Synthesis of a New Class of β-Carbonyl Selenides Functionalized with Ester Groups with Antioxidant and Anticancer Properties—Part II
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. General Procedure and Analysis Data
3.3. Antioxidant Activity Evaluation
3.3.1. DTT Activity Assay
3.3.2. The 2,2-di(4-tert-Octyl phenyl)-1-picrylhydrazyl) (DPPH) Test
3.4. MTT Viability Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baek, Y.; Lee, J.; Son, J.; Lee, T.; Sobhan, A.; Lee, J.; Koo, S.-M.; Shin, W.H.; Oh, J.-M.; Park, C. Enzymatic Synthesis of Formate Ester through Immobilized Lipase and Its Reuse. Polymers 2020, 12, 1802. [Google Scholar] [CrossRef] [PubMed]
- Alavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined Bead Milling and Enzymatic Hydrolysis for Efficient Fractionation of Lipids, Proteins, and Carbohydrates of Chlorella Vulgaris Microalgae. Bioresour. Technol. 2020, 309, 123321. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, S.C.; Lal, M.A. Secondary Metabolites. In Plant Physiology, Development and Metabolism; Springer Nature: Singapore, 2023; pp. 765–808. [Google Scholar]
- Tsakos, M.; Schaffert, E.S.; Clement, L.L.; Villadsen, N.L.; Poulsen, T.B. Ester Coupling Reactions—An Enduring Challenge in the Chemical Synthesis of Bioactive Natural Products. Nat. Prod. Rep. 2015, 32, 605–632. [Google Scholar] [CrossRef]
- Takahashi, M.; Hirota, I.; Nakano, T.; Kotani, T.; Takani, D.; Shiratori, K.; Choi, Y.; Haba, M.; Hosokawa, M. Effects of Steric Hindrance and Electron Density of Ester Prodrugs on Controlling the Metabolic Activation by Human Carboxylesterase. Drug Metab. Pharmacokinet. 2021, 38, 100391. [Google Scholar] [CrossRef] [PubMed]
- Fukami, T.; Yokoi, T. The Emerging Role of Human Esterases. Drug Metab. Pharmacokinet. 2012, 27, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Casey Laizure, S.; Herring, V.; Hu, Z.; Witbrodt, K.; Parker, R.B. The Role of Human Carboxylesterases in Drug Metabolism: Have We Overlooked Their Importance? Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 33, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Ohura, K. Evaluation of the Oral Absorption of Ester-Type Prodrugs. Yakugaku Zasshi 2020, 140, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, K.M.; Raunio, H.; Rautio, J. Prodrugs—From Serendipity to Rational Design. Pharmacol. Rev. 2011, 63, 750–771. [Google Scholar] [CrossRef] [PubMed]
- Kono, K.; Nunoya, K.; Nakamura, Y.; Bi, J.; Mukunoki, A.; Takeo, T.; Nakagata, N.; Hitoshi, M.; Yamaura, Y.; Imawaka, H.; et al. Species Difference in Hydrolysis of an Ester-Type Prodrug of Levodopa in Human and Animal Plasma: Different Contributions of Alpha-1 Acid Glycoprotein. Mol. Pharm. 2021, 18, 1985–1991. [Google Scholar] [CrossRef]
- Lavis, L.D. Ester Bonds in Prodrugs. ACS Chem. Biol. 2008, 3, 203–206. [Google Scholar] [CrossRef]
- Noronha, G.; Paul, P.; Katz, B.; Teuscher, N. PK Model with Concentration-Dependent Clearance for Zuretinol Acetate, an Oral Agent in Development for Treatment of Inherited Retinal Dystrophy Caused by LRAT or RPE65 Mutations. Investig. Ophthalmol. Vis. Sci. 2020, 61, 4942. [Google Scholar]
- dos Santos Fernandes, G.F.; Prokopczyk, I.M.; Chin, C.M.; dos Santos, J.L. The Progress of Prodrugs in Drug Solubility. Recent Adv. Prodrugs 2020, 165, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Mamgain, R.; Kostic, M.; Singh, F.V. Synthesis and Antioxidant Properties of Organoselenium Compounds. Curr. Med. Chem. 2023, 30, 2421–2448. [Google Scholar] [CrossRef] [PubMed]
- Başeğmez, M. An Overview of the Antioxidant and Anti-Inflammatory Activity of Selenium. In Selenium and Human Health; IntechOpen: London, UK, 2023. [Google Scholar]
- Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021, 26, 4230. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, D.; Mugesh, G. Introduction of a Catalytic Triad Increases the Glutathione Peroxidase-like Activity of Diaryl Diselenides. Org. Biomol. Chem. 2015, 13, 9072–9082. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, M.A.; Nelson, S.J.; O’Leary, C.; Self, W.T. Exploring the Selenium-over-Sulfur Substrate Specificity and Kinetics of a Bacterial Selenocysteine Lyase. Biochimie 2021, 182, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Chotana, G.A.; Faisal, A.; Zaib Saleem, R.S. Chemical Synthesis of Selenium-Containing Peptides. Mini-Rev. Med. Chem. 2023, 23, 1090–1117. [Google Scholar] [CrossRef] [PubMed]
- Sarıkaya, E.; Doğan, S. Glutathione Peroxidase in Health and Diseases. In Glutathione System and Oxidative Stress in Health and Disease; IntechOpen: London, UK, 2020. [Google Scholar]
- Laskowska, A.; Pacuła-Miszewska, A.J.; Długosz-Pokorska, A.; Janecka, A.; Wojtczak, A.; Ścianowski, J. Attachment of Chiral Functional Groups to Modify the Activity of New GPx Mimetics. Materials 2022, 15, 2068. [Google Scholar] [CrossRef] [PubMed]
- Laskowska, A.; Pacuła-Miszewska, A.J.; Obieziurska-Fabisiak, M.; Jastrzębska, A.; Gach-Janczak, K.; Janecka, A.; Ścianowski, J. Facile Synthesis of Chiral Phenylselenides as Novel Antioxidants and Cytotoxic Agents. RSC Adv. 2023, 13, 14698–14702. [Google Scholar] [CrossRef]
- Laskowska, A.; Pacuła-Miszewska, A.J.; Obieziurska-Fabisiak, M.; Jastrzębska, A.; Długosz-Pokorska, A.; Gach-Janczak, K.; Ścianowski, J. Synthesis of New Chiral β-Carbonyl Selenides with Antioxidant and Anticancer Activity Evaluation—Part I. Materials 2024, 17, 899. [Google Scholar] [CrossRef]
- Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A Water-Soluble Cyclic Selenide with Enhanced Glutathione Peroxidase-Like Catalytic Activities. Eur. J. Org. Chem. 2010, 2010, 440–445. [Google Scholar] [CrossRef]
- Pacuła-Miszewska, A.J.; Obieziurska-Fabisiak, M.; Jastrzębska, A.; Długosz-Pokorska, A.; Gach-Janczak, K.; Ścianowski, J. The Influence of Long Carbon Chains on the Antioxidant and Anticancer Properties of N-Substituted Benzisoselenazolones and Corresponding Diselenides. Pharmaceuticals 2023, 16, 1560. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik, K.A.; Ciesla, L.M.; Waksmundzka-Hajnos, M. Model Studies on the Antioxidant Activity of Common Terpenoid Constituents of Essential Oils by Means of the 2,2-Diphenyl-1-Picrylhydrazyl Method. J. Agric. Food Chem. 2014, 62, 9088–9094. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.A.; Cieśla, Ł.M.; Waksmundzka-Hajnos, M. Approach to Determination a Structure—Antioxidant Activity Relationship of Selected Common Terpenoids Evaluated by ABTS •+ Radical Cation Assay. Nat. Prod. Commun. 2018, 13, 1934578X1801300. [Google Scholar] [CrossRef]
- Obieziurska, M.; Pacuła, A.J.; Długosz-Pokorska, A.; Krzemiński, M.; Janecka, A.; Ścianowski, J. Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials 2019, 12, 3579. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.-J.; Shao, X.-T.; Wang, S.; Lu, G.-H.; Xu, T.; Zhou, J.-Y. Sesquiterpene Lactone Parthenolide Markedly Enhances Sensitivity of Human A549 Cells to Low-Dose Oxaliplatin via Inhibition of NF-ΚB Activation and Induction of Apoptosis. Planta Med. 2010, 76, 258–264. [Google Scholar] [CrossRef]
- Marchetti, P.; Galla, D.A.P.; Russo, F.P.; Ricevuto, E.; Flati, V.; Porzio, G.; Ficorella, C.; Cifone, M.G. Apoptosis Induced by Oxaliplatin in Human Colon Cancer HCT15 Cell Line. Anticancer Res. 2004, 24, 219–226. [Google Scholar]
- Oliveira, M.d.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A Novel Platinum Complex Containing a Piplartine Derivative Exhibits Enhanced Cytotoxicity, Causes Oxidative Stress and Triggers Apoptotic Cell Death by ERK/P38 Pathway in Human Acute Promyelocytic Leukemia HL-60 Cells. Redox Biol. 2019, 20, 182–194. [Google Scholar] [CrossRef]
Entry | Solvent (Solubilization of A) | Base | Conditions and Order of Addition | Yield (%) |
---|---|---|---|---|
1 | Acetone | NaHCO3 | 1. (acetone + NaHCO3, rt, 30 min) + A, rt, 1 h 2. B, rt, 15 h | 16 |
2 | Acetone | Et3N | 1. (acetone + Et3N, rt, 30 min) + A, rt, 1 h 2. B, rt, 15 h | 54 |
Remaining DTTred (%) | ||||
---|---|---|---|---|
Catalyst (0.1 Equiv.) | 5 min | 15 min | 30 min | 60 min |
12 | 95.3 ± 0.2 | 95.2 ± 0.3 | 94.8 ± 0.4 | 94.4 ± 0.4 |
13 | 96.7 ± 0.1 | 96.5 ± 0.2 | 95.0 ± 0.1 | 94.9 ± 0.4 |
14 | 92.8 ± 0.1 | 88.5 ± 0.3 | 82.0 ± 1.9 | 75.0 ± 1.1 |
15 | 93.6 ± 0.2 | 93.0 ± 0.1 | 92.9 ± 0.2 | 92.6 ± 0.2 |
16 | 95.1 ± 0.1 | 94.9 ± 0.1 | 94.7 ± 0.1 | 94.4 ± 0.2 |
17 | 90.8 ± 0.2 | 90.6 ± 0.3 | 90.3 ± 0.3 | 89.2 ± 0.2 |
18 | 93.5 ± 0.1 | 91.5 ± 0.2 | 89.2 ± 0.3 | 85.8 ± 0.7 |
19 | 95.1 ± 0.1 | 94.9 ± 0.1 | 94.6 ± 0.1 | 94.3 ± 0.2 |
20/21 | 95.8 ± 0.1 | 94.4 ± 0.2 | 94.0 ± 1.5 | 92.1 ± 2.7 |
10/22 | 96.1 ± 0.1 | 95.7 ± 0.1 | 95.7 ± 0.3 | 94.9 ± 0.4 |
23/24 | 94.4 ± 0.9 | 93.9 ± 0.8 | 93.6 ± 0.7 | 92.8 ± 0.4 |
Ebselen | 75 | 64 | 58 | 52 |
Compound | IC50 (µM) ± SEM | |
---|---|---|
MCF-7 | HL-60 | |
12 | 51.1 ± 0.6 | 97.2 ± 0.5 |
13 | 129.5 ± 1.2 | 147.0 ± 5.0 |
14 | 166.0 ± 3.0 | 97.2 ± 0.1 |
15 | 273.0 ± 3.0 | 105.0 ± 1.0 |
16 | 121.0 ± 0.4 | 84.0 ± 2.0 |
17 | 194.0 ± 5.0 | 103.0 ± 2.0 |
18 | 133.0 ± 2.0 | 110.0 ± 5.0 |
19 | 121.0 ± 10.0 | 243.0 ± 8.0 |
20 | 313.0 ± 10.0 | 147.5 ± 2.0 |
21 | 243.0 ± 10.0 | 89.4 ± 0.9 |
10 | 176.0 ± 3.0 | 126.0 ± 2.5 |
22 | 107.0 ± 0.8 | 94.2 ± 3.0 |
23 | 123.0 ± 0.4 | 94.4 ± 3.0 |
24 | 136.0 ± 3.0 | 94.2 ± 0.7 |
Oxaliplatin | 35 [30,31] | 0.8 [32] |
IC50 (µM) ± SEM | ||||
---|---|---|---|---|
A | B | |||
Se-derivative | MCF-7 | HL-60 | MCF-7 | HL-60 |
β-carbonyl selenide with o-ester group | 176.0 ± 3.0 | 126.0 ± 2.5 | 107.0 ± 0.8 | 94.2 ± 3.0 |
β-carbonyl selenide with o-amide group | 235.0 ± 1.0 | 303.0 ± 3.0 | 237.0 ± 11.0 | 23.5 ± 1.4 |
Phenyl selenide | >150 | >150 | >150 | >150 |
Benzisoselenazolone | 32.8 ± 2.8 | 16.1 ± 0.0 | 38.8 ± 0.8 | 16.8 ± 0.4 |
Diselenide | >100 | >100 | >100 | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laskowska, A.; Pacuła-Miszewska, A.J.; Obieziurska-Fabisiak, M.; Jastrzębska, A.; Długosz-Pokorska, A.; Gach-Janczak, K.; Ścianowski, J. Synthesis of a New Class of β-Carbonyl Selenides Functionalized with Ester Groups with Antioxidant and Anticancer Properties—Part II. Molecules 2024, 29, 2866. https://doi.org/10.3390/molecules29122866
Laskowska A, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Długosz-Pokorska A, Gach-Janczak K, Ścianowski J. Synthesis of a New Class of β-Carbonyl Selenides Functionalized with Ester Groups with Antioxidant and Anticancer Properties—Part II. Molecules. 2024; 29(12):2866. https://doi.org/10.3390/molecules29122866
Chicago/Turabian StyleLaskowska, Anna, Agata J. Pacuła-Miszewska, Magdalena Obieziurska-Fabisiak, Aneta Jastrzębska, Angelika Długosz-Pokorska, Katarzyna Gach-Janczak, and Jacek Ścianowski. 2024. "Synthesis of a New Class of β-Carbonyl Selenides Functionalized with Ester Groups with Antioxidant and Anticancer Properties—Part II" Molecules 29, no. 12: 2866. https://doi.org/10.3390/molecules29122866
APA StyleLaskowska, A., Pacuła-Miszewska, A. J., Obieziurska-Fabisiak, M., Jastrzębska, A., Długosz-Pokorska, A., Gach-Janczak, K., & Ścianowski, J. (2024). Synthesis of a New Class of β-Carbonyl Selenides Functionalized with Ester Groups with Antioxidant and Anticancer Properties—Part II. Molecules, 29(12), 2866. https://doi.org/10.3390/molecules29122866