Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac
Abstract
:1. Introduction
2. Results
2.1. A Qualitative Evaluation on the Binding of HSA:NSAIDs
2.2. A Quantitative Evaluation on the Binding of HSA:NSAIDs
2.3. Proofing the Main Fluorescence Quenching Mechanism of HSA Induced by NSAIDs
2.4. Conformational Perturbation of HSA upon NSAID Binding
2.5. An Atomic Point of View of the Interaction of HSA:NSAIDs
3. Discussion
4. Materials and Methods
4.1. General Materials
4.2. Nuclear Magnetic Resonance (NMR) Measurements
4.3. UV Absorption Measurements
4.4. Steady-State Fluorescence Measurements
4.5. Time-Resolved Fluorescence (TRF) Measurements
4.6. Circular Dichroism (CD) Measurements
4.7. Molecular Docking Procedure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef]
- Brennan, R.; Wazaify, M.; Shawabkeh, H.; Boardley, I.; McVeigh, J.; Van Hout, M.C. A scoping review of non-medical and extra-medical use of non-steroidal anti-inflammatory drugs (NSAIDs). Drug Saf. 2021, 44, 917–928. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Zhang, Y.; Bian, Y.; Zhang, Y.-X.; Du, R.-Z.; Li, M.; Tan, Y.; Feng, X.-S. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies. Sci. Total Environ. 2023, 904, 166897. [Google Scholar] [CrossRef] [PubMed]
- Hudec, R.; Bozeková, L.; Tisonová, J. Consumption of three most widely used analgesics in six European countries. J. Clin. Pharm. Therap. 2011, 37, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Kasciuškevičiūtė, S.; Gumbrevičius, G.; Vendzelytė, A.; Ščiupokas, A.; Petrikonis, K.; Kaduševičius, E. Impact of the world health organization pain treatment guidelines and the European medicines agency safety recommendations on nonsteroidal anti-inflammatory drug use in Lithuania: An observational study. Medicina 2018, 54, 30. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Miranda, C.; Brito, F.; Fonseca, C.; Araujo, A.R.T.S. Consumption patterns of NSAIDs in central Portugal and the role of pharmacy professionals in promoting their rational use. Drugs Ther. Perspect. 2017, 33, 32. [Google Scholar] [CrossRef]
- Czub, M.P.; Handing, K.B.; Venkataramany, B.S.; Cooper, D.R.; Shabalin, I.G.; Minor, W. Albumin-based transport of nonsteroidal anti-inflammatory drugs in mammalian blood plasma. J. Med. Chem. 2020, 63, 6847–6862. [Google Scholar] [CrossRef] [PubMed]
- Jahanban-Esfahlan, A.; Amarowicz, R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int. J. Biol. Macromol. 2024, 266, 131132. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, K.; Yang, G. Design strategies for enhancing antitumor efficacy through tumor microenvironment exploitation using albumin-based nanosystems: A review. Int. J. Biol. Macromol. 2024, 258, 129070. [Google Scholar] [CrossRef]
- Asrorov, A.M.; Mukhamedov, N.; Kayumov, M.; Yashinov, A.S.; Wali, A.; Yili, A.; Mirzaakhmedov, S.Y.; Huang, Y. Albumin is a reliable drug-delivering molecule: Highlighting points in cancer therapy. Med. Drug Discov. 2024, 22, 100186. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, X. Acute albumin administration as therapy for intracerebral hemorrhage: A literature review. Heliyon 2024, 10, e23946. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Lan, J.; Guan, R.; Bao, Y.; Du, X.; Zhao, Z.; Shi, R.; Hollert, H.; Zhao, X. The weakened physiological functions of human serum albumin in presence of polystyrene nanoplastics. Int. J. Biol. Macromol. 2024, 261, 129609. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, R.; Bartucci, R. Thermal effects and drugs competition on the palmitate binding capacity of human serum albumin. Biochem. Biophys. Res. Comm. 2024, 722, 150168. [Google Scholar] [CrossRef]
- Paul, M.; Ghosh, B.; Biswas, S. Human Serum Albumin-Oxaliplatin (Pt(IV)) prodrug nanoparticles with dual reduction sensitivity as effective nanomedicine for triple-negative breast cancer. Int. J. Biol. Macromol. 2024, 256, 128281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Wu, J.; Li, S.; Zhou, X.; Zhang, R.; Zhang, Y. Causal relationships between serum albumin, neuroticism and suicidal ideation in depressed patients: A Mendelian randomization study. Heliyon 2024, 10, e30718. [Google Scholar] [CrossRef] [PubMed]
- Montero, M.T.; Estelrich, J.; Valls, O. Binding of non-steroidal anti-inflammatory drugs to human serum albumin. Int. J. Pharmac. 1990, 62, 21–25. [Google Scholar] [CrossRef]
- Klomjit, N.; Ungprasert, P. Acute kidney injury associated with non-steroidal anti-inflammatory drugs. Eur. J. Int. Med. 2022, 101, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Pan, L.; Lin, X.; Zhang, B.; Ren, J.; Wang, Q. Combinational strategy using albumin-based nanoparticles to enable synergetic anti-rheumatic efficacy and reduced hepatotoxicity. Int. J. Pharm. 2024, 656, 124111. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Amorim, A.P.d.O.; Castro, L.H.E.; Sant’Anna, C.M.R.; De Oliveira, M.C.C.; Cesarin-Sobrinho, D.; Netto-Ferreira, J.C.; Ferreira, A.B.B. Fluorescence and Docking Studies of the Interaction between Human Serum Albumin and Pheophytin. Molecules 2015, 20, 19526–19539. [Google Scholar] [CrossRef]
- Amir, M.; Nabi, F.; Zaheer, S.M.F.; Khan, R.H.; Javed, S. Exploring the molecular basis of tucatinib interaction with human serum albumin: A spectroscopic and computational analysis. J. Mol. Liq. 2024, 401, 124642. [Google Scholar] [CrossRef]
- Akawa, O.B.; Okunhola, F.O.; Alahmdi, M.I.; Abo-Dya, N.E.; Sidhom, P.A.; Ibrahim, M.A.A.; Shibl, M.F.; Khan, S.; Soliman, M.E.S. Multi-cavity molecular descriptor interconnections: Enhanced protocol for prediction of serum albumin drug binding. Europ. J. Pharm. Biopharm. 2024, 194, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 1975, 11, 824–832. [Google Scholar] [PubMed]
- Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol Biol. 2005, 353, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; de Oliveira, C.H.C.S.; Ferreira, R.C.; Pereira, R.P.; de Melos, J.L.R.; Rodrigues-Santos, C.E.; Echevarria, A.; Cesarin-Sobrinho, D. Investigation of interaction between human plasmatic albumin and potential fluorinated anti-trypanosomal drugs. J. Fluor. Chem. 2017, 199, 103–112. [Google Scholar] [CrossRef]
- Chaves, O.A.; Santos, M.R.L.; de Oliveira, M.C.C.; Sant’Anna, C.M.R.; Ferreira, R.C.; Echevarria, A.; Netto-Ferreira, J.C. Synthesis, tyrosinase inhibition and transportation behavior of novel β-enamino thiosemicarbazide derivatives by human serum albumin. J. Mol. Liq. 2018, 254, 280–290. [Google Scholar] [CrossRef]
- Amézqueta, S.; Beltrán, J.L.; Bolioli, A.M.; Campos-Vicens, L.; Luque, F.J.; Ràfols, C. Evaluation of the interactions between human serum albumin (HSA) and non-steroidal anti-inflammatory (NSAIDs) drugs by multiwavelength molecular fluorescence, structural and computational analysis. Pharmaceuticals 2021, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Bou-Abdallah, F.; Sprague, S.E.; Smith, B.M.; Giffune, T.R. Binding thermodynamics of Diclofenac and Naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study. J. Chem. Thermodyn. 2016, 103, 299–309. [Google Scholar] [CrossRef]
- Bi, S.; Yan, L.; Sun, Y.; Zhang, H. Investigation of ketoprofen binding to human serum albumin by spectral methods. Spectrochim. Acta A 2011, 78, 410–414. [Google Scholar] [CrossRef]
- Zhu, J.L.; He, J.; He, H.; Tan, S.H.; He, X.M.; Pham-Huy, C.; Li, L. Study on the interaction between ketoprofen and bovine serum albumin by molecular simulation and spectroscopic methods. Spectroscopy 2011, 26, 337–348. [Google Scholar] [CrossRef]
- Deepa, K.N.; Hossain, M.K.; Amran, M.S.; Kabir, S. In vitro model for studying interactions between ketorolac and omeprazole with bovine serum albumin by UV-spectroscopic method. Bangladesh Pharm. J. 2014, 17, 92–98. [Google Scholar] [CrossRef]
- Deepa, K.N.; Sultan, M.Z.; Amran, M.S.; Kabir, S. In vitro analysis of the interaction between keterolac tromethamine and bovine serum albumin using fluorescence spectroscopy. J. Adv. Med. Pharmac. Sci. 2016, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Negrea, E.; Oancea, P.; Leonties, A.; Maria, U.A.; Avram, S.; Rasucan, A. Spectroscopic studies on binding of ibuprofen and drotaverine with bovine serum albumin. J. Photochem. Photobiol. A 2023, 438, 114512. [Google Scholar] [CrossRef]
- Czub, M.P.; Stewart, A.J.; Shabalin, I.G.; Minor, W. Organism-specific differences in the binding of ketoprofen to serum albumin. IUCrJ 2022, 9, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Buckley, M.M.; Brogden, R.N. Ketorolac: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 1990, 39, 86–109. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.J.; Brown, C.S.; Naylor, R.M. Nonsteroidal anti-inflammatory medications in cranial neurosurgery: Balancing opioid-sparing analgesia with bleeding risk. World Neurosurg. 2024, 181, e875–e888. [Google Scholar] [CrossRef] [PubMed]
- Sari, M.H.M.; Saccol, C.P.; Custódio, V.N.; da Rosa, L.S.; da Costa, J.S.; Fajardo, A.R.; Ferreira, L.M.; Cruz, L. Carrageenan-xanthan nanocomposite film with improved bioadhesion and permeation profile in human skin: A cutaneous-friendly platform for ketoprofen local delivery. Int. J. Biol. Macromol. 2024, 265, 130864. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Wagstaff, J.L.; Taylor, S.L.; Howard, M.J. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. Mol. BioSyst. 2013, 9, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.; Ramírez-Cárdenas, J.; Padilla-Pérez, M.C.; Walpole, S.; Nepravishta, R.; García-Moreno, M.I.; Sánchez-Fernández, E.M.; Mellet, C.O.; Ângulo, J.; Munoz-García, J.C. Speeding-up the determination of protein–ligand affinities by STD NMR: The reduced data set STD NMR approach (rd-STD NMR). Anal. Chem. 2024, 96, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.L.; Powers, R. Application of NMR and molecular docking in structure-based drug discovery. Top. Curr. Chem. 2012, 326, 1–34. [Google Scholar]
- Hőgye, F.; Farkas, L.B.; Balogh, Á.K.; Szilágyi, L.; Alnukari, S.; Bajza, I.; Borbás, A.; Fehér, K.; Illyés, T.Z.; Timári, I. Saturation transfer difference NMR and molecular docking interaction study of aralkyl-thiodigalactosides as potential inhibitors of the human-galectin-3 protein. Int. J. Mol. Sci. 2024, 25, 1742. [Google Scholar] [CrossRef]
- Aiello, F.; Uccello-Barretta, G.; Picchi, C.; Nazzi, S.; Recchimurzo, A.; Balzano, F. NMR Investigation of the interaction of three non-steroidal anti-inflammatory drugs with human serum albumin. Molecules 2022, 27, 6647. [Google Scholar] [CrossRef] [PubMed]
- Viegas, A.; Manso, J.; Nobrega, F.L.; Cabrita, E.J. Saturation-transfer difference (STD) NMR: A simple and fast method for ligand screening and characterization of protein binding. J. Chem. Ed. 2011, 88, 990–994. [Google Scholar] [CrossRef]
- Monaco, S.; Ângulo, J.; Wallace, M. Imaging saturation transfer difference (STD) NMR: Affinity and specificity of protein–ligand interactions from a single NMR sample. J. Am. Chem. Soc. 2023, 145, 16391–16397. [Google Scholar] [CrossRef] [PubMed]
- Nepravishta, R.; Ramírez-Cárdenas, J.; Rocha, G.; Walpole, S.; Hicks, T.; Monaco, S.; Munoz-García, J.C.; Ângulo, J. Fast quantitative validation of 3D models of low-affinity protein-ligand complexes by STD NMR spectroscopy. J. Med. Chem. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Costa-Tuna, A.; Chaves, O.A.; Almeida, Z.L.; Cunha, R.S.; Pina, J.; Serpa, C. Profiling the Interaction between Human Serum Albumin and Clinically Relevant HIV Reverse Transcriptase Inhibitors. Viruses 2024, 16, 491. [Google Scholar] [CrossRef]
- Costa-Tuna, A.; Chaves, O.A.; Loureiro, R.J.S.; Pinto, S.; Pina, J.; Serpa, C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int. J. Biol. Macromol. 2024, 225, 128210. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, H.; Cao, Y.; Wang, F.; Mi, W. Elucidating the interaction of propofol and serum albumin by spectroscopic and docking methods. J. Mol. Liq. 2016, 219, 405–410. [Google Scholar] [CrossRef]
- Ploch-Jankowska, A.; Pentak, D.; Nycz, J.E. A Comprehensive Spectroscopic analysis of the ibuprofen binding with human serum albumin, Part II. Sci. Pharm. 2021, 89, 30. [Google Scholar] [CrossRef]
- Seedher, N.; Bhatia, S. Mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulide with serum albumin. J. Pharm. Biomed. Anal. 2005, 39, 257–262. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Chaves, O.A.; de Oliveira, C.H.C.S.; Ferreira, V.F.; Ferreira, S.B.; Serpa, C.; Cesarin-Sobrinho, D.; Netto-Ferreira, J.C. Interactive profile between 1,4-naphthoquinone derivatives and human serum albumin. J. Braz. Chem. Soc. 2024, 35, e20240043. [Google Scholar] [CrossRef]
- Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Liu, S.; Guo, C.; Guo, Y.; Yu, H.; Greenaway, F.; Sun, M.-Z. Comparative binding affinities of flavonoid phytochemicals with bovine serum albumin. Iran J. Pharm. Res. 2014, 13, 1019–1028. [Google Scholar] [PubMed]
- Chaves, O.A.; Jesus, C.S.H.; Cruz, P.F.; Sant’Anna, C.M.R.; Brito, R.M.M.; Serpa, C. Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA. Spectrochim. Acta A 2016, 169, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Jankeje, K.; Albani, J.R. Origin of fluorescence lifetimes in human serum albumin. Studies on native and denatured protein. J. Fluoresc. 2010, 20, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, Y.; Li, M.; Han, S.; Yang, X.; Liu, R. Toxic effects of chrysoidine on human serum albumin: Isothermal titration calorimetry and spectroscopic investigations. Luminescence 2016, 31, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Soares, M.A.G.; de Oliveira, M.C.C. Monosaccharides interact weakly with human serum albumin. Insights for the functional perturbations on the binding capacity of albumin. Carbohydr. Res. 2021, 501, 108274. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.J.; Loura, L.M.S.; Martins, J.; Salvador, A.; Velazquez-Campoy, A. Analysis of the equilibrium distribution of ligands in heterogeneous media—Approaches and pitfalls. Int. J. Mol. Sci. 2022, 23, 9757. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, C.; de Simone, A.; Pistolozzi, M.; Rosini, M. Reversible human serum albumin binding of lipocrine: A circular dichroism study. Chirality 2011, 23, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Jana, G.; Sing, S.; Das, A.; Basu, A. Interaction of food colorant indigo carmine with human and bovine serum albumins: A multispectroscopic, calorimetric, and theoretical investigation. Int. J. Biol. Macromol. 2024, 259, 129143. [Google Scholar] [CrossRef] [PubMed]
- Zsila, F. Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin. J. Phys. Chem. B 2013, 117, 10798–10806. [Google Scholar] [CrossRef]
- Yang, X.; Porcel, E.; Marichal, L.; Gonzalez-Vargas, C.; Khitous, A.; Salado-Leza, D.; Li, X.; Renault, J.-P.; Pin, S.; Remita, H.; et al. Human serum albumin in the presence of small platinum nanoparticles. J. Pharm. Sci. 2024, 113, 1645–1652. [Google Scholar] [CrossRef]
- Hirata, K.; Kawai, A.; Chuang, V.T.G.; Sakurama, K.; Nishi, K.; Yamasaki, K.; Otagiri, M. Effects of myristate on the induced circular dichroism spectra of aripiprazole bound to human serum albumin: A structural–chemical investigation. ACS Omega 2022, 7, 4413–4419. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Heath, R.J. Structural and biochemical features of human serum albumin essential for eukaryotic cell culture. Int. J. Mol. Sci. 2021, 22, 8411. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, N. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.L.S.; Chaves, O.A.; de Lucas, N.C.; Goulart, J.S.; Garden, S.J.; Serpa, C.; Netto-Ferreira, J.C. Spectroscopic and in silico characterization of the interaction between synthetic 2-substituted-naphtho-1,4-quinones and human serum albumin. J. Mol. Liq. 2024, 403, 124829. [Google Scholar] [CrossRef]
- Rodrigues, B.M.; de Oliveira, D.F.; Garcia, R.Q.; Chaves, O.A.; Pizzi, G.F.; Costa, L.A.S.; de Boni, L.; Iglesias, B.A. The photophysical, photobiological, and DNA/HSA-binding properties of corroles containing carbazole and phenothiazine moieties. Int. J. Biol. Macromol. 2024, 268, 131861. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Ozleyen, A.; Yilmaz, Y.B.; Donmez, S.; Atalay, H.N.; Antika, G.; Tumer, T.B. Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention. J. Cancer Res. Clin. Oncol. 2022, 149, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Iglesias, B.A.; Serpa, C. Biophysical Characterization of the Interaction between a Transport Human Plasma Protein and the 5,10,15,20-Tetra(pyridine-4-yl)porphyrin. Molecules 2022, 27, 5341. [Google Scholar] [CrossRef] [PubMed]
- Naveenraj, S.; Anandan, S. Binding of serum albumins with bioactive substances—Nanoparticles to drugs. J. Photochem. Photobiol. C 2013, 14, 53–71. [Google Scholar] [CrossRef]
- Jamali, F.; Brocks, D.R. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clin. Pharmacokinet. 1990, 19, 197–217. [Google Scholar] [CrossRef]
- Brocks, D.R.; Jamali, F. Clinical pharmacokinetic of ketorolac tromethamine. Clin. Pharmacokinet. 1992, 23, 415–427. [Google Scholar] [CrossRef]
- Chaves, O.A.; Oliveira, C.H.C.S.; Ferreira, R.C.; Cesarin-Sobrinho, D.; Machado, A.E.H.; Netto-Ferreira, J.C. Synthetic dimethoxyxanthones bind similarly to human serum albumin compared with highly oxygenated xanthones. Chem. Phys. Impact 2024, 8, 100411. [Google Scholar] [CrossRef]
- Chaves, O.A.; Oliveira, C.H.C.S.; Ferreira, R.C.; Ferreira, V.F.; Ferreira, S.B.; Serpa, C.; Cesarin-Sobrinho, D.; da Silva, F.A.; Netto-Ferreira, J.C. Spectroscopic and in silico evaluation on the interactive behavior between substituted β-2,3-dihydrofuran naphthoquinones and human serum albumin. Chem. Phys. Impact 2024, 8, 100465. [Google Scholar] [CrossRef]
- Fan, J.; Gilmartin, K.; Octaviano, S.; Villar, F.; Remache, B.; Regan, J. Using human serum albumin binding affinities as a proactive strategy to affect the pharmacodynamics and pharmacokinetics of preclinical drug candidates. ACS Pharmacol. Transl. Sci. 2022, 5, 803–810. [Google Scholar] [CrossRef]
- Chaves, O.A.; Loureiro, R.J.S.; Costa-Tuna, A.; Almeida, Z.L.; Pina, J.; Brito, R.M.M.; Serpa, C. Interaction of two commercial azobenzene food dyes, amaranth and new coccine, with human serum albumin: Biophysical characterization. ACS Food Sci. Technol. 2023, 3, 955–968. [Google Scholar] [CrossRef]
- Chaves, O.A.; Loureiro, R.J.S.; Serpa, C.; Cruz, P.F.; Ferreira, A.B.B.; Netto-Ferreira, J.C. Increasing the polarity of β-lapachone does not affect its binding capacity with bovine plasma protein. Int. J. Biol. Macromol. 2024, 263, 130279. [Google Scholar] [CrossRef]
- Pina, J.; de Melo, J.S.; Burrows, H.D.; Maçanita, A.L.; Galbrecht, F.; Bünnagel, T.; Scherf, U. Alternating binaphthyl–thiophen-copolymers: Synthesis, spectroscopy, and photophysics and their relevance to the question of energy migration versus conformational relaxation. Macromolecules 2009, 42, 1710–1719. [Google Scholar] [CrossRef]
- Striker, G.; Subramaniam, V.; Seidel, C.A.M.; Volkmer, A. Photochromicity and fluorescence lifetimes of green fluorescent protein. J. Phys. Chem. B 1999, 103, 8612–8617. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Bulyáki, E.; Kun, J.; Moussong, E.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J. BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018, 46, W315–W322. [Google Scholar] [CrossRef] [PubMed]
- Hein, K.L.; Kragh-Hansen, U.; Morth, J.P.; Jeppesen, M.D.; Otzen, D.; Moller, J.V.; Nissen, P. Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J. Struct. Biol. 2010, 171, 353–360. [Google Scholar] [CrossRef] [PubMed]
System | T (K) | KSV (×104) (M−1) | kq (×1012) 1 (M−1s−1) | n | Kb (×104) (M−1) | ΔH° (kJmol−1) | ΔS° (kJmol−1K−1) | ΔG° (kJmol−1) |
---|---|---|---|---|---|---|---|---|
HSA:KTF | 300 | 3.68 0.11 | 7.13 0.08 | 0.785 0.06 | 2.21 0.10 | 81.3 19.9 | 0.353 0.065 | −24.6 0.5 |
305 | 3.90 0.12 | 7.56 0.10 | 0.790 0.08 | 2.64 0.16 | −26.4 0.2 | |||
310 | 4.62 0.12 | 8.95 0.11 | 0.802 0.08 | 3.98 0.13 | −28.1 0.2 | |||
315 | 13.2 1.1 | 25.6 0.85 | 0.911 0.05 | 10.8 0.10 | −29.9 0.5 | |||
HSA:KTL | 300 | 1.07 0.10 | 2.07 0.19 | 0.780 0.08 | 2.17 0.14 | 61.4 20.9 | 0.289 0.068 | −25.3 0.5 |
305 | 1.12 0.11 | 2.17 0.21 | 0.795 0.06 | 5.31 0.11 | −26.7 0.2 | |||
310 | 1.35 0.10 | 2.62 0.19 | 0.831 0.06 | 5.85 0.12 | −28.2 0.2 | |||
315 | 1.94 0.09 | 3.76 0.17 | 0.893 0.04 | 7.63 0.11 | −29.6 0.5 |
System | [NSAIDs] × 10−6 (M) | τ1 (ns) | τ2 (ns) | A1 | A2 | %Rel (τ1) | %Rel (τ2) | τaverage (ns) | τ0/τaverage |
---|---|---|---|---|---|---|---|---|---|
HSA:KTF | 0.00 | 1.56 | 5.92 | 0.448 | 0.552 | 18 | 82 | 5.15 | ------ |
0.20 | 1.43 | 5.75 | 0.517 | 0.483 | 21 | 79 | 4.84 | 1.07 | |
0.60 | 1.41 | 5.72 | 0.429 | 0.571 | 16 | 84 | 5.05 | 1.02 | |
1.00 | 1.40 | 5.73 | 0.444 | 0.556 | 16 | 84 | 5.02 | 1.03 | |
2.00 | 1.50 | 5.77 | 0.461 | 0.539 | 18 | 82 | 4.99 | 1.03 | |
4.00 | 1.48 | 5.74 | 0.460 | 0.540 | 18 | 82 | 4.97 | 1.04 | |
6.00 | 1.51 | 5.69 | 0.467 | 0.533 | 19 | 81 | 4.90 | 1.05 | |
8.00 | 1.55 | 5.67 | 0.471 | 0.529 | 20 | 80 | 4.86 | 1.06 | |
HSA:KTL | 0.00 | 1.55 | 5.89 | 0.431 | 0.569 | 17 | 83 | 5.17 | ------ |
0.20 | 1.58 | 5.88 | 0.568 | 0.532 | 22 | 78 | 4.92 | 1.05 | |
0.60 | 1.52 | 5.86 | 0.471 | 0.529 | 9 | 81 | 5.05 | 1.02 | |
1.00 | 1.52 | 5.81 | 0.482 | 0.518 | 20 | 80 | 4.97 | 1.04 | |
2.00 | 1.53 | 5.80 | 0.480 | 0.520 | 20 | 80 | 4.96 | 1.04 | |
4.00 | 1.55 | 5.80 | 0.494 | 0.506 | 21 | 79 | 4.92 | 1.05 | |
6.00 | 1.47 | 5.75 | 0.506 | 0.494 | 21 | 79 | 4.86 | 1.06 | |
8.00 | 1.47 | 5.71 | 0.518 | 0.482 | 22 | 78 | 4.79 | 1.08 |
Sample | α-Helix | β-Sheets (Antiparallel) | Turn | Others 1 |
---|---|---|---|---|
HSA | 75.1 | 2.9 | 6.9 | 15.1 |
HSA:KTF | 68.0 | 7.0 | 9.0 | 16.0 |
HSA:KTL | 67.5 | 6.8 | 8.7 | 17.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, R.S.; Cruz, P.F.; Costa, T.; Almeida, Z.L.; Lima, M.E.F.d.; Serpa, C.; Chaves, O.A. Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac. Molecules 2024, 29, 3001. https://doi.org/10.3390/molecules29133001
Cunha RS, Cruz PF, Costa T, Almeida ZL, Lima MEFd, Serpa C, Chaves OA. Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac. Molecules. 2024; 29(13):3001. https://doi.org/10.3390/molecules29133001
Chicago/Turabian StyleCunha, Rita S., Pedro F. Cruz, Telma Costa, Zaida L. Almeida, Marco Edilson Freire de Lima, Carlos Serpa, and Otávio A. Chaves. 2024. "Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac" Molecules 29, no. 13: 3001. https://doi.org/10.3390/molecules29133001
APA StyleCunha, R. S., Cruz, P. F., Costa, T., Almeida, Z. L., Lima, M. E. F. d., Serpa, C., & Chaves, O. A. (2024). Revisiting and Updating the Interaction between Human Serum Albumin and the Non-Steroidal Anti-Inflammatory Drugs Ketoprofen and Ketorolac. Molecules, 29(13), 3001. https://doi.org/10.3390/molecules29133001