydrogen: Synthesis, Characterization, and Reactivity. J. Am. Chem. Soc. 2008, 130, 14117–14119. [Google Scholar] [CrossRef] [PubMed]
- Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Highly Active Metal-Free Catalysts for Hydrogenation of Unsaturated Nitrogen-Containing Compounds. Adv. Synth. Catal. 2011, 353, 2093–2110. [Google Scholar] [CrossRef]
- Porcel, S.; Bouhadir, G.; Saffon, N.; Maron, L.; Bourissou, D. Reaction of Singlet Dioxygen with Phosphine–Borane Derivatives: From Transient Phosphine Peroxides to Crystalline Peroxoboronates. Angew. Chem. Int. Ed. 2010, 49, 6186–6189. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, T.; Eckert, H.; Ekkert, O.; Fröhlich, R.; Kehr, G.; Erker, G.; Grimme, S. New Insights into Frustrated Lewis Pairs: Structural Investigations of Intramolecular Phosphane–Borane Adducts by Using Modern Solid-State NMR Techniques and DFT Calculations. J. Am. Chem. Soc. 2012, 134, 4236–4249. [Google Scholar] [CrossRef]
- Erdmann, M.; Rösener, C.; Holtrichter-Rößmann, T.; Daniliuc, C.G.; Fröhlich, R.; Uhl, W.; Würthwein, E.-U.; Kehr, G.; Erker, G. Functional group chemistry at intramolecular frustrated Lewis pairs: Substituent exchange at the Lewis acid site with 9-BBN. Dalton Trans. 2013, 42, 709–718. [Google Scholar] [CrossRef]
- Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D.W. Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane–borane adduct. Chem. Commun. 2007, 5072–5074. [Google Scholar] [CrossRef]
- Spies, P.; Kehr, G.; Bergander, K.; Wibbeling, B.; Fröhlich, R.; Erker, G. Metal-free dihydrogen activation chemistry: Structural and dynamic features of intramolecular P/B pairs. Dalton Trans. 2009, 1534–1541. [Google Scholar] [CrossRef]
- Sajid, M.; Kehr, G.; Wiegand, T.; Eckert, H.; Schwickert, C.; Pöttgen, R.; Cardenas, A.J.P.; Warren, T.H.; Fröhlich, R.; Daniliuc, C.G.; et al. Noninteracting, Vicinal Frustrated P/B-Lewis Pair at the Norbornane Framework: Synthesis, Characterization, and Reactions. J. Am. Chem. Soc. 2013, 135, 8882–8895. [Google Scholar] [CrossRef]
- Bertini, F.; Lyaskovskyy, V.; Timmer, B.J.J.; de Kanter, F.J.J.; Lutz, M.; Ehlers, A.W.; Slootweg, J.C.; Lammertsma, K. Preorganized Frustrated Lewis Pairs. J. Am. Chem. Soc. 2012, 134, 201–204. [Google Scholar] [CrossRef]
- Wang, X.; Kehr, G.; Daniliuc, C.G.; Erker, G. Internal Adduct Formation of Active Intramolecular C4-bridged Frustrated Phosphane/Borane Lewis Pairs. J. Am. Chem. Soc. 2014, 136, 3293–3303. [Google Scholar] [CrossRef] [PubMed]
- Axenov, K.V.; Mömming, C.M.; Kehr, G.; Fröhlich, R.; Erker, G. Structure and Dynamic Features of an Intramolecular Frustrated Lewis Pair. Chem. Eur. J. 2010, 16, 14069–14073. [Google Scholar] [CrossRef] [PubMed]
- Spies, P.; Fröhlich, R.; Kehr, G.; Erker, G.; Grimme, S. Structural Importance of Secondary Interactions in Molecules: Origin of Unconventional Conformations of Phosphine–Borane Adducts. Chem. Eur. J. 2008, 14, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Stute, A.; Kehr, G.; Fröhlich, R.; Erker, G. Chemistry of a geminal frustrated Lewis pair featuring electron withdrawing C6F5 substituents at both phosphorus and boron. Chem. Commun. 2011, 47, 4288–4290. [Google Scholar] [CrossRef] [PubMed]
- Rosorius, C.; Kehr, G.; Fröhlich, R.; Grimme, S.; Erker, G. Electronic Control of Frustrated Lewis Pair Behavior: Chemistry of a Geminal Alkylidene-Bridged Per-pentafluorophenylated P/B Pair. Organometallics 2011, 30, 4211–4219. [Google Scholar] [CrossRef]
- Liedtke, R.; Scheidt, F.; Ren, J.; Schirmer, B.; Cardenas, A.J.P.; Daniliuc, C.G.; Eckert, H.; Warren, T.H.; Grimme, S.; Kehr, G.; et al. Frustrated Lewis Pair Modification by 1,1-Carboboration: Disclosure of a Phosphine Oxide Triggered Nitrogen Monoxide Addition to an Intramolecular P/B Frustrated Lewis Pair. J. Am. Chem. Soc. 2014, 136, 9014–9027. [Google Scholar] [CrossRef]
- Stute, A.; Kehr, G.; Daniliuc, C.G.; Fröhlich, R.; Erker, G. Electronic control in frustrated Lewis pair chemistry: Adduct formation of intramolecular FLP systems with –P(C6F5)2 Lewis base components. Dalton Trans. 2013, 42, 4487–4499. [Google Scholar] [CrossRef]
- Ekkert, O.; Kehr, G.; Fröhlich, R.; Erker, G. P−C Bond Activation Chemistry: Evidence for 1,1-Carboboration Reactions Proceeding with Phosphorus−Carbon Bond Cleavage. J. Am. Chem. Soc. 2011, 133, 4610–4616. [Google Scholar] [CrossRef]
- Beckmann, J.; Hupf, E.; Lork, E.; Mebs, S. Peri-Substituted (Ace)Naphthylphosphinoboranes. (Frustrated) Lewis Pairs. Inorg. Chem. 2013, 52, 11881–11888. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Lian, X.; Zhang, H.; Zhang, X.; Chen, J.; Chen, C.; Lan, X.; Shao, Y. Systematic Assessment of the Catalytic Reactivity of Frustrated Lewis Pairs in C-H Bond Activation. Molecules 2024, 29, 24. https://doi.org/10.3390/molecules29010024
Guo Y, Lian X, Zhang H, Zhang X, Chen J, Chen C, Lan X, Shao Y. Systematic Assessment of the Catalytic Reactivity of Frustrated Lewis Pairs in C-H Bond Activation. Molecules. 2024; 29(1):24. https://doi.org/10.3390/molecules29010024
Chicago/Turabian StyleGuo, Yongjie, Xueqi Lian, Hao Zhang, Xueling Zhang, Jun Chen, Changzhong Chen, Xiaobing Lan, and Youxiang Shao. 2024. "Systematic Assessment of the Catalytic Reactivity of Frustrated Lewis Pairs in C-H Bond Activation" Molecules 29, no. 1: 24. https://doi.org/10.3390/molecules29010024
APA StyleGuo, Y., Lian, X., Zhang, H., Zhang, X., Chen, J., Chen, C., Lan, X., & Shao, Y. (2024). Systematic Assessment of the Catalytic Reactivity of Frustrated Lewis Pairs in C-H Bond Activation. Molecules, 29(1), 24. https://doi.org/10.3390/molecules29010024