Development of an UV−Resistant Multilayer Film with Enhanced Compatibility between Carboxymethyl Cellulose and Polylactic Acid via Incorporation of Tannin and Ferric Chloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of CMC−PLA Films
2.1.1. Microscopic Morphology
2.1.2. Hydrophobicity
2.1.3. Mechanical Properties
2.1.4. UV Resistance Properties
2.1.5. Thermal Stabilities
2.2. Mechanism of Improved the Interface Bonding between PLA and CMC by Chelation of Tannins and Fe3+
2.3. Effect of the Film CMC/TA−PLA/Fe Prevent Wood Aging
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of CMC Film
3.3. Preparation of Multilayer Films
3.4. Characterization
3.4.1. SEM Observation
3.4.2. Water Contact Angle (WCA) Measurement
3.4.3. Mechanical Property Characteristic
3.4.4. UV−Vis Transmittance Measurement
3.4.5. ATR−FTIR Analysis
3.4.6. TG Analysis
3.4.7. DSC Analysis
3.5. Wood Aging Test
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avramia, I.; Amariei, S. Formulation of Fast Dissolving β-Glucan/Bilberry Juice Films for Packaging Dry Powdered Pharmaceuticals for Diabetes. Plants 2022, 11, 2040. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, Y.; Zhao, B.; Bai, Y.; Han, S.; Zhang, Y.; Li, S.; Chen, Z.; Si, C.; Yu, H.; et al. Carbon dots: Building a robust optical shield for wood preservation. Adv. Compos. Hybrid Mater. 2023, 6, 39. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Z.; Lu, P.; Wu, M. Leaf porous structure Inspired packaging film for fruits preservation and monitoring CO2 concentration of package. Chem. Eng. J. 2023, 464, 142660. [Google Scholar] [CrossRef]
- Sonker, A.K.; Teotia, A.K.; Kumar, A.; Nagarale, R.K.; Verma, V. Development of Polyvinyl Alcohol Based High Strength Biocompatible Composite Films. Macromol. Chem. Phys. 2017, 218, 1700130. [Google Scholar] [CrossRef]
- Khalid, S.; Yu, L.; Feng, M.; Meng, L.; Bai, Y.; Ali, A.; Liu, H.; Chen, L. Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag. Shelf Life 2018, 18, 71–79. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, H.; Ma, Q.; Cheng, D.; Zhang, Y.; Wang, W.; Wang, J.; Sun, J. Development of chitosan/potato peel polyphenols nanoparticles driven extended-release antioxidant films based on potato starch. Food Packag. Shelf Life 2022, 31, 100793. [Google Scholar] [CrossRef]
- Pang, B.; Wu, Z.-Y.; Wang, Z.-B.; You, B.-Q.; Guo, Y.-R.; Li, S.; Pan, Q.-J. Design of a ZnO@Plant Polyphenol/Poly(vinyl alcohol) Film via Plant Polyphenol-Induced Cross-Linking and Its Enhanced UV Shielding and Antibacterial Performance. ACS Sustain. Chem. Eng. 2022, 10, 9369–9380. [Google Scholar] [CrossRef]
- Huang, J.; Xie, G.; Wei, Q.; Su, Y.; Xu, X.; Jiang, Y. Degradable MXene-Doped Polylactic Acid Textiles for Wearable Biomonitoring. ACS Appl. Mater. Interfaces 2023, 15, 5600–5607. [Google Scholar] [CrossRef]
- More, N.; Avhad, M.; Utekar, S.; More, A. Polylactic acid (PLA) membrane—Significance, synthesis, and applications: A review. Polym. Bull. 2023, 80, 1117–1153. [Google Scholar] [CrossRef]
- Zeller, W. 24 Condensed tannins: Structure, activity and characterization. J. Anim. Sci. 2020, 98, 21–22. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Kadla, J.F. Evaluating Poly(lactic acid) Fiber Reinforcement with Modified Tannins. Macromol. Mater. Eng. 2014, 299, 368–378. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Bridson, J.H.; Lomas, C.; Elliot, J.-A. Esterification of Condensed Tannins and Their Impact on the Properties of Poly(Lactic Acid). Polymers 2013, 5, 344–360. [Google Scholar] [CrossRef]
- Liao, J.; Brosse, N.; Hoppe, S.; Zhou, X.; Xi, X.; Du, G.; Pizzi, A. Interfacial improvement of poly (lactic acid)/tannin acetate composites via radical initiated polymerization. Ind. Crops Prod. 2021, 159, 113068. [Google Scholar] [CrossRef]
- Liao, J.; Brosse, N.; Hoppe, S.; Du, G.; Zhou, X.; Pizzi, A. One-step compatibilization of poly(lactic acid) and tannin via reactive extrusion. Mater. Des. 2020, 191, 108603. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Kim, J.T.; Roy, S.; Jayakumar, A. Recent advances in carboxymethyl cellulose-based active and intelligent packaging materials: A comprehensive review. Int. J. Biol. Macromol. 2024, 259, 129194. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Song, K.B. Preparation and Characterization of an Olive Flounder (Paralichthys olivaceus) Skin Gelatin and Polylactic Acid Bilayer Film. J. Food Sci. 2017, 82, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chen, Z.; Boukhir, M.; Song, W.; Zhang, S. Bioinspired polydopamine deposition and silane grafting modification of bamboo fiber for improved interface compatibility of poly (lactic acid) composites. Int. J. Biol. Macromol. 2022, 201, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, R.; Wang, B.; Chen, K. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydr. Polym. 2019, 222, 114912. [Google Scholar] [CrossRef]
- Muller, J.; González-Martínez, C.; Chiralt, A. Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. Eur. Polym. J. 2017, 95, 56–70. [Google Scholar] [CrossRef]
- Trinh, B.M.; Chang, C.C.; Mekonnen, T.H. Facile fabrication of thermoplastic starch/poly (lactic acid) multilayer films with superior gas and moisture barrier properties. Polymer 2021, 223, 123679. [Google Scholar] [CrossRef]
- Colli-Pacheco, J.P.; Rios-Soberanis, C.R.; Moo-Huchin, V.M.; Perez-Pacheco, E. Study of the incorporation of oleoresin Capsicum as an interfacial agent in starch-poly(lactic acid) bilayer films. Polym. Bull. 2023, 80, 9077–9095. [Google Scholar] [CrossRef]
- Hu, W.; Yang, L.; Wang, F.; Zhi, J.; He, H.; Hu, C.; Wei, F.; Liu, S.; Li, Y.; Cang, Y.; et al. Insight into the enhanced interfacial adhesion of carbon fiber reinforced composites: A facile ferric ion and tannic acid self-assembly strategy. Compos. Part A Appl. Sci. Manuf. 2024, 177, 107926. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, T.; Zhou, W.; Chen, H.; Bian, Y.; Gong, S.; Shi, S.Q.; Li, J. A strong and biodegradable wood particles-based bioplastic modified by synergistically dynamic cross-linking with tannic acid and Fe3+. Compos. Part B Eng. 2022, 247, 110349. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Li, C.; Jiang, C.; Hu, J.; Lv, Y.; Tao, Y.; Lu, J.; Pan, G.; Du, J.; et al. Biodegradable and multifunctional black mulch film decorated with darkened lignin induced by iron ions for “green” agriculture. Int. J. Biol. Macromol. 2024, 265, 130981. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Song, K. Hot waxing treatment improves the aging resistance of wood surface under UV radiation and water. Prog. Org. Coat. 2021, 161, 106468. [Google Scholar] [CrossRef]
- Yuan, B.; Guo, M.; Huang, Z.; Naik, N.; Hu, Q.; Guo, Z. A UV-shielding and hydrophobic graphitic carbon nitride nanosheets/cellulose nanofibril (gCNNS/CNF) transparent coating on wood surface for weathering resistance. Prog. Org. Coat. 2021, 159, 106440. [Google Scholar] [CrossRef]
- Chang, S.; Yao, L.; Wang, Z.; Wang, X. Novel two-step strategy for the construction of weathering-resistant hydrophobic wood to extend its service life. Prog. Org. Coat. 2024, 186, 107985. [Google Scholar] [CrossRef]
- Duarte, A.R.C.; Maniglio, D.; Sousa, N.; Mano, J.F.; Reis, R.L.; Migliaresi, C. From Honeycomb- to Microsphere-Patterned Surfaces of Poly(Lactic Acid) and a Starch-Poly(Lactic Acid) Blend via the Breath Figure Method. J. Appl. Biomater. Funct. Mater. 2017, 15, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, C.; Lin, X.; Xie, H.; Chen, Y.; Li, Z.; Zeng, G. Ordered porous films of biomass-based polymers by breath figure: A review. Cellulose 2022, 29, 6463–6491. [Google Scholar] [CrossRef]
- Li, Y.; Ma, X.; Ma, J.; Zhang, Z.; Chen, F.J.P. Fabrication of Pore-Selective Metal-Nanoparticle-Functionalized Honeycomb Films via the Breath Figure Accompanied by In Situ Reduction. Polymers 2021, 13, 316. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Jin, N.; Li, J.; Dong, S.; Li, S.; Zhang, Z.; Chen, Y. Zein films with porous polylactic acid coatings via cold plasma pre-treatment. Ind. Crops Prod. 2020, 150, 112382. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Kong, Q.; Zang, D.; Guan, X.; Ren, X. Static and Dynamic Hydrophobic Properties of Honeycomb Structured Films via Breath Figure Method. J. Phys. Chem. C 2016, 120, 18659–18664. [Google Scholar] [CrossRef]
- Jiang, X.; Li, H.; Luo, Y.; Zhao, Y.; Hou, L. Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. Int. J. Biol. Macromol. 2016, 82, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, M.; Prodpran, T.; Benjakul, S.; Songtipya, P. Properties and Characteristics of Multi-Layered Films from Tilapia Skin Gelatin and Poly(Lactic Acid). Food Biophys. 2017, 12, 222–233. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Wani, A.A.; Shah, M.A. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci. Technol. 2018, 80, 141–154. [Google Scholar] [CrossRef]
- Muller, J.; González-Martínez, C.; Chiralt, A. Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef]
- Zhang, D.; Zhan, F.; Wang, Z.; Wang, L.; Qiu, Y.; Chen, T.; Wang, Y.; Zhao, L. Development of Biodegradable Polyamide 4/Polyvinyl Alcohol/Poly(lactic acid) Multilayer Films with Tunable Water Barrier Property and Superior Oxygen Barrier Property. ACS Appl. Polym. Mater. 2023, 5, 3979–3988. [Google Scholar] [CrossRef]
- Gu, W.; Liu, X.; Li, F.; Shi, S.Q.; Xia, C.; Zhou, W.; Zhang, D.; Gong, S.; Li, J. Tough, strong, and biodegradable composite film with excellent UV barrier performance comprising soy protein isolate, hyperbranched polyester, and cardanol derivative. Green Chem. 2019, 21, 3651–3665. [Google Scholar] [CrossRef]
- Gurău, L.; Timar, M.C.; Coșereanu, C.; Cosnita, M.; Stanciu, M.D. Aging of Wood for Musical Instruments: Analysis of Changes in Color, Surface Morphology, Chemical, and Physical-Acoustical Properties during UV and Thermal Exposure. Polymers 2023, 15, 1794. [Google Scholar] [CrossRef]
- Lee, J.Y.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. LWT 2019, 106, 164–171. [Google Scholar] [CrossRef]
- Liao, M.; Chen, H.; Deng, L.; Wei, X.; Zou, Z.; Wang, H.; Chen, S.; Zhu, Z. Tannic acid-polyethyleneimine modified ammonium polyphosphate: For efficient flame retardant and UV resistant of polylactic acid. React. Funct. Polym. 2023, 192, 105735. [Google Scholar] [CrossRef]
- Liao, J.; Brosse, N.; Pizzi, A.; Hoppe, S. Dynamically Cross-Linked Tannin as a Reinforcement of Polypropylene and UV Protection Properties. Mater. Des. 2019, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Pirinc, F.T.; Dagdelen, A.F.; Saricaoglu, F.T. Mechanical, barrier, thermal, and microstructural properties of poly (lactic acid) and gelatin–beeswax emulsion bi-layer films. J. Food Process. Preserv. 2021, 45, e16073. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Romruen, O.; Jaisan, C.; Rawdkuen, S.; Klunklin, W. Smart colorimetric sensing films based on carboxymethyl cellulose incorporated with a natural pH indicator. Int. J. Biol. Macromol. 2024, 259, 129156. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kang, J.-H.; Song, K.B. Development of a Sword Bean (Canavalia gladiata) Starch Film Containing Goji Berry Extract. Food Bioprocess Technol. 2020, 13, 911–921. [Google Scholar] [CrossRef]
- Medina Jaramillo, C.; Gutiérrez, T.J.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr. Polym. 2016, 151, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Wang, J.; Wang, H.; Tao, S.; Hu, W.; Li, S.J.M. Preparation and Characterization of Antioxidative and UV-Protective Larch Bark Tannin/PVA Composite Membranes. Molecules 2018, 23, 2073. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-H.; Zhang, A.-N.; Liu, B.-W.; Wang, X.-L.; Zhao, H.-B.; Wang, Y.-Z. Durable flame-retardant cotton fabrics with tannic acid complexed by various metal ions. Polym. Degrad. Stab. 2022, 201, 109997. [Google Scholar] [CrossRef]
- Fei, B.; Wang, D.; AlMasoud, N.; Yang, H.; Yang, J.; Alomar, T.S.; Puangsin, B.; Xu, B.B.; Algadi, H.; El-Bahy, Z.M.; et al. Bamboo fiber strengthened poly(lactic acid) composites with enhanced interfacial compatibility through a multi-layered coating of synergistic treatment strategy. Int. J. Biol. Macromol. 2023, 249, 126018. [Google Scholar] [CrossRef]
- Jin, F.-L.; Hu, R.-R.; Park, S.-J. Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review. Compos. Part B Eng. 2019, 164, 287–296. [Google Scholar] [CrossRef]
- Li, D.; Xu, X.; Wang, X.; Li, R.; Cai, C.; Sun, T.; Zhao, Y.; Chen, L.; Xu, J.; Zhao, N. General Surface Modification Method for Nanospheres via Tannic Acid-Fe Layer-by-Layer Deposition: Preparation of a Magnetic Nanocatalyst. ACS Appl. Nano Mater. 2019, 2, 3510–3517. [Google Scholar] [CrossRef]
- Yang, W.; Song, Y.; Li, C.; Bian, H.; Dai, H.; Hu, C. Metal-coordination and surface adhesion-assisted molding enabled strong, water-resistant carboxymethyl cellulose films. Carbohydr. Polym. 2022, 298, 120084. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Cerqueira, M.A.; Teixeira, J.A.; Mussatto, S.I. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. Int. J. Biol. Macromol. 2018, 106, 647–655. [Google Scholar] [CrossRef]
- Pandey, P.K.; Chandra, A. Mechanism, Kinetics, and Potential of Mean Force of Evaporation of Water from Aqueous Sodium Chloride Solutions of Varying Concentrations. J. Phys. Chem. B 2023, 127, 4602–4612. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Lee, J.Y.; Lacroix, M.; Han, J. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chem. 2017, 218, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Cui, Z.; Shang, M.; Zhong, Y. A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packag. Shelf Life 2021, 28, 100641. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X.; Zhu, Y.; Zeng, Y.; Fang, C.; Liu, Y.; Hu, S.; Ge, Y.; Jiang, W. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chem. 2022, 393, 133342. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Shen, Y.; Xue, J.; Sun, Y.; Zhang, S. Fabrication of strong and tough multifunctional soy protein adhesives via constructing catechol-iron ion fiber-reinforced hierarchical structure inspired by mussel byssus. Ind. Crops Prod. 2023, 202, 116992. [Google Scholar] [CrossRef]
- Wang, R.; Yu, R.; Wang, J.; Xiang, J.; Chen, C.; Liu, G.; Liao, X.J.E.S.; Research, P. Hierarchical collagen fibers complexed with tannic acid and Fe3+ as a heterogeneous catalyst for enhancing sulfate radical-based advanced oxidation process. Environ. Sci. Pollut. Res. 2022, 29, 58675–58684. [Google Scholar] [CrossRef]
- Li, D.; Liu, N.; Yao, X.; Gou, Q.; Yue, J.; Yang, D.; Chen, X.; Xiao, M. Characterization of semi-interpenetrating hydrogel based on Artemisia sphaerocephala Krasch Polysaccharide and cellulose nanocrystals crosslinked by ferric ions. Food Hydrocoll. 2023, 139, 108596. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Javidi, Z.; Rezaei, M. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin. Int. J. Biol. Macromol. 2016, 92, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Martínez, C.; Garrigos, M.C.; Jimenez, A. Multilayer Films Based on Poly(lactic acid)/Gelatin Supplemented with Cellulose Nanocrystals and Antioxidant Extract from Almond Shell By-Product and Its Application on Hass Avocado Preservation. Polymers 2021, 13, 3615. [Google Scholar] [CrossRef] [PubMed]
- Colom, X.; Carrillo, F.; Nogués, F.; Garriga, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 2003, 80, 543–549. [Google Scholar] [CrossRef]
- Du, H.; Wang, W.; Wang, Q.; Zhang, Z.; Sui, S.; Zhang, Y. Effects of pigments on the UV degradation of wood-flour/HDPE composites. J. Appl. Polym. Sci. 2010, 118, 1068–1076. [Google Scholar] [CrossRef]
- Ma, W.; Ding, Y.; Zhang, M.; Gao, S.; Li, Y.; Huang, C.; Fu, G. Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation. J. Hazard. Mater. 2020, 384, 121476. [Google Scholar] [CrossRef]
- Yuan, B.; Ji, X.; Nguyen, T.T.; Huang, Z.; Guo, M. UV protection of wood surfaces by graphitic carbon nitride nanosheets. Appl. Surf. Sci. 2019, 467–468, 1070–1075. [Google Scholar] [CrossRef]
- Fabijanic, K.I.; Salinas López, A.N.; Pan, L.; Cheng, C.-Y.; Wang, Y.; Hao, Z.; Potanin, A.; Li, N.; Rangel, I. Self-assembly of biopolymer films for UV protection of wood. J. Mater. Res. 2022, 37, 55–66. [Google Scholar] [CrossRef]
- Olsson, S.K.; Matsunaga, H.; Kataoka, Y.; Johansson, M.; Matsumura, J.; Westin, M.; Östmark, E. A SEM study on the use of epoxy functional vegetable oil and reactive UV-absorber as UV-protecting pretreatment for wood. Polym. Degrad. Stab. 2015, 113, 40–45. [Google Scholar] [CrossRef]
Sample | Tg (°C) | Tm (°C) |
---|---|---|
CMC−PLA | 66.91 | 161.72 |
CMC/TA−PLA | 66.91 | 162.32 |
CMC−PLA/Fe | 88.67 | / |
CMC/TA−PLA/Fe | 79.68 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Liu, T.; Chu, Q.; Yu, C.; Yin, Y.; Xuan, L.; Wu, S. Development of an UV−Resistant Multilayer Film with Enhanced Compatibility between Carboxymethyl Cellulose and Polylactic Acid via Incorporation of Tannin and Ferric Chloride. Molecules 2024, 29, 2822. https://doi.org/10.3390/molecules29122822
Xiao J, Liu T, Chu Q, Yu C, Yin Y, Xuan L, Wu S. Development of an UV−Resistant Multilayer Film with Enhanced Compatibility between Carboxymethyl Cellulose and Polylactic Acid via Incorporation of Tannin and Ferric Chloride. Molecules. 2024; 29(12):2822. https://doi.org/10.3390/molecules29122822
Chicago/Turabian StyleXiao, Jian, Tingting Liu, Qiulu Chu, Chaoguang Yu, Yunlong Yin, Lei Xuan, and Shufang Wu. 2024. "Development of an UV−Resistant Multilayer Film with Enhanced Compatibility between Carboxymethyl Cellulose and Polylactic Acid via Incorporation of Tannin and Ferric Chloride" Molecules 29, no. 12: 2822. https://doi.org/10.3390/molecules29122822
APA StyleXiao, J., Liu, T., Chu, Q., Yu, C., Yin, Y., Xuan, L., & Wu, S. (2024). Development of an UV−Resistant Multilayer Film with Enhanced Compatibility between Carboxymethyl Cellulose and Polylactic Acid via Incorporation of Tannin and Ferric Chloride. Molecules, 29(12), 2822. https://doi.org/10.3390/molecules29122822