A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize
Abstract
:1. Introduction
2. Results and Discussion
2.1. Data Preprocessing
2.2. Multivariate Analysis
2.2.1. PCA Results
2.2.2. Cluster Analysis Results
2.2.3. OPLS-DA Results
2.2.4. SVM Results
2.3. Univariate Analysis
2.4. Limits of Detection
2.5. Practicability Test
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Solution Preparation
3.3. Sample Preparation and Pretreatment Process
3.4. Sample Grouping and Naming
3.5. Analytical Method
3.6. Metabolomics Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GB 2763-2021; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARAPRC): Beijing, China, 2021.
- National Archives and Records Administration (NARA). Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-180 (accessed on 15 October 2022).
- The Japan Food Chemical Research Foundation (JFCRF). Available online: http://db.ffcr.or.jp/front/ (accessed on 15 October 2022).
- European Union (EU). Commission Regulation (EU) No 396/2005 of 23 February 2005. 2005. Available online: https://eur-lex.europa.eu/eli/reg/2005/396/oj (accessed on 15 October 2022).
- Ahmed, M.B.M.; Rajapaksha, A.U.; Lim, J.E.; Vu, N.T.; Kim, S.; Kang, H.M.; Lee, S.S.; Ok, Y.S. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato and lettuce. J. Agric. Food Chem. 2015, 63, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A.; Johnson, P.; Smith, E.J.; Sinclair, C.J.; Stutt, E.; Levy, L.S. Uptake of veterinary medicines from soils into plants. J. Agric. Food Chem. 2006, 54, 2288–2297. [Google Scholar] [CrossRef] [PubMed]
- Hawker, D.W.; Cropp, R.; Boonsaner, M. Uptake of zwitterionic antibiotics by rice (Oryza sativa L.) in contaminated soil. J. Hazard. Mater. 2013, 263, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Jones-Lepp, T.L.; Sanchez, C.A.; Moy, T.; Kazemi, R. Method development and application to determine potential plant uptake of antibiotics and other drugs in irrigated crop production systems. J. Agric. Food Chem. 2010, 58, 11568–11573. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, R.; Sato, Y.; Motoyama, M.; Nakagawa, S.; Shinohara, R.; Nomiyama, K. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J. Agric. Food Chem. 2012, 60, 10203–10211. [Google Scholar] [CrossRef] [PubMed]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Luo, Y.; Mao, D. Sources, fate, ecological risks and mitigation strategies of antibiotics in the soil environment. Environ. Chem. 2014, 33, 19–29. [Google Scholar]
- Zhang, M.; Xu, Q. Review on pollution and behavior of veterinary antibiotics in agricultural system. Acta Agric. Zhejiang 2013, 25, 416–424. (In Chinese) [Google Scholar]
- Bao, Y.; Li, Y.; Mo, C.; Yao, Y.; Tai, Y.; Wu, X.; Zhang, Y. Determination of six sulfonamide antibiotics in vegetables by solid phase extraction and high performance liquid chromatography. Environ. Chem. 2010, 29, 513–518. (In Chinese) [Google Scholar]
- Wu, X.; Xiang, L.; Mo, C.; Li, Y.; Jiang, Y.; Yan, Q.; Lv, X.; Huang, X. Determination of quinolones in vegetables using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry. Chin. J. Anal. Chem. 2013, 41, 876–881. (In Chinese) [Google Scholar] [CrossRef]
- Wu, X.; Bao, Y.; Xiang, L.; Yan, Q.; Jiang, Y.; Li, Y.; Huang, X.; Mo, C. Simultaneous sulfonamide antibiotics in vegetables using solid phase extraction and high performance liquid chromatography coupled with mass spectrometry. Environ. Chem. 2013, 32, 1038–1044. (In Chinese) [Google Scholar]
- Yao, Y.; Mo, C.; Li, Y.; Bao, Y.; Tai, Y.; Wu, X. Determination of tetracyclines in vegetables using solid phase extraction and HPLC with fluorescence detection. Environ. Chem. 2010, 29, 536–541. (In Chinese) [Google Scholar]
- European Union (EU). Commission Regulation (EU) No 37/2010 of 22 December 2009. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010R0037 (accessed on 15 October 2022).
- GB 31650-2019; National Food Safety Standard-Maximum Residue Limits for Veterinary Drugs in Foods. Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARAPRC): Beijing, China, 2019.
- Jadhav, M.R.; Pudale, A.; Raut, P.; Utture, S.; Shabeer, T.P.A.; Banerjee, K. A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC-MS/MS. Food Chem. 2019, 272, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Chu, X.; Ling, Y.; Huang, J.; Chang, J. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. J. Chromatogr. A 2014, 1347, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhao, Y.; Shao, B.; Zhang, J. Determination of residues of pesticides and veterinary drugs in milk by ultra performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Chin. J. Chromatogr. 2012, 30, 560–567. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Brack, W.; Dulio, V.; Slobodnik, J. The NORMAN network and its activities on emerging environmental substances with a focus on effect-directed analysis of complex environmental contamination. Environ. Sci. Eur. 2012, 24, 29–33. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, Z.; Kong, H.; Lu, X.; Zhao, X.; Chen, Y.; Chen, J.; Wu, Z.; Xu, Z.; Zhao, C.; et al. Nontargeted screening method for illegal additives based on ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. Anal. Chem. 2016, 88, 8870–8877. [Google Scholar] [CrossRef] [PubMed]
- Kunzelmann, M.; Winter, M.; Aberg, M.; Hellenäs, K.E.; Rosén, J. Non-targeted analysis of unexpected food contaminants using LC-HRMS. Anal. Bioanal. Chem. 2018, 410, 5593–5602. [Google Scholar] [CrossRef]
- Tengstrand, E.; Rosén, J.; Hellenäs, K.E.; Aberg, K.M. A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography-mass spectrometry in combination with a metabolomics approach. Anal. Bioanal. Chem. 2013, 405, 1237–1243. [Google Scholar] [CrossRef]
- Delaporte, G.; Cladière, M.; Jouan-Rimbaud Bouveresse, D.; Camel, V. Untargeted food contaminant detection using UHPLC-HRMS combined with multivariate analysis: Feasibility study on tea. Food Chem. 2019, 277, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Zhang, H.; Wang, M.; Liu, Y.; Liu, M.; Shen, B. Metabolomics-based non-targeted screening analysis of 34 PPCPs in bovine and piscine muscles. Anal. Methods 2022, 14, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Yang, C.; Liu, M.; Lin, X.; Wang, M.; Wang, X. Metabolomics approach on non-targeted screening of 50 PPCPs in lettuce and maize. Molecules 2022, 27, 4711. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Pérez, A.; Romero-González, R.; Frenich, A.G. A metabolomics approach based on 1H NMR fingerprinting and chemometrics for quality control and geographical discrimination of black pepper. J. Food Compos. Anal. 2022, 105, 104235–104244. [Google Scholar] [CrossRef]
- Azizan, K.A.; Zamani, A.I.; Muhammad, N.A.N.; Khairudin, K.; Yusoff, N.; Nawawi, M.F. Dose-dependent effect of wedelia trilobata essential oil (EO) on lettuce (Lactuca sativa L.) with multivariate analysis. Chem. Biodivers. 2022, 19, e202100833. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ge, L.; Lu, W.; Wang, S.; Li, Y.; Wang, H.; Huang, M.; Xie, H.; Liao, J.; Tao, Y. Real-time profiling and distinction of lipids from different mammalian milks using rapid evaporative ionization mass spectrometry combined with chemometric analysis. J. Agric. Food Chem. 2022, 70, 7786–7795. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Xing, R.; Zhang, J.; Yu, N.; Ge, Y.; Zhang, W.; Chen, Y. UPLC-QTOF-MS coupled with machine learning to discriminate between NFC and FC orange juice. Food Control. 2023, 145, 109487. [Google Scholar] [CrossRef]
- Yang, S.; Yang, H.; Huang, Y.; Chen, G.; Shen, C.; Zheng, S. Serum metabolomic signatures of hirschsprung’s disease based on GC–MS and LC–MS. J. Proteome Res. 2023, 22, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zheng, Y.; Li, W.; Zhi, J.; Huang, X.; Zhu, W.; Liu, Z.; Gong, L. Combined metabolomics with transcriptomics reveals potential plasma biomarkers correlated with non-small-cell lung cancer proliferation through the Akt pathway. Clin. Chim. Acta 2022, 530, 66–73. [Google Scholar] [CrossRef]
- Lu, Y.; Yao, G.; Wang, X.; Zhang, Y.; Zhao, J.; Yu, Y.J.; Wang, H. Chemometric discrimination of the geographical origin of licorice in China by untargeted metabolomics. Food Chem. 2022, 380, 132235. [Google Scholar] [CrossRef]
- Lin, X.; Yang, F.; Zhou, L.; Yin, P.; Kong, H.; Xing, W.; Lu, X.; Jia, L.; Wang, Q.; Xu, G. A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. J. Chromatogr. B 2012, 910, 149–155. [Google Scholar] [CrossRef]
- Huang, X.; Lin, X.; Zeng, J.; Wang, L.; Yin, P.; Zhou, L.; Hu, C.; Yao, W. A computational method of defining potential biomarkers based on differential sub-networks. Sci. Rep. 2017, 7, 14339. [Google Scholar] [CrossRef] [PubMed]
- Smolinska, A.; Blanchet, L.; Coulier, L.; Ampt, K.A.M.; Luider, T.; Hintzen, R.Q.; Wijmenga, S.S.; Buydens, L.M.C. Interpretation and visualization of non-linear data fusion in kernel space: Study on metabolomic characterization of progression of multiple sclerosis. PLoS ONE 2012, 7, e38163. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xiong, Z.; Deng, T.; Ren, K. Automated brain tumor segmentation from multimodal MRI data based on Tamura texture feature and an ensemble SVM classifier. Int. J. Intel. Comput. Cyber. 2019, 12, 466–480. [Google Scholar]
- Chen, Q.; Dai, W.; Lin, Z.; Xie, D.; Lv, M.; Lin, Z. Effects of shading on main quality components in tea (Camellia Sinensis (L) O. Kuntze) leaves based on metabolomics analysis. Sci. Agric. Sin. 2019, 52, 1066–1077. (In Chinese) [Google Scholar]
- Pasikanti, K.K.; Esuvaranathan, K.; Ho, P.C.; Mahendran, R.; Kamaraj, R.; Wu, Q.H.; Chiong, E.; Chan, E.C.Y. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J. Proteome Res. 2010, 9, 2988–2995. [Google Scholar] [CrossRef]
- Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 2014, 28, 213–225. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. ‘SMOTE: Synthetic minority over-sampling technique’. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Broadhurst, D.I.; Kella, D.B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006, 2, 171–196. [Google Scholar] [CrossRef]
- Slupsky, C.M.; Steed, H.; Wells, T.H.; Dabbs, K.; Schepansky, A.; Capstick, V.; Faught, W.; Sawyer, M.B. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin. Cancer Res. 2010, 16, 5835–5841. [Google Scholar] [CrossRef]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef]
- Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal. 2014, 87, 12–25. [Google Scholar] [CrossRef]
- Rubert, J.; Righetti, L.; Stranska-Zachariasova, M.; Dzuman, Z.; Chrpova, J.; Dall’Asta, C.; Hajslova, J. Untargeted metabolomics based on ultra-high-performance liquid chromatography-high-resolution mass spectrometry merged with chemometrics: A new predictable tool for an early detection of mycotoxins. Food Chem. 2017, 224, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Ortmayr, K.; Charwat, V.; Kasper, C.; Hann, S.; Koellensperger, G. Uncertainty budgeting in fold change determination and implications for non-targeted metabolomics studies in model systems. Analyst 2017, 142, 80–90. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Method 8061A Phthalate Esters by Gas Chromatography with Electron Capture Detection (GC/ECD); Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Tai, Y.; Mo, C.; Li, Y.; Wu, X.; Wang, J.; Su, Q. Concentration and distribution of tetracycline antibiotics in soils from vegetable fields of Dongguan City. China Environ. Sci. 2011, 31, 90–95. (In Chinese) [Google Scholar]
- Tang, X.; Lou, C.; Wang, S.; Lu, Y.; Liu, M.; Hashmi, M.Z.; Liang, X.; Li, Z.; Liao, Y.; Qin, W.; et al. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China. Soil Biol. Biochem. 2015, 90, 179–187. [Google Scholar] [CrossRef]
- Zhu, X.; Zeng, Q.; Xie, Q.; Ding, D.; Ru, S. Residues and risk assessment of tetracycline antibiotics in vegetable-growing soils from suburban areas of northern Guangzhou. J. Agro-Environ. Sci. 2017, 36, 2257–2266. (In Chinese) [Google Scholar]
- Hang, L.; Zhao, Y.; Liu, C.; Yu, Y.; He, Y.; Xu, J.; Lu, Z. Determine multiple classes of veterinary antibiotics in soil: Comparing dispersive and solid-phase extraction for sample cleanup. Chromatographia 2021, 84, 833–844. [Google Scholar] [CrossRef]
- Lian, Y.L. Control of maize pests and diseases and measures of rational use of pesticides. World Trop. Agric. Info. 2023, 10, 33–34. (In Chinese) [Google Scholar]
- Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 2010, 5, 1005–1018. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.C.; MacLean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Giacomoni, F.; Le Corguille, G.; Monsoor, M.; Landi, M.; Pericard, P.; Petera, M.; Duperier, C.; Tremblay-Franco, M.; Martin, J.F.; Jacob, D.; et al. Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics 2015, 31, 1493–1495. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Gika, H.G.; Theodoridis, G.A.; Wilson, I.D. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine: Sample stability under different handling and storage conditions for metabonomics studies. J. Chromatogr. A 2008, 1189, 314–322. [Google Scholar] [CrossRef]
- Winnike, J.H.; Busby, M.G.; Watkins, P.B.; O’Connell, T.M. Effects of a prolonged standardized diet on normalizing the human metabolome. Am. J. Clin. Nutr. 2009, 90, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Peter, A.; Franken, H.; Zhao, X.; Neukamm, S.S.; Rosenbaum, L.; Lucio, M.; Zell, A.; Haring, H.U.; Xu, G.; et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin. Chem. 2013, 59, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Schievano, E.; Morelato, E.; Facchin, C.; Mammi, S. Characterization of markers of botanical origin and other compounds extracted from unifloral honeys. J. Agric. Food Chem. 2013, 61, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Pontes, T.A.; Barbosa, A.D.; Silva, R.D.; Melo-Junior, M.R.; Silva, R.O. Osteopenia-osteoporosis discrimination in postmenopausal women by 1H NMR-based metabonomics. PLoS ONE 2019, 14, e0217348. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, G.; Xun, W.; Yu, Y.; Ge, C.; Liao, G. Selection of water-soluble compounds by characteristic flavor in Chahua Chicken muscles based on metabolomics. Sci. Agric. Sin. 2020, 53, 1627–1642. (In Chinese) [Google Scholar]
- Dai, Y.; Lü, C.; He, L.; Yi, C.; Liu, X.; Huang, W.; Chen, J. Metabolic changes in the processing of Yunkang 10 sun-dried green tea based on metabolomics. Sci. Agric. Sin. 2020, 53, 357–370. (In Chinese) [Google Scholar]
- Yang, J.; Chen, T.; Sun, L.; Zhao, Z.; Wan, C. Potential metabolite markers of schizophrenia. Mol. Psychiatry 2013, 18, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Mendez, K.M.; Reinke, S.N.; Broadhurst, D.I. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Metabolomics 2019, 15, 150. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of metabolomic data using support vector machines. Anal. Chem. 2008, 80, 7562–7570. [Google Scholar] [CrossRef] [PubMed]
No. | Var ID (Primary) | Marker Compounds | VIP Pred a | (Weight Squared Value × 105) b | m/z c | t (min) d | Mass Error (ppm) e | LOD (µg/kg) |
---|---|---|---|---|---|---|---|---|
1 | M406T575 | Difenoconazole | 7.378/12.942 | 56,490/23,814 | 406.07130 | 9.58 | −1.654 | 0.5 |
2 | M326T524 | Benalaxyl | 5.798/5.975 | 9548/20,867 | 326.17516 | 8.73 | 0.279 | 1.1 |
3 | M336T541 | Zoxamide | 4.658/5.732 | 11,861/11,744 | 336.03283 | 9.02 | 2.657 | 0.7 |
4 | M218T216 | Pymetrozine | 7.828/5.649 | 25,040/13,579 | 218.10371 | 3.60 | 0.337 | 0.7 |
5 | M372T574 | Profenofos | 6.189/5.531 | 26,626/4524 | 372.94268 | 9.57 | 0.699 | 0.9 |
6 | M353T444 | Tebufenozide | 4.262/4.761 | 3052/4239 | 353.22383 | 7.40 | 4.178 | 1.0 |
7 | M365T664 | Pyridaben | 0.514/4.492 | 73/3656 | 365.14408 | 11.07 | −2.218 | 0.9 |
8 | M256T210 | Trichlorfon | 2.470/4.263 | 689/3233 | 256.92941 | 3.50 | −1.753 | 0.5 |
9 | M218T300 | Propanil | 2.321/4.243 | 599/2611 | 218.01315 | 5.00 | −1.160 | 1.3 |
10 | M220T226 | Dichlorvos | 4.161/4.225 | 2493/2742 | 220.95367 | 3.77 | 2.220 | 0.9 |
11 | M304T410 | Fenpropimorph | 3.241/4.191 | 1248/2663 | 304.26361 | 6.83 | 0.386 | 1.5 |
12 | M223T241 | Acetamiprid | 4.561/4.170 | 3386/2965 | 223.07489 | 4.02 | 1.761 | 0.5 |
13 | M349T621 | Clorpyrifos | 3.678/4.141 | 1708/2579 | 349.93393 | 10.35 | 1.049 | 0.5 |
14 | M192T245 | Carbendazim | 2.651/4.094 | 746/2573 | 192.07637 | 4.08 | −1.957 | 1.1 |
15 | M732T421 | Spinosad | 4.227/4.059 | 2608/2462 | 732.46855 | 7.02 | 0.588 | 1.0 |
16 | M294T344 | Paclobutrazol | 2.783/4.041 | 815/2289 | 294.13689 | 5.73 | 0.420 | 0.9 |
17 | M345T650 | Oxadiazon | 3.066/3.997 | 1010/2326 | 345.07613 | 10.83 | −1.724 | 1.0 |
18 | M279T211 | Oxadixyl | 3.629/3.980 | 1621/2292 | 279.13363 | 3.52 | −1.063 | 0.9 |
19 | M276T326 | Dimethenamid | 3.496/3.968 | 1471/2338 | 276.08142 | 5.43 | −1.904 | 0.8 |
20 | M282T660 | Pendimethalin | 4.213/3.873 | 2396/2265 | 282.14480 | 11.00 | −0.092 | 0.7 |
21 | M305T541 | Diazinon | 4.289/3.844 | 2528/2250 | 305.10830 | 9.02 | −0.114 | 0.4 |
22 | M302T228 | Flutriafol | 4.602/3.813 | 3265/2173 | 302.11046 | 3.80 | 1.695 | 0.4 |
23 | M330T429 | Epoxiconazol | 2.132/3.739 | 394/2123 | 330.08077 | 7.15 | 1.141 | 0.4 |
24 | M324T499 | Flutolanil | 5.143/3.569 | 4610/1575 | 324.11992 | 8.32 | −2.068 | 0.3 |
25 | M292T384 | Cyproconazol | 3.236/3.488 | 1016/1409 | 292.12131 | 6.40 | 0.645 | 0.5 |
26 | M253T239 | Hexazinone | 0.434/3.446 | 44/1392 | 253.16520 | 3.98 | −2.774 | 0.8 |
27 | M319T370 | Pyriftalid | 2.171/3.416 | 347/1241 | 319.07443 | 6.17 | −0.885 | 0.9 |
28 | M321T561 | Chlorpyrifos-methyl | 3.301/3.349 | 1028/1237 | 321.90281 | 9.35 | 1.702 | 1.1 |
29 | M343T308 | Thiophanate-methyl | 1.896/3.345 | 249/1184 | 343.05204 | 5.13 | −2.599 | 1.1 |
30 | M306T540 | Pirimiphos-methyl | 7.863/3.343 | 24,423/1100 | 306.10351 | 9.00 | −0.217 | 0.6 |
31 | M888T502 | Emamectin benzoate | 1.008/3.257 | 106/1067 | 888.54603 | 8.37 | −0.830 | 1.1 |
32 | M337T436 | Fenbuconazole | 1.937/3.235 | 245/1010 | 337.12103 | 7.27 | −1.260 | 0.9 |
33 | M289T354 | Myclobutanil | 2.280/3.197 | 347/895 | 289.12143 | 5.90 | −0.082 | 0.7 |
34 | M224T228 | Monocrotophos | 4.047/3.145 | 1844/885 | 224.06760 | 3.80 | −2.848 | 0.8 |
35 | M222T196 | Carbofuran | 2.358/3.126 | 362/856 | 222.11230 | 3.27 | −0.773 | 0.5 |
36 | M304T200 | Fenamiphos | 1.974/3.103 | 237/790 | 304.11316 | 3.33 | 0.267 | 0.9 |
37 | M299T446 | Quinalphos | 4.042/3.029 | 1806/729 | 299.06183 | 7.43 | 1.514 | 1.2 |
38 | M338T555 | Bitertanol | 2.887/2.982 | 588/752 | 338.18671 | 9.25 | 1.223 | 0.9 |
39 | M300T306 | Phosphamidon | 1.897/2.956 | 199/789 | 300.07668 | 5.10 | 1.536 | 0.8 |
40 | M256T277 | Phosfolan | 1.855/2.946 | 188/728 | 256.02283 | 4.62 | 1.078 | 1.1 |
41 | M271T540 | Cadusafos | 3.111/2.930 | 729/640 | 271.09408 | 9.00 | −3.356 | 1.1 |
42 | M376T359 | Prochloraz | 1.725/2.915 | 158/619 | 376.03841 | 5.98 | 0.850 | 0.5 |
43 | M226T450 | Cyprodinil | 3.535/2.786 | 1080/608 | 226.13315 | 7.50 | −3.196 | 0.5 |
44 | M243T411 | Mocap | 1.673/2.746 | 132/591 | 243.06367 | 6.85 | −0.080 | 0.9 |
45 | M215T432 | Metribuzin | 2.828/2.720 | 507/396 | 215.09661 | 7.20 | 2.312 | 0.9 |
46 | M436T523 | Fipronil | 4.356/2.698 | 2316/545 | 436.94589 | 8.72 | −0.199 | 0.9 |
47 | M250T234 | Clothianidin | 1.491/2.630 | 95/531 | 250.01693 | 3.90 | 3.708 | 0.9 |
48 | M253T261 | Thiacloprid | 1.262/2.621 | 68/460 | 253.03037 | 4.35 | −2.158 | 0.5 |
49 | M292T214 | Thiamethoxam | 1.650/2.596 | 116/582 | 292.02655 | 3.57 | −0.066 | 0.4 |
50 | M294T360 | Triadimefon | 3.591/2.572 | 1107/393 | 294.10089 | 6.00 | 1.746 | 0.5 |
51 | M302T266 | Methidathion | 3.877/2.538 | 1467/386 | 302.96913 | 4.43 | −0.049 | 0.9 |
52 | M368T509 | Anilofos | 1.299/2.491 | 65/377 | 368.03063 | 8.48 | 0.281 | 0.9 |
53 | M299T346 | Phoxim | 1.463/2.430 | 79/367 | 299.06142 | 5.77 | 0.149 | 1.0 |
54 | M318T521 | Phosmet | 0.495/2.374 | 31/326 | 318.00180 | 8.68 | −0.050 | 0.6 |
55 | M293T309 | Etrimfos | 2.431/2.362 | 279/281 | 293.07130 | 5.15 | −2.200 | 0.8 |
56 | M284T503 | Metolachlor | 1.320/2.289 | 57/312 | 284.14146 | 8.38 | 0.993 | 0.7 |
57 | M330T488 | Iprodione | 1.610/2.279 | 88/299 | 330.04077 | 8.13 | 0.293 | 0.6 |
58 | M216T346 | Atrazine | 2.591/2.276 | 334/284 | 216.10192 | 5.77 | 4.024 | 0.5 |
59 | M307T499 | Sulfotep | 2.147/2.267 | 186/321 | 307.05231 | 8.32 | −1.796 | 0.6 |
60 | M208T297 | Fenobucarb | 1.281/2.247 | 51/261 | 208.13320 | 4.95 | −0.059 | 1.0 |
61 | M256T248 | Imidacloprid | 3.372/2.230 | 845/260 | 256.05943 | 4.13 | −0.595 | 1.0 |
62 | M203T178 | Dinotefuran | 2.636/2.201 | 345/241 | 203.11381 | 2.97 | −0.305 | 1.1 |
63 | M249T290 | Linuron | 2.276/2.189 | 521/222 | 249.01904 | 4.83 | −0.689 | 0.8 |
64 | M242T356 | Prometryn | 1.801/2.173 | 108/198 | 242.14414 | 5.93 | 3.079 | 0.5 |
65 | M230T309 | Terbutylazine | 2.165/2.136 | 178/220 | 230.11703 | 5.15 | 1.443 | 0.8 |
66 | M329T323 | Pencycuron | 1.550/2.124 | 71/221 | 329.14203 | 5.38 | 1.535 | 0.7 |
67 | M318T276 | Azinphos-methyl | 1.632/1.675 | 60/94 | 318.01430 | 4.60 | 3.916 | 0.3 |
68 | M279T490 | Fenthion | 0.372/1.438 | 8/54 | 279.02730 | 8.17 | −0.006 | 0.9 |
69 | M214T317 | Simetryn | 3.354/2.111 | 815/190 | 214.11264 | 5.28 | 2.581 | 0.5 |
70 | M313T320 | Praziquantel | 1.624/2.045 | 76/183 | 313.19130 | 5.33 | 0.793 | 1.0 |
71 | M479T347 | Chlortetracycline | 3.939/2.020 | 1530/182 | 479.12216 | 5.78 | 1.234 | 1.1 |
72 | M463T377 | Tetracycline | 2.347/2.005 | 221/176 | 463.17183 | 6.28 | 1.560 | 0.3 |
73 | M445T384 | Doxycycline | 3.592/1.990 | 1061/167 | 445.16071 | 6.40 | 0.390 | 0.5 |
74 | M277T489 | Sulfabenzamide | 2.596/1.981 | 310/162 | 277.06427 | 8.15 | 0.462 | 0.4 |
75 | M275T541 | Ormetoprim | 1.289/1.980 | 41/159 | 275.15083 | 9.02 | 2.093 | 0.6 |
76 | M281T212 | Sulfamonomethoxine | 2.221/1.979 | 181/147 | 281.07014 | 3.53 | −0.519 | 0.9 |
77 | M315T378 | Sulfaphenazole | 0.518/1.908 | 28/144 | 315.09129 | 6.30 | 0.870 | 0.9 |
78 | M215T306 | Sulfacetamide | 1.919/1.893 | 112/125 | 215.04915 | 5.10 | 3.056 | 0.9 |
79 | M281T361 | Sulfameter | 2.102/1.822 | 142/112 | 281.07037 | 6.02 | 0.274 | 0.8 |
80 | M279T225 | Sulfamethazine | 2.008/1.818 | 123/111 | 279.09161 | 3.75 | 2.104 | 0.9 |
81 | M254T427 | Sulfamethoxazole | 1.564/1.815 | 58/118 | 254.05989 | 7.12 | 1.979 | 1.0 |
82 | M265T308 | Sulfamerazine | 1.827/1.813 | 91/106 | 265.07593 | 5.13 | 2.102 | 0.8 |
83 | M254T429 | Sulfamethoxazole | 0.616/1.811 | 16/105 | 254.05937 | 7.15 | −0.063 | 0.8 |
84 | M311T666 | Sulfamethazine | 1.671/1.800 | 71/103 | 311.08055 | 11.10 | −0.962 | 0.8 |
85 | M301T301 | Sulfaquinoxaline | 1.493/1.798 | 51/102 | 301.07589 | 5.02 | 1.739 | 1.0 |
86 | M285T412 | sulfachloropyridazine | 1.001/1.758 | 19/95 | 285.02113 | 6.87 | 1.316 | 0.8 |
87 | M215T293 | Sulfaguanidine | 1.926/1.734 | 103/97 | 215.05963 | 4.88 | −0.403 | 0.9 |
88 | M251T288 | Sulfadiazine | 2.213/1.692 | 164/96 | 251.05942 | 4.80 | −1.177 | 0.4 |
89 | M256T275 | Sulfathiazole | 2.800/1.687 | 396/99 | 256.02180 | 4.58 | 3.531 | 0.4 |
90 | M279T377 | Sulfisomidine | 2.312/1.671 | 192/77 | 279.09146 | 6.28 | 1.584 | 0.4 |
91 | M268T208 | Sulfafurazole | 1.659/1.668 | 64/87 | 268.07577 | 3.47 | 2.711 | 1.0 |
92 | M291T365 | Trimethoprim | 1.707/1.652 | 70/77 | 291.14592 | 6.08 | 2.575 | 0.9 |
93 | M281T380 | Sulfamethoxypyridazine | 0.735/1.636 | 26/89 | 281.07031 | 6.33 | 0.066 | 0.8 |
94 | M360T414 | Enrofloxacin | 3.164/1.616 | 637/75 | 360.17198 | 6.90 | 0.491 | 0.8 |
95 | M320T382 | Norfloxacin | 1.198/1.601 | 24/75 | 320.14194 | 6.37 | 4.507 | 0.7 |
96 | M334T383 | Pefloxacin | 2.511/1.588 | 260/73 | 334.15581 | 6.38 | −1.023 | 0.9 |
97 | M332T404 | Ciprofloxacin | 1.473/1.573 | 37/70 | 332.14104 | 6.73 | 1.621 | 0.7 |
98 | M362T385 | Ofloxacin | 1.266/1.535 | 27/68 | 362.15151 | 6.42 | 1.252 | 0.9 |
99 | M386T456 | Sarafloxacin | 1.148/1.507 | 47/67 | 386.13203 | 7.60 | 2.492 | 0.4 |
100 | M352T427 | Lomefloxacin | 0.728/1.451 | 7/62 | 352.14603 | 7.12 | −1.973 | 0.3 |
101 | M233T608 | Nalidixic acid | 1.036/1.449 | 15/56 | 233.09243 | 10.13 | 1.528 | 0.3 |
102 | M262T619 | Flumequine | 2.101/1.441 | 128/55 | 262.08760 | 10.32 | 0.770 | 0.5 |
103 | M358T411 | Danofloxacin | 0.814/1.415 | 7/52 | 358.15716 | 6.85 | 2.823 | 0.8 |
104 | M400T442 | Difloxacin | 1.830/1.414 | 77/50 | 400.14683 | 7.37 | 0.282 | 0.8 |
105 | M396T433 | Orbifloxacin | 1.500/1.395 | 38/48 | 396.15371 | 7.22 | 1.927 | 1.0 |
106 | M393T494 | Sparfloxacin | 0.671/1.393 | 10/48 | 393.17268 | 8.23 | −1.498 | 0.9 |
107 | M734T616 | Erythromycin | 1.106/1.365 | 16/46 | 734.46808 | 10.27 | −0.599 | 0.9 |
108 | M837T659 | Roxithromycin | 1.236/1.354 | 23/38 | 837.53167 | 10.98 | −0.214 | 1.0 |
109 | M828T630 | Josamycin | 1.349/1.351 | 68/36 | 828.47461 | 10.50 | 0.733 | 0.8 |
110 | M916T611 | Tylosin | 1.039/1.348 | 13/36 | 916.52689 | 10.18 | 0.505 | 0.9 |
111 | M702T622 | Kitasamycin | 1.758/1.345 | 65/36 | 702.40593 | 10.37 | 0.010 | 0.8 |
112 | M869T566 | Tilmicosin | 0.491/1.343 | 7/35 | 869.57374 | 9.43 | 0.484 | 1.0 |
113 | M128T254 | 2-methyl-5-nitroimidazole | 2.095/1.336 | 269/35 | 128.04551 | 4.23 | 0.444 | 0.9 |
114 | M114T265 | 4-nitroimidazole | 1.036/1.333 | 14/32 | 114.02989 | 4.42 | 0.821 | 1.0 |
115 | M164T246 | 5-nitrobenzimidazole | 1.122/1.319 | 16/32 | 164.04613 | 4.10 | 4.115 | 1.3 |
116 | M142T207 | Dimetridazole | 1.492/1.311 | 36/32 | 142.06163 | 3.45 | 3.755 | 0.5 |
117 | M172T218 | Metronidazole | 2.251/1.281 | 164/31 | 172.07180 | 3.63 | 0.779 | 1.1 |
118 | M201T240 | Ronidazole | 1.356/1.280 | 26/31 | 201.06230 | 4.00 | 2.315 | 0.4 |
119 | M158T329 | Hydroxy dimetridazole | 2.126/1.262 | 131/31 | 158.05646 | 5.48 | 2.797 | 0.4 |
120 | M170T362 | Ipronidazole | 1.305/1.258 | 23/31 | 170.09277 | 6.03 | 2.156 | 0.9 |
No. | Compounds | Category | CAS No. | Extracted Molecular Weight | Retention Time (min) |
---|---|---|---|---|---|
1 | Dinotefuran | insecticide | 165252-70-0 | 203.11387 | 3.06 |
2 | Carbofuran | insecticide | 1563-66-2 | 222.11247 | 3.21 |
3 | Fenamiphos | insecticide | 22224-92-6 | 304.11308 | 3.44 |
4 | Trichlorfon | insecticide | 52-68-6 | 256.92986 | 3.47 |
5 | Thiamethoxam | insecticide | 153719-23-4 | 292.02657 | 3.54 |
6 | Pymetrozine | insecticide | 123312-89-0 | 218.10364 | 3.61 |
7 | Dichlorvos | insecticide | 62-73-7 | 220.95318 | 3.78 |
8 | Monocrotophos | insecticide | 2157-98-4 | 224.06824 | 3.81 |
9 | Clothianidin | insecticide | 210880-92-5 | 250.01600 | 3.95 |
10 | Acetamiprid | insecticide | 135410-20-7 | 223.07450 | 4.03 |
11 | Imidacloprid | insecticide | 105827-78-9 | 256.05958 | 4.09 |
12 | Thiacloprid | insecticide | 111988-49-9 | 253.03092 | 4.33 |
13 | Methidathion | insecticide | 950-37-8 | 302.96914 | 4.37 |
14 | Phosfolan | insecticide | 947-02-4 | 256.02255 | 4.54 |
15 | Azinphos-methyl | insecticide | 86-50-0 | 318.01305 | 4.59 |
16 | Fenobucarb | insecticide | 3766-81-2 | 208.13321 | 4.96 |
17 | Phosphamidon | insecticide | 13171-21-6 | 300.07622 | 5.05 |
18 | Etrimfos | insecticide | 38260-54-7 | 293.07194 | 5.16 |
19 | Phoxim | insecticide | 14816-18-3 | 299.06138 | 5.71 |
20 | Mocap | insecticide | 13194-48-4 | 243.06369 | 6.89 |
21 | Spinosad | insecticide | 131929-60-7 | 732.46812 | 7.15 |
22 | Tebufenozide | insecticide | 112410-23-8 | 353.22235 | 7.35 |
23 | Quinalphos | insecticide | 13593-03-8 | 299.06138 | 7.41 |
24 | Fenthion | insecticide | 55-38-9 | 279.02730 | 8.07 |
25 | Sulfotep | insecticide | 3689-24-5 | 307.05286 | 8.26 |
26 | Emamectin benzoate | insecticide | 155569-91-8 | 888.54677 | 8.54 |
27 | Phosmet | insecticide | 732-11-6 | 318.00182 | 8.57 |
28 | Fipronil | insecticide | 120068-37-3 | 436.94598 | 8.73 |
29 | Cadusafos | insecticide | 95465-99-9 | 271.09499 | 8.95 |
30 | Diazinon | insecticide | 333-41-5 | 305.10833 | 8.96 |
31 | Pirimiphos-methyl | insecticide | 29232-93-7 | 306.10358 | 8.96 |
32 | Chlorpyrifos-methyl | insecticide | 5598-13-0 | 321.90226 | 9.32 |
33 | Profenofos | insecticide | 41198-08-7 | 372.94242 | 9.49 |
34 | Clorpyrifos | insecticide | 2921-88-2 | 349.93356 | 10.26 |
35 | Pyridaben | insecticide | 96489-71-3 | 365.14489 | 11.06 |
36 | Oxadixyl | bactericide | 77732-09-3 | 279.13393 | 3.49 |
37 | Flutriafol | bactericide | 76674-21-0 | 302.10995 | 3.79 |
38 | Carbendazim | bactericide | 10605-21-7 | 192.07675 | 4.11 |
39 | Thiophanate-methyl | bactericide | 23564-05-8 | 343.05293 | 5.14 |
40 | Pencycuron | bactericide | 66063-05-6 | 329.14152 | 5.47 |
41 | Prochloraz | bactericide | 67747-09-5 | 376.03809 | 5.89 |
42 | Myclobutanil | bactericide | 88671-89-0 | 289.12145 | 6.06 |
43 | Triadimefon | bactericide | 43121-43-3 | 294.10038 | 6.11 |
44 | Cyproconazol | bactericide | 113096-99-4 | 292.12112 | 6.36 |
45 | Fenpropimorph | bactericide | 67306-03-0 | 304.26349 | 6.72 |
46 | Epoxiconazol | bactericide | 106325-08-0 | 330.08039 | 7.11 |
47 | Fenbuconazole | bactericide | 114369-43-6 | 337.12145 | 7.33 |
48 | Cyprodinil | bactericide | 121552-61-2 | 226.13387 | 7.64 |
49 | Iprodione | bactericide | 36734-19-7 | 330.04067 | 8.13 |
50 | Flutolanil | bactericide | 66332-96-5 | 324.12059 | 8.23 |
51 | Benalaxyl | bactericide | 71626-11-4 | 326.17507 | 8.75 |
52 | Zoxamide | bactericide | 156052-68-5 | 336.03194 | 8.99 |
53 | Bitertanol | bactericide | 55179-31-2 | 338.18630 | 9.17 |
54 | Difenoconazole | bactericide | 119446-68-3 | 406.07197 | 9.64 |
55 | Hexazinone | herbicide | 51235-04-2 | 253.16590 | 3.94 |
56 | Linuron | herbicide | 330-55-2 | 249.01921 | 4.92 |
57 | Propanil | herbicide | 709-98-8 | 218.01340 | 4.98 |
58 | Terbutylazine | herbicide | 5915-41-3 | 230.11670 | 5.07 |
59 | Simetryn | herbicide | 1014-70-6 | 214.11209 | 5.32 |
60 | Dimethenamid | herbicide | 87674-68-8 | 276.08195 | 5.41 |
61 | Atrazine | herbicide | 102029-43-6 | 216.10105 | 5.77 |
62 | Prometryn | herbicide | 7287-19-6 | 242.14339 | 5.97 |
63 | Pyriftalid | herbicide | 135186-78-6 | 319.07471 | 6.02 |
64 | Metribuzin | herbicide | 21087-64-9 | 215.09611 | 7.14 |
65 | Metolachlor | herbicide | 51218-45-2 | 284.14118 | 8.34 |
66 | Anilofos | herbicide | 64249-01-0 | 368.03053 | 8.49 |
67 | Oxadiazon | herbicide | 19666-30-9 | 345.07672 | 10.77 |
68 | Pendimethalin | herbicide | 40487-42-1 | 282.14483 | 10.92 |
69 | Paclobutrazol | growth regulator | 76738-62-0 | 294.13677 | 5.77 |
70 | Sulfafurazole | sulfamido | 127-69-5 | 268.07504 | 3.38 |
71 | Sulfamonomethoxine | sulfamido | 1220-83-3 | 281.07029 | 3.54 |
72 | Sulfamethazine | sulfamido | 57-68-1 | 279.09102 | 3.76 |
73 | Sulfathiazole | sulfamido | 72-14-0 | 256.02090 | 4.54 |
74 | Sulfadiazine | sulfamido | 68-35-9 | 251.05972 | 4.73 |
75 | Sulfaguanidine | sulfamido | 57-67-0 | 215.05972 | 4.85 |
76 | Sulfaquinoxaline | sulfamido | 59-40-5 | 301.07537 | 5.05 |
77 | Sulfacetamide | sulfamido | 144-80-9 | 215.04849 | 5.06 |
78 | Sulfamerazine | sulfamido | 127-79-7 | 265.07537 | 5.11 |
79 | Sulfameter | sulfamido | 651-06-9 | 281.07029 | 5.95 |
80 | Trimethoprim | sulfamido | 738-70-5 | 291.14517 | 6.01 |
81 | Sulfaphenazole | sulfamido | 526-08-9 | 315.09102 | 6.21 |
82 | Sulfisomidine | sulfamido | 515-64-0 | 279.09102 | 6.24 |
83 | Sulfamethoxypyridazine | sulfamido | 80-35-3 | 281.07029 | 6.51 |
84 | Sulfachloropyridazine | sulfamido | 80-32-0 | 285.02075 | 6.87 |
85 | Sulfamethoxazole | sulfamido | 723-46-6 | 254.05939 | 7.09 |
86 | Sulfamethoxazole | sulfamido | 723-46-6 | 254.05939 | 7.09 |
87 | Sulfabenzamide | sulfamido | 127-71-9 | 277.06414 | 8.05 |
88 | Ormetoprim | sulfamido | 6981-18-6 | 275.15025 | 8.94 |
89 | Sulfamethazine | sulfamido | 57-68-1 | 311.08085 | 11.05 |
90 | Dimetridazole | nitroimidazoles | 551-92-8 | 142.06110 | 3.46 |
91 | Metronidazole | nitroimidazoles | 443-48-1 | 172.07167 | 3.58 |
92 | Ronidazole | nitroimidazoles | 7681-76-7 | 201.06183 | 3.96 |
93 | 5-nitrobenzimidazole | nitroimidazoles | 94-52-0 | 164.04545 | 4.05 |
94 | 2-methyl-5-nitroimidazole | nitroimidazoles | 88054-22-2 | 128.04545 | 4.17 |
95 | 4-nitroimidazole | nitroimidazoles | 3034-38-6 | 114.02980 | 4.41 |
96 | Hydroxy dimetridazole | nitroimidazoles | 936-05-0 | 158.05602 | 5.55 |
97 | Ipronidazole | nitroimidazoles | 14885-29-1 | 170.09240 | 6.05 |
98 | Mebendazole | nitroimidazoles | 31431-39-7 | 296.10297 | 7.74 |
99 | Fleroxacin | quinolones | 79660-72-3 | 370.13730 | 5.99 |
100 | Ofloxacin | quinolones | 82419-36-1 | 362.15106 | 6.39 |
101 | Pefloxacin | quinolones | 70458-92-3 | 334.15615 | 6.41 |
102 | Norfloxacin | quinolones | 70458-96-7 | 320.14050 | 6.51 |
103 | Ciprofloxacin | quinolones | 85721-33-1 | 332.14050 | 6.73 |
104 | Enrofloxacin | quinolones | 93106-60-6 | 360.17180 | 7.01 |
105 | Danofloxacin | quinolones | 112398-08-0 | 358.15615 | 7.02 |
106 | Lomefloxacin | quinolones | 98079-51-7 | 352.14672 | 7.12 |
107 | Orbifloxacin | quinolones | 113617-63-3 | 396.15295 | 7.27 |
108 | Difloxacin | quinolones | 98106-17-3 | 400.14672 | 7.42 |
109 | Sarafloxacin | quinolones | 98105-99-8 | 386.13107 | 7.64 |
110 | Sparfloxacin | quinolones | 110871-86-8 | 393.17327 | 8.34 |
111 | Nalidixic acid | quinolones | 389-08-2 | 233.09207 | 10.01 |
112 | Flumequine | quinolones | 42835-25-6 | 262.08740 | 10.15 |
113 | Praziquantel | vermifuge | 55268-74-1 | 313.19105 | 5.31 |
114 | Chlortetracycline | tetracyclines | 57-62-5 | 479.12157 | 5.68 |
115 | Tetracycline | tetracyclines | 60-54-8 | 463.17111 | 6.21 |
116 | Doxycycline | tetracyclines | 564-25-0 | 445.16054 | 6.34 |
117 | Lincomycin | macrolides | 154-21-2 | 407.22104 | 9.41 |
118 | Tilmicosin | macrolides | 108050-54-0 | 869.57332 | 9.49 |
119 | Clindamycin | macrolides | 18323-44-9 | 425.18715 | 9.68 |
120 | Tylosin | macrolides | 1401-69-0 | 916.52643 | 10.23 |
121 | Erythromycin | macrolides | 114-07-8 | 734.46852 | 10.25 |
122 | Kitasamycin | macrolides | 1392-21-8 | 702.40592 | 10.48 |
123 | Josamycin | macrolides | 16846-24-5 | 828.47400 | 10.65 |
124 | Roxithromycin | macrolides | 80214-83-1 | 837.53185 | 10.84 |
125 | Atrazine-d5 | 163165-75-1 | 221.14017 | 5.77 | |
126 | Enrofloxacin-d5 | 1173021-92-5 | 365.21092 | 7.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Li, F.; Li, X.; Liu, Y. A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize. Molecules 2024, 29, 3026. https://doi.org/10.3390/molecules29133026
Xue W, Li F, Li X, Liu Y. A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize. Molecules. 2024; 29(13):3026. https://doi.org/10.3390/molecules29133026
Chicago/Turabian StyleXue, Weifeng, Fang Li, Xuemei Li, and Ying Liu. 2024. "A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize" Molecules 29, no. 13: 3026. https://doi.org/10.3390/molecules29133026
APA StyleXue, W., Li, F., Li, X., & Liu, Y. (2024). A Support Vector Machine-Assisted Metabolomics Approach for Non-Targeted Screening of Multi-Class Pesticides and Veterinary Drugs in Maize. Molecules, 29(13), 3026. https://doi.org/10.3390/molecules29133026