Marine Toxins as Pharmaceutical Treasure Troves: A Focus on Saxitoxin Derivatives from a Computational Point of View
Abstract
:1. Introduction
2. Results and Discussion
Clinical Applications of Paralyzing Toxins
3. Materials and Methods
- Log P, or the octanol–water partition coefficient: This descriptor quantifies the hydrophilic or hydrophobic nature of the system, indicating how readily a moiety or analyte will partition between aqueous and organic phases [80].
- Rule of Five: This rule posits that most ”drug-like” molecules should have characteristics such as log P ≤ 5, molecular weight ≤ 500, a number of hydrogen bond acceptors ≤ 10, and a number of hydrogen bond donors ≤ 5. Molecules violating more than one of these rules may face bioavailability challenges [40].
- Number of rotatable bonds (nrotb): This topological parameter measures molecular flexibility and serves as a good descriptor for the oral bioavailability of drugs. Rotatable bonds are defined as any single non-ring bond connected to a non-terminal heavy (i.e., non-hydrogen) atom [83].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, B.; Huang, Y.; Baumann, K.; Fry, B.; Shi, Q. From Marine Venoms to Drugs: Efficiently Supported by a Combination of Transcriptomics and Proteomics. Mar. Drugs 2017, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Silva, M. The Role of Toxins: Impact on Human Health and Aquatic Environments. In The Pharmacological Potential of Cyanobacteria; Lopes, G., Silva, M., Vasconcelos, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 7; pp. 173–199. [Google Scholar] [CrossRef]
- Tan, L.T. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar. Drugs 2023, 21, 174. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Z.; Zhang, S.F.; Zhang, Y.; Lin, L. Paralytic Shellfish Toxin Biosynthesis in Cyanobacteria and Dinoflagellates: A Molecular Overview. J. Proteom. 2016, 135, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Band-Schmidt, C.J.; Durán-Riveroll, L.M.; Bustillos-Guzmán, J.J.; Leyva-Valencia, I.; López-Cortés, D.J.; Núñez-Vázquez, E.J.; Hernández-Sandoval, F.E.; Ramírez-Rodríguez, D.V. Paralytic Toxin Producing Dinoflagellates in Latin America: Ecology and Physiology. Front. Mar. Sci. 2019, 6, 42. [Google Scholar] [CrossRef]
- Pinto, A.; Botelho, M.J.; Churro, C.; Asselman, J.; Pereira, P.; Pereira, J.L. A Review on Aquatic Toxins–Do we Really Know it All Regarding the Environmental Risk Posed by Phytoplankton Neurotoxins? J. Environ. Manag. 2023, 345, 118769. [Google Scholar] [CrossRef]
- Mutoti, M.I.; Edokpayi, J.N.; Mutileni, N.; Durowoju, O.S.; Munyai, F.L. Cyanotoxins in Grroundwater; Occurrence, Potential Sources, Health Impacts and Knowledge Gap for Public Health. Toxicon 2023, 226, 107077. [Google Scholar] [CrossRef] [PubMed]
- FAO-UN. Marine Biotoxins; FAO-UN: Rome, Italy, 2004. [Google Scholar]
- Mackieh, R.; Abou-Nader, R.; Wehbe, R.; Mattei, C.; Legros, C.; Fajloun, Z.; Sabatier, J.M. Voltage-Gated Sodium Channels: A Prominent Target of Marine Toxins. Mar. Drugs 2021, 19, 562. [Google Scholar] [CrossRef]
- Assunção, J.; Guedes, A.; Malcata, F. Biotechnological and Pharmacological Applications of Biotoxins and Other Bioactive Molecules from Dinoflagellates. Mar. Drugs 2017, 15, 393. [Google Scholar] [CrossRef]
- Pradhan, B.; Ki, J.S. Phytoplankton Toxins and Their Potential Therapeutic Applications: A Journey toward the Quest for Potent Pharmaceuticals. Mar. Drugs 2022, 20, 271. [Google Scholar] [CrossRef]
- Bucciarelli, G.M.; Lechner, M.; Fontes, A.; Kats, L.B.; Eisthen, H.L.; Shaffer, H.B. From Poison to Promise: The Evolution of Tetrodotoxin and Its Potential as a Therapeutic. Toxins 2021, 13, 517. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, A.; Santamaria, C.M.; Shomorony, A.; Ji, T.; Wei, T.; Gordon, A.; Elofsson, H.; Mehta, M.; Yang, R.; et al. Polymer-Tetrodotoxin Conjugates to Induce Prolonged Duration Local Anesthesia with Minimal Toxicity. Nat. Commun. 2019, 10, 2566. [Google Scholar] [CrossRef] [PubMed]
- Flores-Holguín, N.; Salas-Leiva, J.S.; Núñez-Vázquez, E.J.; Tovar-Ramírez, D.; Glossman-Mitnik, D. Exploring Marine Toxins: Comparative Analysis of Chemical Reactivity Properties and Potential for Drug Discovery. Front. Chem. 2023, 11, 1286804. [Google Scholar] [CrossRef] [PubMed]
- Thottumkara, A.P.; Parsons, W.H.; Du Bois, J. Saxitoxin. Angew. Chem. Int. Ed. 2014, 53, 5760–5784. [Google Scholar] [CrossRef] [PubMed]
- Schantz, E.J.; Ghazarossian, V.E.; Schnoes, H.K.; Strong, F.M.; Springer, J.P.; Pezzanite, J.O.; Clardy, J. Structure of Saxitoxin. J. Am. Chem. Soc. 1975, 97, 1238–1239. [Google Scholar] [CrossRef] [PubMed]
- Genenah, A.A.; Shimizu, Y. Specific Toxicity of Paralytic Shellfish Poisons. J. Agric. Food Chem. 1981, 29, 1289–1291. [Google Scholar] [CrossRef]
- Montoya, N. Toxinas Paralizantes de Moluscos en el Mar Argentino: Impacto, Transferencia Trófica y Perspectiva. Mar. Fish. Sci. (MAFIS) 2019, 32, 47–69. [Google Scholar] [CrossRef]
- Llewellyn, L.E. Saxitoxin, a Toxic Marine Natural Product that Targets a Multitude of Receptors. Nat. Prod. Rep. 2006, 23, 200. [Google Scholar] [CrossRef]
- Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic Alkaloids: Saxitoxin and Its Analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef]
- Leal, J.F.; Cristiano, M.L.S. Marine Paralytic Shellfish Toxins: Chemical Properties, Mode of Action, Newer Analogues, and Structure-Toxicity Relationship. Nat. Prod. Rep. 2022, 39, 33–57. [Google Scholar] [CrossRef]
- Parr, R.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Geerlings, P.; Proft, F.D.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef]
- Gázquez, J.; Cedillo, A.; Vela, A. Electrodonating and Electroaccepting Powers. J. Phys. Chem. A 2007, 111, 1966–1970. [Google Scholar] [CrossRef]
- Chattaraj, P.; Chakraborty, A.; Giri, S. Net Electrophilicity. J. Phys. Chem. A 2009, 113, 10068–10074. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, P.; Chamorro, E.; Chattaraj, P.K.; Proft, F.D.; Gázquez, J.L.; Liu, S.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P. Conceptual Density Functional Theory: Status, Prospects, Issues. Theor. Chem. Accounts 2020, 139. [Google Scholar] [CrossRef]
- Liu, S. (Ed.) Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory; Wiley-VCH Verlag: Weinheim, Germany, 2022. [Google Scholar] [CrossRef]
- Glossman-Mitnik, D. (Ed.) Density Functional Theory: Recent Advances, New Perspectives and Applications; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Kaya, S.; von Szentpaly, L.; Serdaroglu, G.; Guo, L. (Eds.) Chemical Reactivity; Elsevier-Health Sciences Division: Philadelphia, PA, USA, 2023. [Google Scholar]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Urban, L. Predictive ADMET: Integrated Approaches in Drug Discovery and Development; John Wiley & Sons: Nashville, TN, USA, 2014. [Google Scholar]
- Tsaioun, K.; Kates, S.A. (Eds.) ADMET for Medicinal Chemists: A Practical Guide; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- FAO-WHO. Toxicity Equivalence Factors for Marine Biotoxins Associated with Bivalve Molluscs; FAO-WHO: Rome, Italy, 2016. [Google Scholar]
- Domingo, L.R.; Aurell, M.; Pérez, P.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Power of Common diene/Dienophile Pairs in Diels-Alder Reactions. Tetrahedron 2002, 58, 4417–4423. [Google Scholar] [CrossRef]
- Domingo, L.R.; Sáez, J.A. Understanding the Mechanism of Polar Diels-Alder Reactions. Org. Biomol. Chem. 2009, 7, 3576–3583. [Google Scholar] [CrossRef] [PubMed]
- Pérez, P.; Domingo, L.R.; Aurell, M.J.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Pattern of Some Reagents Involved in 1,3-Dipolar Cycloaddition Reactions. Tetrahedron 2003, 59, 3117–3125. [Google Scholar] [CrossRef]
- Domingo, L.R.; Chamorro, E.; Perez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, P.; Domingo, L.R.; Chamorro, E.; Pérez, P. A Further Exploration of a Nucleophilicity Index Based on the Gas-Phase Ionization Potentials. J. Mol. Struct. THEOCHEM 2008, 865, 68–72. [Google Scholar] [CrossRef]
- Domingo, L.R.; Perez, P. The Nucleophilicity N Index in Organic Chemistry. Org. Biomol. Chem. 2011, 9, 7168–7175. [Google Scholar] [CrossRef]
- Lipinski, C.; Lombardo, F.; Dominy, B.; Feeney, P. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Winiwarter, S.; Bonham, N.M.; Ax, F.; Hallberg, A.; Lennernäs, H.; Karlén, A. Correlation of Human Jejunal Permeability (in Vivo) of Drugs with Experimentally and Theoretically Derived Parameters. A Multivariate Data Analysis Approach. J. Med. Chem. 1998, 41, 4939–4949. [Google Scholar] [CrossRef] [PubMed]
- Bartzatt, R. Applying Pattern Recognition Methods and Structure Property Correlations to Determine Drug Carrier Potential of Nicotinic Acid and Analogize to Dihydropyridine. Eur. J. Pharm. Biopharm. 2005, 59, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Martin, Y.C. A Bioavailability Score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
- Lagos, N. Clinical Applications of Paralytic Shellfish Poisoning Toxins. In Toxins and Biologically Active Compounds from Microalgae, Volume 2; CRC Press: Boca Raton, FL, USA, 2014; pp. 269–298. [Google Scholar] [CrossRef]
- Burack, M.A.; Stasheff, S.F.; Wilson, W.A. Selective Suppression of in vitro Electrographic Seizures by Low-Dose Tetrodotoxin: A Novel Anticonvulsant Effect. Epilepsy Res. 1995, 22, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Santamaria, C.M.; Wei, T.; Zhao, C.; Ji, T.; Yang, T.; Shomorony, A.; Wang, B.Y.; Kohane, D.S. Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin. Nano Lett. 2018, 18, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Baj, A.; Bistoletti, M.; Bosi, A.; Moro, E.; Giaroni, C.; Crema, F. Marine Toxins and Nociception: Potential Therapeutic Use in the Treatment of Visceral Pain Associated with Gastrointestinal Disorders. Toxins 2019, 11, 449. [Google Scholar] [CrossRef]
- Montero, M.C.; del Campo, M.; Bono, M.; Simon, M.V.; Guerrero, J.; Lagos, N. Neosaxitoxin Inhibits the Expression of Inflammation Markers of the M1 Phenotype in Macrophages. Mar. Drugs 2020, 18, 283. [Google Scholar] [CrossRef]
- Ji, T.; Li, Y.; Deng, X.; Rwei, A.Y.; Offen, A.; Hall, S.; Zhang, W.; Zhao, C.; Mehta, M.; Kohane, D.S. Delivery of Local Anaesthetics by a Self-Assembled Supramolecular System Mimicking their Interactions with a Sodium Channel. Nat. Biomed. Eng. 2021, 5, 1099–1109. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Delwig, A.; Beckley, J.T.; Klas, S.; Monteleone, D.; Zhou, X.; Luu, G.; Du Bois, J.; Hunter, J.C.; Mulcahy, J.V. Discovery of Selective Inhibitors of Nav 1.7 Templated on Saxitoxin as Therapeutics for Pain. ACS Med. Chem. Lett. 2022, 13, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, G.; Sepúlveda, J.M.; Al Ghumgham, Z.; del Campo, M.; Montero, C.; Lagos, N. Neosaxitoxin, a Paralytic Shellfish Poison Toxin, Effectively Manages Bucked Shins Pain, as a Local Long-Acting Pain Blocker in an Equine Model. Toxicon 2018, 141, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Montero, C.; Riquelme, G.; del Campo, M.; Lagos, N. Neosaxitoxin, a Paralytic Shellfish Poison Phycotoxin, Blocks Pain and Inflammation in Equine Osteoarthritis. Toxicon 2021, 204, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, D.; Khotimchenko, Y.; Magarlamov, T. Addressing the Issue of Tetrodotoxin Targeting. Mar. Drugs 2018, 16, 352. [Google Scholar] [CrossRef]
- Shi, J.; Liu, T.T.; Wang, X.; Epstein, D.H.; Zhao, L.Y.; Zhang, X.L.; Lu, L. Tetrodotoxin Reduces Cue-induced Drug Craving and Anxiety in Abstinent Heroin Addicts. Pharmacol. Biochem. Behav. 2009, 92, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, J.; Lu, C.L.; Kang, L.; Xie, L.; Zhang, Y.Y.; Zhou, X.B.; Zhong, S. Tetrodotoxin Alleviates Acute Heroin Withdrawal Syndrome: A Multicentre, Randomized, Double-Blind, Placebo-controlled Study. Clin. Exp. Pharmacol. Physiol. 2011, 38, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Epstein-Barash, H.; Shichor, I.; Kwon, A.H.; Hall, S.; Lawlor, M.W.; Langer, R.; Kohane, D.S. Prolonged Duration Local Anesthesia with Minimal Toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 7125–7130. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. One Man’s Poison–Clinical Applications of Botulinum Toxin. New Engl. J. Med. 1999, 341, 118–120. [Google Scholar] [CrossRef]
- Chen, S. Clinical Uses of Botulinum Neurotoxins: Current Indications, Limitations and Future Developments. Toxins 2012, 4, 913–939. [Google Scholar] [CrossRef]
- Wheeler, A.; Smith, H.S. Botulinum Toxins: Mechanisms of Action, Antinociception and Clinical Applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. II. MMFF94 van der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17, 520–552. [Google Scholar] [CrossRef]
- Halgren, T.A. MMFF VI. MMFF94s Option for Energy Minimization Studies. J. Comput. Chem. 1999, 20, 720–729. [Google Scholar] [CrossRef]
- Halgren, T.A.; Nachbar, R.B. Merck Molecular Force Field. IV. Conformational Energies and Geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. V. Extension of MMFF94 Using Experimental Data, Additional Computational Data, and Empirical Rules. J. Comput. Chem. 1996, 17, 616–641. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. MOPAC2009; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2008. [Google Scholar]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics. Phys. Chem. Chem. Phys. 2012, 14, 16187. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Frau, J.; Flores-Holguín, N.; Glossman-Mitnik, D. Chemical Reactivity Properties, pKa Values, AGEs Inhibitor Abilities and Bioactivity Scores of the Mirabamides A–H Peptides of Marine Origin Studied by Means of Conceptual DFT. Mar. Drugs 2018, 16, 302. [Google Scholar] [CrossRef] [PubMed]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Chemical-Reactivity Properties, Drug Likeness, and Bioactivity Scores of Seragamides A–F Anticancer Marine Peptides: Conceptual Density Functional Theory Viewpoint. Computation 2019, 7, 52. [Google Scholar] [CrossRef]
- Frau, J.; Flores-Holguín, N.; Glossman-Mitnik, D. Chemical Reactivity Theory and Empirical Bioactivity Scores as Computational Peptidology Alternative Tools for the Study of Two Anticancer Peptides of Marine Origin. Molecules 2019, 24, 1115. [Google Scholar] [CrossRef] [PubMed]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Computational Prediction of Bioactivity Scores and Chemical Reactivity Properties of the Parasin I Therapeutic Peptide of Marine Origin Through the Calculation of Global and Local Conceptual DFT Descriptors. Theor. Chem. Accounts 2019, 138. [Google Scholar] [CrossRef]
- Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. A Fast and Simple Evaluation of the Chemical Reactivity Properties of the Pristinamycin Family of Antimicrobial Peptides. Chem. Phys. Lett. 2020, 739, 137021. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Pal, R.; Chattaraj, P.K. Electrophilicity Index Revisited. J. Comput. Chem. 2022, 44, 278–297. [Google Scholar] [CrossRef]
- Velmourougane, G. Understanding Lipinski’s Rule of 5 and the Role of LogP Value in Drug Design and Development. 2023. Available online: https://www.sailife.com/understanding-lipinskis-rule-of-5-and-the-role-of-logp-value-in-drug-design-and-development/#/ (accessed on 10 May 2023).
- Schaftenaar, G.; de Vlieg, J. Quantum Mechanical Polar Surface Area. J. Comput.-Aided Mol. Des. 2012, 26, 311–318. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Buxton, I.L.O.; Benet, L.Z. Pharmacokinetics: The Dynamics of Drug Absorption, Distribution, Metabolism, and Elimination. In Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 13e; Brunton, L.L., Hilal-Dandan, R., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2017; Chapter 2. [Google Scholar]
- Wilson, G.G.; Weitschies, W.; Butler, J. Gastrointestinal Transit and Drug Absorption. In Oral Drug Absorption; Dressman, J.B., Reppas, C., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Chapter 2; pp. 57–81. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A Boiled-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Edwards, D.A.; Langer, R. A Linear Theory of Transdermal Transport Phenomena. J. Pharm. Sci. 1994, 83, 1315–1334. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Sun, J.; Zheng, H.; Le, Q.; Wang, C.; Bai, K.; He, J.; He, H.; Dong, Y. Effect of Tetrodotoxin Pellets in a Rat Model of Postherpetic Neuralgia. Mar. Drugs 2018, 16, 195. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; He, J.; Sun, J.; Le, Q.; Bai, K.; Mou, Y.; Zhang, Y.; Chen, W.; Huang, W. Analgesia Effect of Enteric Sustained-Release Tetrodotoxin Pellets in the Rat. Pharmaceutics 2020, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Eloy, J.O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J.P.A.; Lee, R.J.; Marchetti, J.M. Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surf. B Biointerfaces 2014, 123, 345–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.N.; Niu, M.T.; Fan, J.X.; Chen, Q.W.; Zhang, X.Z. Photoelectric Bacteria Enhance the In Situ Production of Tetrodotoxin for Antitumor Therapy. Nano Lett. 2021, 21, 4270–4279. [Google Scholar] [CrossRef]
Name | Abbreviation | Molecular Formula | Molecular Structure | LD50 | TEF |
---|---|---|---|---|---|
(a) | |||||
Saxitoxin | STX | C10H17N7O4 | 1 | 1.0 | |
Neosaxitoxin | NeoSTX | C10H17N7O5 | 2.54 | 2.0 | |
Gonyautoxin | GTX1 | C10H17N7O9S | 0.93 | 1.0 | |
Gonyautoxin II | GTX2 | C10H17N7O8S | 0.57 | 0.4 | |
Gonyautoxin III | GTX3 | C10H17N7O9S | — | 0.6 | |
Gonyautoxin IV | GTX4 | C10H17N7O7S | — | 0.7 | |
(b) | |||||
Gonyautoxin V | GTX5 (B1) | C10H17N7O8S | 0.064 | 0.1 | |
Gonyautoxin VI | GTX6 (B2) | C10H17N7O11S | <0.017 | 0.05 | |
Protogonyautoxin I | C1 | C10H17N7O11S2 | 0.043 | 0.01 | |
Protogonyautoxin II | C2 | C10H17N7O11S2 | — | 0.01 | |
Protogonyautoxin III | C3 | C10H17N7O12S2 | — | 0.01 | |
Protogonyautoxin IV | C4 | C10H17N7O12S2 | — | 0.1 | |
(c) | |||||
Decarbamoyl saxitoxin | dcSTX | C9H18N6O3 | 0.37 | 0.5 | |
Decarbamoyl neosaxitoxin | dcNeoSTX | C9H18N6O4 | 0.22 | 0.2 | |
Decarbamoyl gonyautoxin | dcGTX1 | C9H20N6O7S | — | — | |
Decarbamoyl gonyautoxin II | dcGTX2 | C10H17N7O12S | 0.11 | 0.2 | |
Decarbamoyl gonyautoxin III | dcGTX3 | C9H20N6O6S | — | 0.4 | |
Decarbamoyl gonyautoxin IV | dcGTX4 | C9H20N6O7S | — | — |
Molecule | A | I | S | N | ||||||
---|---|---|---|---|---|---|---|---|---|---|
STX | 0.32 | 6.19 | 3.25 | 5.87 | 0.90 | 0.17 | 2.61 | 4.33 | 0.54 | 4.89 |
NeoSTX | 0.27 | 6.26 | 3.27 | 5.99 | 0.89 | 0.17 | 2.53 | 3.79 | 0.52 | 4.31 |
GTX1 | 0.59 | 6.29 | 3.44 | 5.70 | 1.04 | 0.18 | 2.50 | 4.16 | 0.71 | 4.87 |
GTX2 | 0.59 | 4.88 | 2.73 | 4.29 | 0.87 | 0.23 | 3.92 | 3.38 | 0.65 | 4.02 |
GTX3 | 6.04 | 2.99 | 6.10 | 0.74 | 0.16 | 2.75 | 3.35 | 0.35 | 3.70 | |
GTX4 | 6.00 | 2.97 | 6.05 | 0.73 | 0.17 | 2.79 | 3.33 | 0.35 | 3.70 | |
GTX5 (B1) | 5.87 | 2.87 | 5.99 | 0.69 | 0.17 | 2.92 | 3.19 | 0.32 | 3.51 | |
GTX6 (B2) | 0.30 | 5.98 | 3.14 | 5.68 | 0.87 | 0.18 | 2.81 | 3.66 | 0.52 | 4.18 |
C1 | 0.68 | 6.22 | 3.45 | 5.53 | 1.07 | 0.18 | 2.58 | 4.22 | 0.77 | 4.99 |
C2 | 0.48 | 6.29 | 3.36 | 5.81 | 0.99 | 0.17 | 2.51 | 4.03 | 0.64 | 4.67 |
C3 | 0.55 | 6.26 | 3.41 | 5.72 | 1.02 | 0.17 | 2.53 | 4.09 | 0.68 | 4.77 |
C4 | 0.47 | 6.30 | 3.39 | 5.82 | 0.98 | 0.17 | 2.50 | 4.03 | 0.64 | 4.67 |
dcSTX | 0.18 | 6.00 | 3.09 | 5.82 | 0.82 | 0.17 | 2.80 | 3.54 | 0.46 | 4.00 |
dcNeoSTX | 0.27 | 6.31 | 3.29 | 6.05 | 0.89 | 0.17 | 2.48 | 3.81 | 0.52 | 4.33 |
dcGTX1 | 0.45 | 6.34 | 3.39 | 5.88 | 0.98 | 0.17 | 2.46 | 4.02 | 0.63 | 4.65 |
dcGTX2 | 0.56 | 6.18 | 3.77 | 5.61 | 1.01 | 0.18 | 2.61 | 4.06 | 0.69 | 4.75 |
dcGTX3 | 0.59 | 6.18 | 3.38 | 5.60 | 1.02 | 0.18 | 2.61 | 4.09 | 0.70 | 4.79 |
dcGTX4 | 0.45 | 6.34 | 3.40 | 5.88 | 0.98 | 0.17 | 2.46 | 4.02 | 0.63 | 4.65 |
Molecule | Log P | PSA | Molecular Volume | Rule of Five | Rotatable Bonds |
---|---|---|---|---|---|
STX | 188 | 248 | 2 | 3 | |
NeoSTX | 104 | 255 | 2 | 3 | |
GTX1 | 257 | 304 | 2 | 5 | |
GTX2 | 248 | 295 | 2 | 5 | |
GTX3 | 245 | 295 | 2 | 5 | |
GTX4 | 257 | 304 | 2 | 5 | |
GTX5 (B1) | 225 | 287 | 2 | 4 | |
GTX6 (B2) | 242 | 296 | 2 | 4 | |
C1 | 289 | 336 | 2 | 6 | |
C2 | 288 | 336 | 2 | 6 | |
C3 | 305 | 344 | 2 | 6 | |
C4 | 305 | 344 | 2 | 6 | |
dcSTX | 154 | 221 | 1 | 1 | |
dcNeoSTX | 165 | 230 | 1 | 1 | |
dcGTX1 | 218 | 275 | 2 | 2 | |
dcGTX2 | 186 | 262 | 2 | 2 | |
dcGTX3 | 207 | 267 | 2 | 2 | |
dcGTX4 | 218 | 275 | 2 | 2 |
Molecule | GIA | BBBP | PGPS | I1 | I2 | I3 | I4 | I5 | Log Kp |
---|---|---|---|---|---|---|---|---|---|
STX | Low | No | No | No | No | No | No | No | |
NeoSTX | Low | No | No | No | No | No | No | No | |
GTX1 | Low | No | No | No | No | No | No | No | |
GTX2 | Low | No | No | No | No | No | No | No | |
GTX3 | Low | No | No | No | No | No | No | No | |
GTX4 | Low | No | No | No | No | No | No | No | |
GTX5 (B1) | Low | No | No | No | No | No | No | No | |
GTX6 (B2) | Low | No | Yes | No | No | No | No | No | |
C1 | Low | No | Yes | No | No | No | No | No | |
C2 | Low | No | Yes | No | No | No | No | No | |
C3 | Low | No | Yes | No | No | No | No | No | |
C4 | Low | No | Yes | No | No | No | No | No | |
dcSTX | Low | No | Yes | No | No | No | No | No | |
dcNeoSTX | Low | No | Yes | No | No | No | No | No | |
dcGTX1 | Low | No | Yes | No | No | No | No | No | |
dcGTX2 | Low | No | Yes | No | No | No | No | No | |
dcGTX3 | Low | No | Yes | No | No | No | No | No | |
dcGTX4 | Low | No | Yes | No | No | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Holguín, N.; Salas-Leiva, J.S.; Núñez-Vázquez, E.J.; Tovar-Ramírez, D.; Glossman-Mitnik, D. Marine Toxins as Pharmaceutical Treasure Troves: A Focus on Saxitoxin Derivatives from a Computational Point of View. Molecules 2024, 29, 275. https://doi.org/10.3390/molecules29010275
Flores-Holguín N, Salas-Leiva JS, Núñez-Vázquez EJ, Tovar-Ramírez D, Glossman-Mitnik D. Marine Toxins as Pharmaceutical Treasure Troves: A Focus on Saxitoxin Derivatives from a Computational Point of View. Molecules. 2024; 29(1):275. https://doi.org/10.3390/molecules29010275
Chicago/Turabian StyleFlores-Holguín, Norma, Joan S. Salas-Leiva, Erick J. Núñez-Vázquez, Dariel Tovar-Ramírez, and Daniel Glossman-Mitnik. 2024. "Marine Toxins as Pharmaceutical Treasure Troves: A Focus on Saxitoxin Derivatives from a Computational Point of View" Molecules 29, no. 1: 275. https://doi.org/10.3390/molecules29010275