Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Underivatised CBDs Using Gas Chromatography (GC-MS)
2.2. GC-MS Analysis of CBDs before and after Pre-Column Extraction with NaOH Solution
2.3. C18-HPLC-DAD Analysis of CBDs and Chol in Standard Solutions and Selected Biological Samples
3. Materials and Methods
3.1. Standards and Reagents
3.2. Pre-Column Preparation Procedures for Biological Materials
3.2.1. Hen Egg Yolk
3.2.2. Plant Materials
3.3. Chromatographic Equipment and Analytical Methods
3.3.1. Gas Chromatographic Analyses
Extraction of Acidic CBDs from Mixtures of CBDs-A and Neutral CBDs-N
CBDs-A Extraction from Layer A
3.3.2. Reversed-Phase Liquid-Chromatographic (C18-HPLC-DAD) Analyses
3.3.3. Measurable Assessments of Gas and Liquid Chromatographic Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Handayani, U.F.; Sofyan, A.; Lestari, D.; Sholikin, M.M.; Wulandari, W.; Harahap, M.A.; Herdian, H.; Julendra, H.; Okselni, T.; Mahat, M.E. Dietary supplementation with tomato waste to improve performance and egg quality of laying hens: A meta-analysis. J. Anim. Feed Sci. 2023, 32, 221–232. [Google Scholar] [CrossRef]
- Reis, M.G.; Ferreira, A.J.F.; Sohouli, M.H.; Taimeirão, D.R.; Vieira, R.A.L.; Guimarães, N.S. Effect of cannabis and subproducts on anthropometric measures: A systematic review and meta-analysis. Int. J. Obes. 2024, 48, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Kleinhenz, M.D.; Weeder, M.; Montgomery, S.; Martin, M.; Curtis, A.; Magnin, G.; Lin, Z.; Griffin, J.; Coetzee, J.F. Short term feeding of industrial hemp with a high cannabidiolic acid (CBDA) content increases lying behavior and reduces biomarkers of stress and inflammation in Holstein steers. Sci. Rep. 2022, 12, 3683. [Google Scholar] [CrossRef] [PubMed]
- Kleinhenz, M.D.; Magnin, G.; Ensley, S.M.; Griffin, J.J.; Goeser, J.; Lynch, P.E.; Coetzee, J.E. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 2020, 36, 489–494. [Google Scholar] [CrossRef]
- Henson, J.D.; Vitetta, L.; Hall, S. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions. Inflammopharmacology 2022, 30, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Duanis-Assaf, D.; Feldman, M.; Maurer, D.; Feygenberg, O.; Steinberg, D.; Alkan, N. Cannabinoids: A new natural agent to control postharvest decay development. Postharvest Biol. Technol. 2024, 211, 112842. [Google Scholar] [CrossRef]
- Krebs, G.L.; De Rosa, D.W.; White, D.M.; Blake, B.L.; Dods, K.C.; May, C.D.; Tai, Z.X.; Clayton, E.H.; Lynch, E.E. Intake, nutrient digestibility, rumen parameters, growth rate, carcase characteristics and cannabinoid residues of sheep fed pelleted rations containing hemp (Cannabis sativa L.) stubble. Transl. Anim. Sci. 2021, 5, txab213. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Shahidi, F. Cannabis and Cannabis Edibles: A Review. J. Agric. Food Chem. 2021, 69, 1751–1774. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Cannabis, cannabinoid receptors, and endocannabinoid system: Yesterday, today, and tomorrow. Acta Pharmacol. Sin. 2019, 40, 297–299. [Google Scholar] [CrossRef]
- Acosta-Balcazar, I.C.; Estrada-Drouaillet, B.; Bautista-Martínez, Y.; Granados-Rivera, L.D. A meta-analysis to determine the optimal values of precursors in the diet of dairy cows that increase the concentration of conjugated linoleic acid (CLA) in milk. J. Anim. Feed Sci. 2024, 33, 13–27. [Google Scholar] [CrossRef]
- Mensah, E.; Tabrizchi, R.; Daneshtalab, N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol. Transl. Sci. 2022, 5, 1034–1049. [Google Scholar] [CrossRef]
- Kanabus, J.; Bryła, M.; Roszko, M.; Modrzewska, M.; Pierzgalski, A. Cannabinoids. Characteristics and Potential for Use in Food Production. Molecules 2021, 26, 6723. [Google Scholar] [CrossRef]
- Cardenia, V.; Toschi, T.G.; Scappini, S.; Rubino, R.C.; Rodriguez-Estrada, M.T. Development and validation of a Fast gas chromatography/mass spectrometry method for the determination of cannabinoids in Cannabis sativa L. J. Food Drug Anal. 2018, 26, 1283–1292. [Google Scholar] [CrossRef]
- Zgair, A.; Lee, J.B.; Wong, J.C.M.; Taha, D.A.; Aram, J.; Di Virgilio, D.; McArthur, J.W.; Cheng, Y.K.; Hennig, I.M.; Barrett, D.A.; et al. Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunemodulation. Sci. Rep. 2017, 7, 14542. [Google Scholar] [CrossRef]
- McDougle, D.R.; Watson, J.E.; Abdeen, A.A.; Adili, R.; Caputo, M.P.; Krapf, J.E.; Johnson, R.W.; Kilian, K.A.; Holinstat, M.; Das, A. Anti-inflammatory ω-3 endocannabinoid epoxides. Proc. Natl. Acad. Sci. USA 2017, 114, E6034–E6043. [Google Scholar] [CrossRef]
- Whiting, P.F.; Wolff, R.F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A.V.; Keurentjes, J.C.; Lang, S.; Misso, K.; Ryder, S.; et al. Cannabinoids for Medical Use: A Systematic Review and Meta-analysis. J. Am. Med. Assoc. 2015, 313, 2456–2473. [Google Scholar] [CrossRef]
- Fallahi, S.; Bobak, Ł.; Opaliński, S. Hemp in Animal Diets—Cannabidiol. Animals 2022, 12, 2541. [Google Scholar] [CrossRef]
- Williams, R.A.; Williams, D.W. Cannabinoids-Human Physiology and Agronomic Principles for Production; Book Series: ASA, CSSA, and SSSA Books; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Marcu, J.P. An overview of major and minor phytocannabinoids. In Neuropathology of Drug Additions and Substance Misuse; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Bab, I.; Zimmer, A. Cannabinoid receptors and the regulation of bone mass. Br. J. Pharmacol. 2008, 153, 182–188. [Google Scholar] [CrossRef]
- Ng, T.; Gupta, V.; Keshock, M.C. Tetrahydrocannabinol (THC). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Dos Reis Rosa Franco, G.; Smid, S.; Viegas, C. Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases. Curr. Neuropharmacol. 2021, 19, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.H.; Avula, B.; Radwan, M.M.; Wanas, A.S.; van Antwerp, J.; Parcher, J.F.; ElSohly, M.A.; Khan, I.A. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry. Cannabis Cannabinoid Res. 2016, 1, 262–271. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.; Gul, W. Constituents of Cannabis sativa. In Handbook of Cannabis; Pertwee, R., Ed.; Oxford University Press: Oxford, UK, 2014; pp. 3–22. [Google Scholar] [CrossRef]
- Correia, B.; Ahmad, S.M.; Quintas, A. Determination of phytocannabinoids in cannabis samples by ultrasound-assisted solid-liquid extraction and high-performance liquid chromatography with diode array detector analysis. J. Chromatogr. A 2023, 1705, 464191. [Google Scholar] [CrossRef]
- Stefkov, G.; Cvetkovikj Karanfilova, I.; Stoilkovska Gjorgievska, V.; Trajkovska, A.; Geskovski, N.; Karapandzova, M.; Kulevanova, S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products—A Comprehensive Review. Molecules 2022, 27, 975. [Google Scholar] [CrossRef]
- Czauderna, M.; Marounek, M.; Duskova, D.; Kowalczyk, J. The sensitive and simple measurement of underivatized cholesterol and its oxygen derivatives in biological materials by capillary gas-chromatography coupled to a mass-selective detector. Acta Chromatogr. 2013, 25, 655–667. [Google Scholar] [CrossRef]
- Citti, C.; Braghiroli, D.; Vandelli, M.A.; Cannazza, G. Pharmaceutical and biomedical analysis of cannabinoids: A critical review. J. Pharm. Biomed. Anal. 2018, 147, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Ravisankar, P. Fundamental Chromatographic Parameters. Int. J. Pharm. Sci. Rev. Res. 2020, 55, 46–50. Available online: https://www.researchgate.net/publication/340849229 (accessed on 22 April 2020).
- Białek, M.; Karpińska, M.; Czauderna, M. Enrichment of lamb rations with carnosic acid and Se-compounds affects the content of selected lipids and tocopherols in the pancreas. J. Anim. Feed Sci. 2022, 31, 161–174. [Google Scholar] [CrossRef]
- Czauderna, M.; Kowalczyk, J.; Niedźwiedzka, K.M. Simple HPLC analysis of tocopherols and cholesterol from specimens of animal origin. Chem. Anal. 2009, 54, 203–214. [Google Scholar]
- Pourseyed Lazarjani, M.; Torres, S.; Hooker, T.; Fowlie, C.; Young, O.; Seyfoddin, A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020, 2, 35. [Google Scholar] [CrossRef]
- Antunes, M.; Barroso, M.; Gallardo, E. Analysis of Cannabinoids in Biological Specimens: An Update. Int. J. Environ. Res. Public Health 2023, 20, 2312. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.-Y.; Li, S.-H.; Ma, W.; Wu, D.-T.; Li, H.-B.; Xiao, A.-P.; Liu, L.-L.; Zhu, F.; Gan, R.-Y. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. TrAC Trends Anal. Chem. 2022, 149, 116554. [Google Scholar] [CrossRef]
- Mandrioli, M.; Tura, M.; Scotti, S.; Toschi, T.G. Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L. Molecules 2019, 24, 2113. [Google Scholar] [CrossRef]
- Zekič, J.; Križman, M. Development of Gas-Chromatographic method for simultaneous determination of cannabinoids and terpenes in hemp. Molecules 2020, 25, 5872. [Google Scholar] [CrossRef]
- Franzin, M.; Ruoso, R.; Del Savio, R.; Akhavan Niaki, E.; Pettinelli, A.; Decorti, G.; Stocco, G.; Addobbat, R. Quantification of 7 cannabinoids in cannabis oil using GC-MS: Method development, validation and application to therapeutic preparations in Friuli Venezia Giulia region, Italy. Heliyon 2023, 9, e15479. [Google Scholar] [CrossRef]
- Montero, L.; Meckelmann, S.W.; Kim, H.; Ayala-Cabrera, J.F.; Schmitz, O.J. Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using LC × LC-HRMS. Anal. Bioanal. Chem. 2022, 414, 5445–5459. [Google Scholar] [CrossRef]
- Sonawane, P.; Pollier, J.; Panda, S.; Szymanski, J.; Massalha, H.; Yona, M.; Unger, T.; Malitsky, S.; Arendt, P.; Pauwels, L.; et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 2017, 3, 16205. [Google Scholar] [CrossRef]
- Czerwonka, M.; Białek, A.; Bobrowska-Korczak, B. A Novel method for the determination of squalene, cholesterol and their oxidation products in food of animal origin by GC-TOF/MS. Int. J. Mol. Sci. 2024, 25, 2807. [Google Scholar] [CrossRef]
- Hammond, E.W. Food and nutritional analysis|Oils and Fats. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 328–334. ISBN 9780123693976. Available online: https://www.sciencedirect.com/science/article/pii/B0123693977001862 (accessed on 28 May 2005). [CrossRef]
- Czauderna, M.; Wojtak, W.; Białek, M.; Białek, A. Optimization of high-efficient pre-column sample treatments and C18-UFLC method for selective quantification of selected chemical forms of tocopherol and tocotrienol in diverse foods. Food Chem. 2024, 437, 137909. [Google Scholar] [CrossRef]
- Armbruster, D. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008, 29, S49–S52. [Google Scholar] [PubMed]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Brown, C.E. Coefficient of Variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. [Google Scholar]
Compound | Retention Time, min (Mean ± SD) | a oSn before Extraction | b extSn after Extraction | c Recovery (R), % | d Calibration Equations y(ng) = a × Sn | e r; Linear Regression Coefficient | f LOD pg/mL | f LOQ pg/mL | g Inter- Assay RSD, % | h Tailing Factor (TF) of a Peak | i MS Response to 1 pg of Standards |
---|---|---|---|---|---|---|---|---|---|---|---|
Neutral forms of cannabinoids (CBDs-N) | |||||||||||
CBDV | 23.2 ± 0.1 | 576,784 | 577,484 | 100.1 | y = 2.68 × 10−6 × Sn | 0.9968 | 6.8 (0.024) | 22.7 (0.08) | 1.21 | 0.994 | 373 |
THCV | 27.1 ± 0.1 | 623,956 | 622,793 | 99.8 | y = 2.40 × 10−6 × Sn | 0.9968 | 5.9 (0.021) | 19.4 (0.07) | 1.32 | 0.990 | 417 |
CBL | 29.3 ± 0.1 | 539,796 | 540,184 | 100.1 | y = 2.05 × 10−6 × Sn | 0.9973 | 2.8 (0.009) | 9.3 (0.03) | 1.09 | 0.991 | 487 |
CBD | 31.9 ± 0.1 | 414,490 | 413,206 | 99.7 | y = 2.59 × 10−6 × Sn | 0.9976 | 5.0 (0.015) | 16.8 (0.05) | 1.46 | 0.987 | 387 |
CBC | 32.6 ± 0.1 | 298,395 | 297,171 | 99.6 | y = 2.34 × 10−6 × Sn | 0.9974 | 5.8 (0.019) | 19.4 (0.06) | 1.54 | 0.993 | 427 |
∆8-THC | 36.8 ± 0.1 | 324,754 | 323,256 | 99.5 | y = 1.91 × 10−6 × Sn | 0.9982 | 6.1 (0.022) | 20.3 (0.07) | 1.07 | 0.987 | 523 |
∆9-THC | 38.3 ± 0.1 | 248,395 | 250,171 | 100.8 | y = 2.60 × 10−6 × Sn | 0.9969 | 1.6 (0.007) | 5.4 (0.02) | 1.29 | 0.986 | 385 |
CBG | 42.1 ± 0.1 | 154,899 | 155,901 | 100.6 | y = 2.69 × 10−6 × Sn | 0.9981 | 4.0 (0.013) | 13.2 (0.04) | 2.23 | 0.988 | 372 |
CBN | 42.4 ± 0.1 | 356,274 | 353,893 | 99.3 | y = 5.89 × 10−6 × Sn | 0.9990 | 5.5 (0.018) | 18.2 (0.06) | 2.07 | 0.990 | 170 |
Acidic forms of cannabinoids (CBDs-A) | |||||||||||
CBDV-A j (CBDV) | - 23.2 ± 0.1 k | - 595,039 k | - 0 | 0 0 | y = 2.87 × 10−6 × Sn - | 0.9987 - | 7.3 (0.022) - | 24.3 (0.07) - | 1.18 - | 0.993 - | 348 - |
THCV-A j (THCV) | - 27.1 ± 0.1 k | - 607,956 k | - 0 | 0 0 | y = 2.76 × 10−6 × Sn - | 0.9963 - | 6.8 (0.022) - | 22.6 (0.07) - | 1.28 - | 0.991 - | 461 - |
CBL-A j (CBL) | - 29.3 ± 0.1 k | - 576,831 k | - 0 | 0 0 | y = 2.09 × 10−6 × Sn - | 0.9980 - | 2.9 (0.009) - | 9.5 (0.03) - | 1.13 - | 0.990 - | 479 - |
CBD-A j (CBD) | - 31.9 ± 0.1 k | - 442,352 k | - 0 | 0 0 | y = 2.95 × 10−6 × Sn - | 0.9984 - | 5.7 (0.0015) - | 19.1 (0.05) - | 1.43 - | 0.988 - | 339 - |
CBC-A j (CBC) | - 32.6 ± 0.1 k | - 276,873 k | - 0 | 0 0 | y = 2.67 × 10−6 × Sn - | 0.9976 - | 6.6 (0.019) - | 22.1 (0.06) - | 1.52 - | 0.992 - | 375 - |
∆9-THC-A j (∆9-THC) | - 38.3 ± 0.1 k | - 496,482 k | - 0 | 0 0 | y = 2.96 × 10−6 × Sn - | 0.9979 - | 1.8 (0.009) - | 6.1 (0.02) - | 1.12 - | 0.987 - | 338 - |
CBG-A j (CBG) | - 42.1 ± 0.1 k | - 184,328 k | - 0 | 0 0 | y = 3.07 × 10−6 × Sn - | 0.9983 - | 4.5 (0.013) - | 15.0 (0.04) - | 2.18 - | 0.989 - | 326 - |
CBN-A j (CBN) | - 42.4 ± 0.1 k | - 395,373 k | - 0 | 0 0 | y = 6.71 × 10−6 × Sn - | 0.9987 - | 6.2 (0.019) - | 20.7 (0.06) - | 1.93 - | 0.991 - | 149 - |
GCIS l | 50.6 ± 0.1 | 299,184 m | 297,705 | 99.5 | y = 2.669 × 10−5 × Sn | 0.9991 | 62.8 (0.17) | 209.0 (0.56) | 1.32 | 0.992 | 37 |
Chol | 54.5 ± 0.2 | 623,523 | 621,097 | 99.6 | y = 8.37 × 10−7 × Sn | 0.9944 | 18.2 (0.05) | 60.5 (0.16) | 1.49 | 0.989 | 1094 |
Cannabinoid in Analysed Solutions | MM g/mol | Retention Time, min (Mean ± SD) | Recoveries of CBDs after Extraction with 0.1 M NaOH Solution | CBDs-AL, % in Solutions Containing CBDs-N and CBDs-A | |
---|---|---|---|---|---|
CBDs-NR, % in CBDs-N Solutions | CBDs-AR, % in CBDs-A Solutions | ||||
CBDV e | 286.4 | 23.2 ± 0.1 | 99 ± 1 | - g | - h |
CBDV-A f | 330.4 | 23.2 ± 0.1 | - g | 0 | 101 ± 2 |
THCV e | 286.4 | 27.1 ± 0.1 | 101 ± 1 | - g | - h |
THCV-A f | 330.4 | 27.1 ± 0.1 | - g | 0 | 99 ± 1 |
CBL e | 314.5 | 29.3 ± 0.1 | 98 ± 1 | - g | - h |
CBL-A f | 358.5 | 29.3 ± 0.1 | - g | 0 | 98 ± 2 |
CBD e | 314.5 | 31.9 ± 0.1 | 100 ± 1 | - g | - h |
CBD-A f | 358.5 | 31.9 ± 0.1 | - g | 0 | 101 ± 1 |
CBC e | 314.5 | 32.6 ± 0.1 | 98 ± 1 | - g | - h |
CBC-A f | 358.5 | 32.6 ± 0.1 | - g | 0 | 99 ± 2 |
∆8-THC | 314.5 | 36.8 ± 0.1 | 101 ± 1 | - g | - h |
∆9-THC e | 314.5 | 38.3 ± 0.1 | 99 ± 2 | - g | - h |
∆9-THC-A f | 358.5 | 38.3 ± 0.1 | - g | 0 | 101 ± 2 |
CBG e | 316.5 | 42.1 ± 0.1 | 99 ± 1 | - g | - h |
CBG-A f | 360.5 | 42.1 ± 0.1 | - g | 0 | 99 ± 1 |
CBN e | 310.5 | 42.4 ± 0.1 | 102 ± 2 | - g | - h |
CBN-A f | 354.5 | 42.4 ± 0.1 | - g | 0 | 101 ± 1 |
Cannabinoid in Assayed Solutions | o Sn a before Extraction with 0.1 M NaOH | CBDsR, % b in Solutions Extracted with 0.1 M NaOH | CBDsRe, % c in Solutions Re-Extracted with Hexane |
---|---|---|---|
CBDV d | 288,392 | 100.1 | 0 |
CBL d | 268,964 | 100.1 | 0 |
CBD-A e | 221,984 | 0 | 98.7 |
CBC-A e | 137,492 | 0 | 98.9 |
Compound | Retention Time, min (Mean ± SD) | DAD Detection (nm) | Calibration Equations b y(µg) = a × Sn | r; Linear Regression Coefficient c | LOD d ng/mL | LOQ d ng/mL | Tailing Factor (TF) of a Peak e | DAD Response to 1 pg of Standards |
---|---|---|---|---|---|---|---|---|
HPLCIS | 9.25 ± 0.05 | 206 | y = 5.861 × 10−6 × Sn | 0.9994 | 9.6 (79) | 32.0 (263) | 0.999 | 0.171 |
CBDV-A f | 22.9 ± 0.1 | 221 | y = 8.165 × 10−8 × Sn | 0.9999 | 20.6 (62) | 60.8 (208) | 0.998 | 12.2 |
268 | y = 1.727 × 10−7 × Sn | 0.9998 | 3.3 (10) | 10.9 (33) | 0.997 | 5.8 | ||
CBDV g | 23.7 ± 0.1 | 205 | y = 4.467 × 10−8 × Sn | 0.9999 | 14.7 (51) | 49.1 (172) | 0.998 | 22.4 |
273 | y = 1.767 × 10−6 × Sn | 0.9998 | 9.8 (34) | 32.8 (115) | 0.997 | 0.6 | ||
CBD-A f | 27.1 ± 0.1 | 221 | y = 8.778 × 10−8 × Sn | 0.9999 | 26.0 (73) | 86.8 (242) | 0.996 | 11.4 |
268 | y = 1.876 × 10−7 × Sn | 0.9999 | 4.2 (12) | 13.9 (39) | 0.996 | 5.3 | ||
CBG-A f | 28.1 ± 0.1 | 220 | y = 8.168 × 10−8 × Sn | 0.9999 | 27.4 (76) | 91.5 (254) | 0.998 | 12.2 |
268 | y = 1.733 × 10−7 × Sn | 0.9999 | 4.2 (12) | 13.9 (39) | 0.999 | 5.8 | ||
CBG g | 28.5 ± 0.1 | 205 | y = 4.762 × 10−8 × Sn | 0.9999 | 18.9 (60) | 63.1 (199) | 0.996 | 21.0 |
273 | y = 2.137 × 10−6 × Sn | 0.9999 | 14.2 (45) | 47.5 (150) | 0.997 | 0.5 | ||
CBD g | 29.1 ± 0.1 | 205 | y = 4.617 × 10−8 × Sn | 0.9999 | 19.5 (62) | 65.1 (207) | 0.998 | 21.7 |
274 | y = 1.839 × 10−6 × Sn | 0.9999 | 13.8 (44) | 46.1 (146) | 0.999 | 0.54 | ||
THCV g | 29.4 ± 0.1 | 205 | y = 5.774 × 10−8 × Sn | 0.9999 | 23.3 (81) | 77.7 (271) | 0.995 | 17.3 |
278 | y = 2.139 × 10−6 × Sn | 0.9999 | 15.4 (54) | 51.4 (180) | 0.996 | 0.47 | ||
THCV-A f | 33.7 ± 0.1 | 220 | y = 1.007 × 10−7 × Sn | 0.9999 | 45.2 (137) | 150.8 (457) | 0.996 | 9.9 |
269 | y = 1.779 × 10−7 × Sn | 0.9999 | 5.3 (16) | 17.7 (53) | 0.997 | 5.6 | ||
CBN g | 34.6 ± 0.1 | 215 | y = 6.793 × 10−8 × Sn | 0.9999 | 37.8 (122) | 125.9 (405) | 0.997 | 14.7 |
284 | y = 1.247 × 10−7 × Sn | 0.9999 | 1.3 (4.2) | 4.3 (14) | 0.996 | 8.0 | ||
∆9-THC g | 39.0 ± 0.1 | 209 | y = 6.343 × 10−8 × Sn | 0.9999 | 34.7 (110) | 115.6 (368) | 0.996 | 15.8 |
279 | y = 2.492 × 10−6 × Sn | 0.9965 | 21.4 (68) | 71.2 (224) | 0.996 | 0.4 | ||
∆8-THC g | 39.8 ± 0.1 | 207 | y = 7.548 × 10−8 × Sn | 0.9999 | 50.9 (162) | 169.8 (540) | 0.995 | 13.2 |
279 | y = 2.833 × 10−7 × Sn | 0.9999 | 35.8 (113) | 119.3 (372) | 0.995 | 3.5 | ||
CBN-A f | 40.3 ± 0.1 | 262 | y = 7.270 × 10−8 × Sn | 0.9999 | 0.4 (1.2) | 1.4 (4.1) | 0.996 | 13.8 |
326 | y = 3.954 × 10−7 × Sn | 0.9999 | 2.2 (6.6) | 7.3 (22) | 0.996 | 2.5 | ||
CBL g | 42.0 ± 0.2 | 210 | y = 6.044 × 10−8 × Sn | 0.9999 | 24.7 (78) | 82.2 (261) | 0.995 | 16.5 |
278 | y = 1.743 × 10−6 × Sn | 0.9998 | 10.2 (32) | 33.8 (106) | 0.995 | 0.6 | ||
CBC g | 43.0 ± 0.1 | 230 | y = 1.100 ×10−7 × Sn | 0.9999 | 17.0 (54) | 56.6 (180) | 0.997 | 9.1 |
279 | y = 2.723 × 10−7 × Sn | 0.9999 | 2.0 (6.3) | 6.6 (21) | 0.996 | 3.7 | ||
∆9-THC-A f | 43.9 ± 0.1 | 220 | y = 1.077 × 10−7 × Sn | 0.9999 | 40.8 (114) | 136.2 (380) | 0.996 | 9.3 |
271 | y = 1.927 × 10−7 × Sn | 0.9999 | 4.2 (12) | 14.1 (39) | 0.995 | 5.2 | ||
CBC-A f | 46.3 ± 0.1 | 199 | y = 1.394 × 10−7 × Sn | 0.9996 | 36.1 (101) | 120.3 (336) | 0.995 | 7.2 |
254 | y = 8.045 × 10−8 × Sn | 0.9997 | 0.4 (1.2) | 1.5 (4.0) | 0.994 | 12.4 | ||
CBL-A f | 46.6 ± 0.1 | 227 | y = 1.969 × 10−7 × Sn | 0.9999 | 43.5 (122) | 145.1 (405) | 0.994 | 5.1 |
273 | y = 3.472 × 10−7 × Sn | 0.9997 | 2.8 (7.9) | 9.4 (26) | 0.993 | 2.9 | ||
Chol | 67.2 ± 0.3 | 205 | y = 2.240 × 10−7 × Sn | 0.9902 | 144.4 (373) | 480.8 (1244) | 0.991 | 4.5 |
Time, min | Flow-Rate min/mL | Composition, % a | ||
---|---|---|---|---|
Solvent A | Solvent B | Solvent C | ||
0 | 0.30 | 55 | 45 | 0 |
2.5 | 0.30 | 55 | 45 | 0 |
4.0 | 0.30 | 70 | 30 | 0 |
9.0 | 0.30 | 75 | 25 | 0 |
17.0 | 0.30 | 75 | 25 | 0 |
19.0 | 0.35 | 75 | 25 | 0 |
26.0 | 0.35 | 75 | 25 | 0 |
30.0 | 0.35 | 82 | 18 | 0 |
32.0 | 0.40 | 85 | 15 | 0 |
35.0 | 0.40 | 85 | 15 | 0 |
39.0 | 0.40 | 92 | 8 | 0 |
43.0 | 0.40 | 99 | 1 | 0 |
44.0 | 0.40 | 100 | 0 | 0 |
46.2 | 0.40 | 0 | 0 | 100 |
70.0 b | 0.41 | 0 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czauderna, M.; Taubner, T.; Wojtak, W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules 2024, 29, 2165. https://doi.org/10.3390/molecules29102165
Czauderna M, Taubner T, Wojtak W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules. 2024; 29(10):2165. https://doi.org/10.3390/molecules29102165
Chicago/Turabian StyleCzauderna, Marian, Tomáš Taubner, and Wiktoria Wojtak. 2024. "Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol" Molecules 29, no. 10: 2165. https://doi.org/10.3390/molecules29102165
APA StyleCzauderna, M., Taubner, T., & Wojtak, W. (2024). Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules, 29(10), 2165. https://doi.org/10.3390/molecules29102165