Research Progress on Taxus Extraction and Formulation Preparation Technologies
Abstract
:1. Introduction
2. Preparation Methods of Taxus Extracts
2.1. Supercritical CO2 Extraction
2.1.1. Characteristic
2.1.2. Compounds and Parameters of Supercritical CO2 Extraction from Taxus
2.2. Maceration and Reflux Extraction
2.2.1. Characteristic
2.2.2. Examples of Liquid Extractions from Taxus
2.3. Ultrasound-Assisted Extraction
2.4. Microwave-Assisted Extraction
2.5. Solid-Phase Extraction
2.6. High-Intensity Pulsed Electric Field Extraction
2.7. Enzyme-Assisted Extraction
2.8. Comparison and Analysis of Different Extraction Methods
3. Development of Dosage Forms for Taxus Extracts
3.1. Solid Dosage Forms
3.2. Liquid Dosage Forms
3.3. Semi-Solid Dosage Forms
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, X.; Zhang, N.; Xie, W. Advancements in the cultivation, active components, and pharmacological activities of taxus mairei. Molecules 2024, 29, 1128. [Google Scholar] [CrossRef]
- Shao, F.; Wilson, I.W.; Qiu, D. The research progress of taxol in taxus. Curr. Pharm. Biotechnol. 2021, 22, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Li, Q.Z.; Wang, R.L. Flavonoid components, distribution, and biological activities in taxus: A review. Molecules 2023, 28, 1713. [Google Scholar] [CrossRef]
- Lange, B.M.; Conner, C.F. Taxanes and taxoids of the genus Taxus—A comprehensive inventory of chemical diversity. Phytochemistry 2021, 190, 112829. [Google Scholar] [CrossRef] [PubMed]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical fluid extraction of bioactive compounds from plant materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Liu, Q.; Hou, X.; Fang, T. Supercritical fluid extraction of metal chelate: A Review. Crit. Rev. Anal. Chem. 2017, 47, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Mirsadeghi, S.; Pourmortazavi, S.M. Supercritical fluid extraction of pesticides and insecticides from food samples and plant materials. Crit. Rev. Anal. Chem. 2021, 51, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko, M.; Jokić, S.; Vidović, S.; Marić, B.; Redovniković, I.R. Optimization of the supercritical CO2 extraction of oil from rapeseed using response surface methodology. Food Technol. Biotechnol. 2012, 50, 208–215. [Google Scholar]
- Hu, C.; Gan, X.; Jia, Q.; Gao, P.; Du, T.; Zhang, F. Optimization of supercritical-CO(2) extraction and pharmacokinetics in SD rats of alkaloids form Sophora moorcroftiana seed. Sci. Rep. 2022, 12, 3301. [Google Scholar] [CrossRef]
- Singh, S.; Verma, D.K.; Thakur, M.; Tripathy, S.; Patel, A.R.; Shah, N.; Utama, G.L.; Srivastav, P.P.; Benavente-Valdés, J.R.; Chávez-González, M.L.; et al. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res. Int. 2021, 150, 110746. [Google Scholar] [CrossRef]
- Yen, H.W.; Yang, S.C.; Chen, C.H.; Jesisca; Chang, J.S. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresour. Technol. 2015, 184, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.Z.; Ji, S.H.; Xiong, N.N.; Jia, W.Z.; Li, Z. Study on extraction of taxol from taxus cuspidata by supercritical CO2 fluid. Chem. Eng. 2018, 46, 1–4. (In Chinese) [Google Scholar] [CrossRef]
- Peng, J.Z.; Shi, J.X. Supercritical CO2 fluid extraction of taxol from needles of Taxus chinensis var. mairei. J. Jishou Univ. 2009, 30, 93–95. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Piao, H. Study on the extraction of paclitaxel from Taxus chinensis by reflux method and supercritical CO_(2) fluid extraction. Tradit. Chin. Med. Mater. 2008, 31, 3. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Zhao, G.; Zhu, W. Process optimization of supercritical CO_(2) extraction of volatile oil and 10-DABⅢ from Taxus chinensis. West China J. Pharm. 2023, 38, 87–90. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.H.; Yan, L.Y.; Yu, X.Y.; Ruan, X.; Liu, B.; Wang, Q. Optimization of supercritical fluid extraction of total flavonoids and monomer compositions from Taxus remainder extracts free of taxoids. Zhong Yao Cai 2016, 39, 2062–2067. (In Chinese) [Google Scholar] [CrossRef]
- Alaydi, H.; Downey, P.; McKeon-Bennett, M.; Beletskaya, T. Supercritical-CO(2) extraction, identification and quantification of polyprenol as a bioactive ingredient from Irish trees species. Sci. Rep. 2021, 11, 7461. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zhang, F.S.; Li, X.; Chen, J.W.; Yao, X. Supercritical CO_(2) fluid extraction and component analysis of leaves oil from Taxus chinensis var. mairei. Zhong Yao Cai 2013, 36, 2023–2027. Available online: https://pubmed.ncbi.nlm.nih.gov/25090690/ (accessed on 4 April 2024). (In Chinese). [PubMed]
- Jones, W.P.; Kinghorn, A.D. Extraction of plant secondary metabolites. Methods Mol. Biol. 2012, 864, 341–366. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.F.; Liu, J.J.; Yu, R.M. Taxol content comparison in different parts of Taxus madia and Taxus chinensis var. mairei by HPLC. Zhong Yao Cai 2010, 33, 1048–1051. [Google Scholar] [CrossRef]
- Li, M.; Chen, J. Profiling taxanes in Taxus extraction using liquid chromatography/mass spectrometric technique. Analytical Chemistry 2005, 33, 5. (In Chinese) [Google Scholar] [CrossRef]
- Anwar, M.; Birch, E.J.; Ding, Y.; Bekhit, A.E. Water-soluble non-starch polysaccharides of root and tuber crops: Extraction, characteristics, properties, bioactivities, and applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 2309–2341. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xue, F.; Yang, Y. Hot water extraction of antioxidants from tea leaves-optimization of brewing conditions for preparing antioxidant-rich tea drinks. Molecules 2023, 28, 3030. [Google Scholar] [CrossRef] [PubMed]
- Nižnanský, Ľ.; Osinová, D.; Kuruc, R.; Hengerics Szabó, A.; Szórádová, A.; Masár, M.; Nižnanská, Ž. Natural taxanes: From plant composition to human pharmacology and toxicity. Int. J. Mol. Sci. 2022, 23, 15619. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tong, G.; Yu, Z.; Zhu, B.; Zhang, H. The water extracts of Taxus chinensis affect the proliferation and apoptosis of oral squamous cell cell CAL27 through oxidative stress and mitochondrial damage. J. Nanchang Univ. Med. Ed. 2023, 63, 19–24. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Fu, Y.; Zu, Y.; Sun, R.; Wang, Y.; Zhang, L.; Luo, H.; Gu, C.; Efferth, T. Determination of paclitaxel and other six taxoids in Taxus species by high-performance liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 81–89. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Su, Y.; Xu, X.; Wang, J. Extraction of total flavonoid in Taxus media by response surface methodology and its antioxidant activity. North. Hortic. 2021, 05, 94–102. (In Chinese) [Google Scholar] [CrossRef]
- Yan, J.; Fan, J.; Wang, J. Extraction and purification process of paclitaxel. Chin. J. Pharm. Ind. 1996, 12, 531–534. (In Chinese) [Google Scholar] [CrossRef]
- Cha, C.; Du, Y.; Liu, L.; Liu, J.; Song, K. Determination of 10-DABⅢ and paclitaxel in branches and leaves of Taxus chinensis by HPLC and preparation of detection samples. Jiangsu Agric. Sci. 2017, 45, 140–145. (In Chinese) [Google Scholar] [CrossRef]
- Fan, X.H.; Chang, Y.H.; Wang, L.T.; Zhu, Y.W.; Dong, M.Z.; Lv, M.J.; An, J.Y.; Yang, Q.; Jiao, J.; Meng, D.; et al. A simple and efficient sample preparation for taxanes in Taxus chinensis needles with natural menthol-based aqueous deep eutectic solvent. J. Sep. Sci. 2020, 43, 1339–1347. [Google Scholar] [CrossRef]
- Yan, C.; Yin, Y.; Zhang, D.; Yang, W.; Yu, R. Structural characterization and in vitro antitumor activity of a novel polysaccharide from Taxus yunnanensis. Carbohydr. Polym. 2013, 96, 389–395. [Google Scholar] [CrossRef]
- Zhang, D.; Meng, H.; Yang, H.-s. Antidiabetic activity of Taxus cuspidata polysaccharides in streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2012, 50, 720–724. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical water extraction of natural products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Ma, Y.; Wang, Z.; Wang, T.; Xie, Y. Optimization of taxol extraction process using response surface methodology and investigation of temporal and spatial distribution of taxol in Taxus mairei. Molecules 2021, 26, 5485. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Zhu, H.; Liu, Z.; Zhang, L.; Li, Z.; Niu, Y.; Zhang, H. Genistein microparticles prepared by antisolvent recrystallization with low-speed homogenization process. Food Chem. 2023, 408, 135250. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Shi, Y.; Chen, M.; Zhang, L.; An, Y.; Liu, Z. Naringenin ultrafine powder was prepared by a new anti-solvent recrystallization method. Nanomaterials 2022, 12, 2108. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef]
- Xiao, L.; Lao, W.G.; Tan, Y.; Qu, X. In vitro investigation of anti-diabetic effect of Taxus cuspidate extracts by ultrasound assisted method. Am. J. Chin. Med. 2012, 40, 1205–1215. [Google Scholar] [CrossRef]
- Li, Y.; Song, X.M.; Pei, J.; Cao, Z.; Chen, J.; Rao, H. Response surface methodology for optimization of extraction process and content determination of 10-DAB in Taxus wallichiana var.mairei. J. Guangxi Acad. Sci. 2023, 39, 314–321. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Wang, H.; Zhong, X.; Zhao, J.; Zhou, Y. A process optimization study on ultrasonic extraction of paclitaxel from Taxus cuspidata. Prep. Biochem. Biotechnol. 2016, 46, 274–280. [Google Scholar] [CrossRef]
- Tan, Z.; Li, Q.; Wang, C.; Zhou, W.; Yang, Y.; Wang, H.; Yi, Y.; Li, F. Ultrasonic assisted extraction of paclitaxel from Taxus x media using ionic liquids as adjuvants: Optimization of the process by response surface methodology. Molecules 2017, 22, 1483. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Jiao, Y.; Li, Y. Study on optimization of extraction process of total flavonoids leaves from Taxus chinensis (Pilger) Rehd. by response surface methodology. Food Res. Dev. 2019, 40, 86–90. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, P.; Qu, J.; Jia, Y.; Sun, Z.; Liu, S.; Wang, F. Extraction and isolation of proanthocyanidin from branches and leaves of Taxus chinensis and its antidiabetic activity. Chem. Ind. For. Prod. 2022, 42, 108–116. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Li, W.; Tang, Y.; Meng, H.; Wang, S. Purification of two taxanes from Taxus cuspidata by preparative high-performance liquid chromatography. Separations 2022, 9, 446. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Meng, H.; Li, W.; Wang, S. Ultrasonic extraction and separation of taxanes from Taxus cuspidata optimized by response surface methodology. Separations 2022, 9, 193. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Li, W.; Tang, Y.; Meng, H.; Wang, S. Separation and purification of taxanes from crude Taxus cuspidata extract by antisolvent recrystallization method. Separations 2022, 9, 304. [Google Scholar] [CrossRef]
- Jiang, P.; Zhao, Y.; Bao, X.; Wang, F.; Duan, Z.; Wang, M. Extraction of total alkaloids from branches and leaves of Taxus chinensis and their antitumor activities. Chem. Ind. For. Prod. 2019, 39, 115–122. Available online: http://www.cqvip.com/QK/93379X/201906/7100522751.html (accessed on 4 April 2024). (In Chinese).
- Bagade, S.B.; Patil, M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef]
- Akhtar, I.; Javad, S.; Yousaf, Z.; Iqbal, S.; Jabeen, K. Review: Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals. Pak. J. Pharm. Sci. 2019, 32, 223–230. Available online: https://pjps.pk/uploads/pdfs/32/1/Paper-32.pdf (accessed on 4 April 2024).
- Timoumi, R.; François, P.; Le Postollec, A.; Dobrijevic, M.; Grégoire, B.; Poinot, P.; Geffroy-Rodier, C. Focused ultrasound extraction versus microwave-assisted extraction for extraterrestrial objects analysis. Anal. Bioanal. Chem. 2022, 414, 3643–3651. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Zhang, M.; Zhou, H.L. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules 2019, 24, 1605. [Google Scholar] [CrossRef]
- Luo, H.; Nie, Y.K.; Fu, Y.J.; Zu, Y.G.; Li, S.M.; Liu, W.; Zhang, L.; Luo, M.; Kong, Y.; Li, Z.N. Determination of main taxoids in Taxus species by microwave-assisted extraction combined with LC-MS/MS analysis. J. Sep. Sci. 2009, 32, 192–201. [Google Scholar] [CrossRef]
- Talebi, M.; Ghassempour, A.; Talebpour, Z.; Rassouli, A.; Dolatyari, L. Optimization of the extraction of paclitaxel from Taxus baccata L. by the use of microwave energy. J. Sep. Sci. 2004, 27, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Li, W.; Tang, Y.; Wang, S. Parameter optimization of ultrasonic-microwave synergistic extraction of taxanes from Taxus cuspidata needles. Molecules 2023, 28, 7746. [Google Scholar] [CrossRef]
- Lee, B.; Zhang, K.; Xie, B. Optimization of ultrasound-assisted extraction process of polysaccharide in the residue of Taxus chinensis var. mairei based on orthogonal experiment. Zhejiang J. Tradit. Chin. Med. 2022, 57, 465–467. (In Chinese) [Google Scholar] [CrossRef]
- Fu, Y.; Zu, Y.; Li, S.; Sun, R.; Efferth, T.; Liu, W.; Jiang, S.; Luo, H.; Wang, Y. Separation of 7-xylosyl-10-deacetyl paclitaxel and 10-deacetylbaccatin III from the remainder extracts free of paclitaxel using macroporous resins. J. Chromatogr. A 2008, 1177, 77–86. [Google Scholar] [CrossRef]
- Sun, R.; Fu, K.; Fu, Y.; Zu, Y.; Wang, Y.; Luo, M.; Li, S.; Luo, H.; Li, Z. Preparative separation and enrichment of four taxoids from Taxus chinensis needles extracts by macroporous resin column chromatography. J. Sep. Sci. 2009, 32, 1284–1293. [Google Scholar] [CrossRef]
- Shirshekanb, M.; Rezadoost, H.; Javanbakht, M.; Ghassempour, A.R. The combination process for preparative separation and purification of paclitaxel and 10-Deacetylbaccatin iii using Diaion® Hp-20 followed by hydrophilic interaction based solid phase extraction. Iran. J. Pharm. Res. 2017, 16, 1396–1404. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843301/ (accessed on 4 April 2024).
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.E.; Stirkė, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef]
- Schoenbach, K.H.; Peterkin, F.E. The effect of pulsed electric fields on biological cells: Experiments and applications. IEEE Trans. Plasma Sci. 1997, 25, 284–292. [Google Scholar] [CrossRef]
- Yeom, H.W.; Streaker, C.B.; Zhang, Q.H.; Min, D.B. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J. Agric. Food Chem. 2000, 48, 4597. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Meng, H.; Li, W.; Wang, S. Identification and optimization of a novel taxanes extraction process from Taxus cuspidata needles by high-intensity pulsed electric field. Molecules 2022, 27, 3010. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, Q.; Zhao, Y.; Xiong, J.; Zhang, C. Extraction, purification, and biological activities of polysaccharides from branches and leaves of Taxus cuspidata s. Et z. Molecules 2019, 24, 2926. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.K.; Shin, H.W.; Lee, H. Supercritical fluid extraction of paclitaxel and baccatin III from needles of taxus cuspidata. J. Supercrit. Fluids 1996, 9, 192–198. [Google Scholar] [CrossRef]
- Polizzi, D.; Pratesi, G.; Monestiroli, S.; Tortoreto, M.; Zunino, F.; Bombardelli, E.; Riva, A.; Morazzoni, P.; Colombo, T.; D’Incalci, M. Oral efficacy and bioavailability of a novel taxane. Clin. Cancer Res. 2000, 6, 2070–2074. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, J.; Wang, L.; Shao, H. Comparison of pharmacokinetics and biodistribution of 10-deacetylbaccatin III after oral administration as pure compound or in Taxus chinensis extract: A pilot study. Planta Med. 2016, 82, 230–237. [Google Scholar] [CrossRef]
- Adhikari, P.; Pandey, A. Taxus wallichiana Zucc.(Himalayan Yew) in antimicrobial perspective. Adv. Biotechnol. Microbiol. 2017, 5, 1–5. Available online: https://www.researchgate.net/publication/322040162_Adv_Biotech_Micro_Taxus_wallichiana_zucc_Himalayan_Yew_in_Antimicrobial_Perspective (accessed on 4 April 2024).
- Tayung, K.; Jha, D.; Deka, D. Isolation and identification of antimicrobial agent-producing bacterium from Taxus baccata rhizosphere antagonistic against clinically significant microbes. Indian J. Microbiol. 2007, 47, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, M.; Yousefi Nejad, M.; Delshad, L. Synergistic effects of Taxus baccata extract mixtures with silver nanoparticles against bacteria and fungal. Int. J. Bio-Inorg. Hybrid Nanomater. 2015, 4, 25–30. Available online: https://sanad.iau.ir/Journal/ijbihn/Article/928464 (accessed on 4 April 2024).
- Okumura, H.; Chen, Z.S.; Sakou, M.; Sumizawa, T.; Furukawa, T.; Komatsu, M.; Ikeda, R.; Suzuki, H.; Hirota, K.; Aikou, T. Reversal of P-glycoprotein and multidrug-resistance protein-mediated drug resistance in KB cells by 5-O-benzoylated taxinine K. Mol. Pharmacol. 2000, 58, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018, 26, 64–70. [Google Scholar] [CrossRef]
- Kajani, A.A.; Bordbar, A.-K.; Esfahani, S.H.Z.; Khosropour, A.R.; Razmjou, A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 2014, 4, 61394–61403. [Google Scholar] [CrossRef]
- Kajani, A.A.; Zarkesh-Esfahani, S.H.; Bordbar, A.-K.; Khosropour, A.R.; Razmjou, A.; Kardi, M. Anticancer effects of silver nanoparticles encapsulated by Taxus baccata extracts. J. Mol. Liq. 2016, 223, 549–556. [Google Scholar] [CrossRef]
- Pastorino, L.; Erokhina, S.; Caneva-Soumetz, F.; Ruggiero, C. Paclitaxel-containing nano-engineered polymeric capsules towards cancer therapy. J. Nanosci. Nanotechnol. 2009, 9, 6753–6759. [Google Scholar] [CrossRef]
- Zebli, B.; Susha, A.S.; Sukhorukov, G.B.; Rogach, A.L.; Parak, W.J. Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir 2005, 21, 4262–4265. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Chen, Z. Antitumor effect of water decoctions of Taxus cuspidate on pancreatic cancer. Evid.-Based Complement. Altern. Med. 2014, 2014, 291675. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Wang, L.; Xu, Y.; Cheng, X.; Wei, P. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int. J. Nanomed. 2011, 1497–1507. [Google Scholar] [CrossRef]
- Benlembarek, K.; Lograd, T.; Ramdani, M.; Chalard, P. Chemical composition, antibacterial, antifungal and antioxidant activities of Taxus baccata essential oil from Algeria. Biodiversitas J. Biol. Divers. 2021, 22, 795–807. [Google Scholar] [CrossRef]
- Huong, L.T.; Thuong, N.T.; Chac, L.D.; Dai, D.N.; Ogunwande, I.A. Antimicrobial activity and chemical constituents of essential oils from the leaf and wood of Taxus chinensis (Rehder & EH Wilson) Rehder (Taxaceae) from Vietnam. J. Biol. Act. Prod. Nat. 2020, 10, 8–17. [Google Scholar] [CrossRef]
- Vignolini, P.; Gehrmann, B.; Melzig, M.F.; Borsacchi, L.; Scardigli, A.; Romani, A. Quality control and analytical test method for Taxus baccata tincture preparation. Nat. Prod. Commun. 2012, 7, 875–877. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Wang, S.; Qin, L.; Tan, T.; Lu, Y.; He, Y.; Zhang, Q.; Yang, Y. Mutual Information entropy analysis of compatibility of traditional chinese patent medicines against liver diseases in chinese pharmacopoeia(2020 Edition). Chin. J. Exp. Tradit. Med. Formulae 2022, 28, 9. (In Chinese) [Google Scholar] [CrossRef]
- Kumar, B.; Jalodia, K.; Kumar, P.; Gautam, H.K. Recent advances in nanoparticle-mediated drug delivery. J. Drug Deliv. Sci. Technol. 2017, 41, 260–268. [Google Scholar] [CrossRef]
- Dreiss, C.A. Hydrogel design strategies for drug delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1–17. [Google Scholar] [CrossRef]
- He, L.; Wang, G.; Zhang, Q. An alternative paclitaxel microemulsion formulation: Hypersensitivity evaluation and pharmacokinetic profile. Int. J. Pharm. 2003, 250, 45–50. [Google Scholar] [CrossRef] [PubMed]
Extracted Compound | Particle Size (Mesh) | Material-Solvent Ratio | Extraction Pressure | Extraction Temperature | Extraction Time | Co-Solvent | Efficiency/Yield | Reference |
---|---|---|---|---|---|---|---|---|
Paclitaxel | 100 | - | 35 MPa | 35 °C | 120 min | - | 96.10% | [12] |
Paclitaxel | 80 | - | 30 MPa | 50 °C | 120 min | Ethanol (10–15% water) r | 93% | [13] |
Paclitaxel | 200 | - | 25 MPa | 35 °C | - | - | - | [14] |
10-DAB | 50 | 1:1 | 27 MPa | 35 °C | 150 min | Anhydrous ethanol | 0.55% | [15] |
Flavonoids | - | - | 22.6 MPa | 46.4 °C | - | Ethanol (80.7%) | 3.35–28 mg/g | [16] |
Diterpenoids | - | - | 10–35 MPa | 40–70 °C | 70–420 min- | - | 35 mg/g | [17] |
Volatile Oil | 50 | - | 27 MPa | 35 °C | 150 min | Anhydrous ethanol | 23.42% | [15] |
Volatile Oil | 20 | - | 25 MPa | 45 °C | 120 min | - | 2.61% | [18] |
Solvent | Extraction Compound | Solvent-Material Ration | Extraction Time | Yield | Reference |
---|---|---|---|---|---|
Water | Polysaccharide | - | 12 h | 54.3% | [26] |
Ethanol | Total Flavonoid | 32:1 | 86 min | 128.1 mg/g | [27] |
DCM | Taxane | 2:1 | - | 0.028% from dry weight of bark, 0.008% from dry weight of leaves | [28] |
Methanol | 10-DAB | 15:1 | 3 h | 0.009% | [29] |
Methanol: dichloromethane (1:1) | Paclitaxel | 10:1 | 3 h | 0.025% | [29] |
Menthol:isopropanol (1:1) | Taxane | 30:1 | 30 min | total extraction efficiency is 1.44 to the water extraction | [30] |
Taxus Species | Solvent and Concentration | Material-Liquid Ratio | Extraction Time | Ultrasound Temperature | Ultrasound Power | Additional Parameters | Extraction Yield | Reference |
---|---|---|---|---|---|---|---|---|
Taxus wallichiana var. mairei | 50% Ethanol | 1:15 (g/mL) | 23 min | 40 °C | - | - | 1.18% of 10-DAB | [40] |
Taxus cuspidata | - | 53.23 mL/g | 1.11 h | - | 207.88 W | - | 130.576 µg/g of paclitaxel | [41] |
Taxus x media | Methanol with Ionic Liquids | 1:10.5 (solid:liquid) | 30 min | - | - | 1.2% Ionic Liquid | - | [42] |
Taxus mairei | 66% Ethanol | 1:31 (g/mL) | 57 min | - | - | Two ultrasound extractions | 106.58 mg/g of total flavonoids | [43] |
Taxus mairei | 60% Ethanol | 14:1 (mL:g) | Enzyme: 50 min, | 40 °C | 120 W | 0.15 g/L enzyme concentration | 3.84% of proanthocyanidins | [44] |
Taxus chinensis | 19% Ethanol (pH 3) | 12:1 (mL:g) | Enzyme: 52 min, | 50 °C | 150 W | 0.10 g/L enzyme concentration | 0.126% total alkaloids | [48] |
Extraction Method | Advantages | Disadvantages | Extracted Compounds from Taxus | References |
---|---|---|---|---|
Supercritical CO2 Extraction | Efficient, eco-friendly, safe. | High cost, limited scope. | Taxane compounds, Alkaloids, Diterpenoids Flavonoids Volatile Oil | [9,10,11,65] |
Solvent Extraction | Simple, low equipment need. | Low efficiency, time-consuming, solvent use. | Polysaccharides, Total Flavonoids, Alkaloids, Terpenes, Phenols | [21,22,23,24,25] |
Water Extraction | Eco-friendly, simple. | Limited efficiency/purity for water-insoluble components. | Polysaccharides | [22,23] |
Accelerated Solvent Extraction | Fast, improves recovery. | Risk of compound degradation, high equipment need. | Taxane compounds | [26,34] |
Anti-solvent Recrystallization | Purifies specific components. | Complex, precise control needed. | Taxane compounds | [35,36] |
Ultrasound Extraction | Simple, efficient, saves time/solvent. | May damage thermosensitive components. | Taxane compounds, Flavonoids, Alkaloids | [37,38,39,40,41,42,43,44] |
Microwave-assisted extraction | Reduces time, lower solvent use. | Special equipment, high cost. | Taxane compounds, Polysaccharides | [49,50,51,52] |
Solid-Phase Extraction Technology | Efficient in separating/enriching, improves yield. | Time-consuming, large solvent use, cumbersome. | 10-DAB, 7-xyl-10-DAT, Paclitaxel, etc. | [57,58,59] |
High-Intensity Pulsed Electric Field Extraction | Maintains bioactive component integrity. | Specialized equipment, precise control needed. | Taxane compounds | [60,61,62,63] |
Enzymatic Assisted Extraction | Eco-friendly, suitable for low temperatures. | Cumbersome, high enzyme selection/use requirements. | Taxane compounds, Polysaccharides, etc. | [47,64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Chen, K.; Xie, W. Research Progress on Taxus Extraction and Formulation Preparation Technologies. Molecules 2024, 29, 2291. https://doi.org/10.3390/molecules29102291
Gao X, Chen K, Xie W. Research Progress on Taxus Extraction and Formulation Preparation Technologies. Molecules. 2024; 29(10):2291. https://doi.org/10.3390/molecules29102291
Chicago/Turabian StyleGao, Xinyu, Kuilin Chen, and Weidong Xie. 2024. "Research Progress on Taxus Extraction and Formulation Preparation Technologies" Molecules 29, no. 10: 2291. https://doi.org/10.3390/molecules29102291
APA StyleGao, X., Chen, K., & Xie, W. (2024). Research Progress on Taxus Extraction and Formulation Preparation Technologies. Molecules, 29(10), 2291. https://doi.org/10.3390/molecules29102291