Flexible Asymmetric Supercapacitors Constructed by Reduced Graphene Oxide/MoO3 and MnO2 Electrochemically Deposited on Carbon Cloth
Abstract
:1. Introduction
2. Results
2.1. Structural Properties’ Characterization of All Samples
2.2. The electrochemical Properties of MoO3/rGO/CC
2.3. Electrochemical Performance of the FASC
3. Materials and Methods
3.1. Materials
3.2. Fabrication of the Electrodes of MnO2/CC and MoO3/rGO/CC
3.3. Fabrication of the FASC Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, W.; Wu, B.; Lu, M.; Li, Z.; Qiang, H. Fabrication and Performance of Self-Supported Flexible Cellulose Nanofibrils/Reduced Graphene Oxide Supercapacitor Electrode Materials. Molecules 2020, 25, 2793. [Google Scholar] [CrossRef]
- Zhou, G.; Liang, G.; Xiao, W.; Tian, L.; Zhang, Y.; Hu, R.; Wang, Y. Porous α-Fe2O3 Hollow Rods/Reduced Graphene Oxide Composites Templated by MoO3 Nanobelts for High-Performance Supercapacitor Applications. Molecules 2024, 29, 1262. [Google Scholar] [CrossRef]
- Saha, S.; Samanta, P.; Murmu, N.C.; Kuila, T. A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 2018, 17, 181–202. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192. [Google Scholar] [CrossRef]
- Kim, B.C.; Hong, J.; Wallace, G.G.; Park, H.S. Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. Adv. Energy Mater. 2015, 5, 1500959. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. Flexible Energy-Storage Devices: Design Consideration and Recent Progress. Adv. Mater. 2014, 45, 4763–4782. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181. [Google Scholar] [CrossRef]
- Li, L.; Wu, Z.; Yuan, S.; Zhang, X.-B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122. [Google Scholar] [CrossRef]
- He, W.D.; Wang, C.G.; Li, H.Q.; Deng, X.L.; Xu, X.J.; Zhai, T.Y. Ultrathin and Porous Ni3S2/CoNi2S4 3D-Network Structure for Superhigh Energy Density Asymmetric Supercapacitors. Adv. Energy Mater. 2017, 7, 1700983. [Google Scholar] [CrossRef]
- Guan, C.; Zhao, W.; Hu, Y.; Lai, Z.; Li, X.; Sun, S.; Zhang, H.; Cheetham, A.K.; Wang, J. Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horiz. 2017, 2, 99–105. [Google Scholar] [CrossRef]
- Jabeen, N.; Hussain, A.; Xia, Q.Y.; Sun, S.; Zhu, J.W.; Xia, H. High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5MnO2 Nanosheet Assembled Nanowall Arrays. Adv. Mater. 2017, 29, 1700804. [Google Scholar] [CrossRef] [PubMed]
- El-Kady, M.F.; Kaner, R.B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475. [Google Scholar] [CrossRef] [PubMed]
- Gwon, H.; Kim, H.-S.; Lee, K.U.; Seo, D.-H.; Park, Y.C.; Lee, Y.-S.; Ahn, B.T.; Kang, K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4, 1277–1283. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, B.-S.; Chen, S.; Shao-Horn, Y.; Hammond, P.T. Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. J. Am. Chem. Soc. 2009, 131, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M.; et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Staaf, L.; Lundgren, P.; Enoksson, P. Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy 2014, 9, 128–141. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Zhu, M.S.; Meng, W.J.; Pei, Z.X.; Liu, C.; Hu, H.; Zhi, C.Y. Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano 2015, 9, 6242–6251. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yan, Q.; Xue, F.; Zhang, J.; Wang, J. Design and synthesis of carbon nanotubes/carbon fiber/reduced graphene oxide/MnO2 flexible electrode material for supercapacitors. J. Phys. Chem. Solids 2018, 119, 29–35. [Google Scholar] [CrossRef]
- Ling, J.; Zou, H.; Yang, W.; Chen, W.; Lei, K.; Chen, S. Facile fabrication of polyaniline/molybdenum trioxide/activated carbon cloth composite for supercapacitors. J. Energy Storage 2018, 20, 92–100. [Google Scholar] [CrossRef]
- Horng, Y.-Y.; Lu, Y.-C.; Hsu, Y.-K.; Chen, C.-C.; Chen, L.-C.; Chen, K.-H. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J. Power Sources 2010, 195, 4418–4422. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, G.; Lin, Y.; Zhang, D.; Liao, H.; Li, Z.; Tian, J.; Wu, Q. A novel flexible electrode with coaxial sandwich structure based polyaniline-coated MoS2 nanoflakes on activated carbon cloth. Electrochim. Acta 2018, 264, 91–100. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, B.; Brousse, T.; Ramirez-Castro, C.; Nicolosi, V.; Grant, P.S. An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim. Acta 2013, 91, 253–260. [Google Scholar] [CrossRef]
- Liu, T.; Pell, W.; Conway, B. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 1997, 42, 3541–3552. [Google Scholar] [CrossRef]
- Klink, M.; Makgae, M.; Crouch, A. Physico-chemical and electrochemical characterization of Ti/RhOx–IrO2 electrodes using sol–gel technology. Mater. Chem. Phys. 2010, 124, 73–77. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, P.; Zhang, H.; Zhang, D.; Sun, X.; Ma, Y. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim. Acta 2013, 89, 523–529. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, B.; Shi, W.; Yang, J.; Fan, Z.; Luo, Z.; Rui, X.; Chen, B.; Yan, Q.; Zhang, H. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 2015, 27, 4695–4701. [Google Scholar] [CrossRef]
- Barzegar, F.; Bello, A.; Momodu, D.Y.; Dangbegnon, J.K.; Taghizadeh, F.; Madito, M.J.; Masikhwa, T.M.; Manyala, N. Asymmetric supercapacitor based on an α-MoO3 cathode and porous activated carbon anode materials. RSC Adv. 2015, 5, 37462–37468. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, B.; Wang, J.; Han, P.; Xu, T.; Sun, Y.; Zhang, X.; Yang, H. Polyoxometalates@Metal-Organic Frameworks Derived Porous MoO3@CuO as Electrodes for Symmetric All-Solid-State Supercapacitor. Electrochim. Acta 2016, 191, 795–804. [Google Scholar] [CrossRef]
- Li, J.; Liu, X. Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Mater. Lett. 2013, 112, 39–42. [Google Scholar] [CrossRef]
- Pujari, R.B.; Lokhande, V.C.; Kumbhar, V.S.; Chodankar, N.R.; Lokhande, C.D. Hexagonal microrods architectured MoO3 thin film for supercapacitor application. J. Mater. Sci. Mater. Electron. 2015, 27, 3312–3317. [Google Scholar] [CrossRef]
- Liang, R.; Cao, H.; Qian, D. MoO3 nanowires as electrochemical pseudocapacitor materials. Chem. Commun. 2011, 47, 10305–10307. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-R.; Wang, Z.-L.; Zheng, F.-L.; Ou, Y.-N.; Tong, Y.-X. ZnO@MoO3 core/shell nanocables: Facile electrochemical synthesis and enhanced supercapacitor performances. J. Mater. Chem. 2011, 21, 4217–4221. [Google Scholar] [CrossRef]
- Wang, S.; Dou, K.; Dong, Y.; Zou, Y.; Zeng, H. Supercapacitor based on few-layer MoO3 nanosheets prepared by solvothermal method. Int. J. Nanomanuf. 2016, 12, 404. [Google Scholar] [CrossRef]
- Icaza, J.C.; Guduru, R.K. Characterization of α-MoO3 anode with aqueous beryllium sulfate for supercapacitors. J. Alloys Compd. 2017, 726, 453–459. [Google Scholar] [CrossRef]
- Huang, M.; Li, F.; Dong, F.; Zhang, Y.X.; Zhang, L.L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380–21423. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Li, H. Flexible α-MnO2 paper formed by millimeter-long nanowires for supercapacitor electrodes. J. Power Sources 2014, 247, 824–830. [Google Scholar] [CrossRef]
- Chang, J.; Jin, M.; Yao, F.; Kim, T.H.; Le, V.T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; et al. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Adv. Funct. Mater. 2013, 23, 5074–5083. [Google Scholar] [CrossRef]
- Greiner, M.T.; Helander, M.G.; Tang, W.-M.; Wang, Z.-B.; Qiu, J.; Lu, Z.-H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2011, 11, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chi, K.; Xiao, F.; Wang, S. Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J. Mater. Chem. A 2015, 3, 12828–12835. [Google Scholar] [CrossRef]
- Lu, K.; Song, B.; Li, K.; Zhang, J.; Ma, H. Cobalt hexacyanoferrate nanoparticles and MoO3 thin films grown on carbon fiber cloth for efficient flexible hybrid supercapacitor. J. Power Sources 2017, 370, 98–105. [Google Scholar] [CrossRef]
- Han, S.; Lin, L.; Zhang, K.; Luo, L.; Peng, X.; Hu, N. ZnWO4 nanoflakes decorated NiCo2O4 nanoneedle arrays grown on carbon cloth as supercapacitor electrodes. Mater. Lett. 2017, 193, 89–92. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Y.; Xiong, Y.; Yang, Q.; Xie, Y. One-step solution-based catalytic route to fabricate novel α-MnO2hierarchical structures on a large scale. Chem. Commun. 2005, 7, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.; Yoon, C.-M.; Kim, Y.K.; Jang, J. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 2017, 116, 470–478. [Google Scholar] [CrossRef]
- Jiang, F.; Li, W.; Zou, R.; Liu, Q.; Xu, K.; An, L.; Hu, J. MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 2014, 7, 72–79. [Google Scholar] [CrossRef]
- Choi, B.G.; Yang, M.; Hong, W.H.; Choi, J.W.; Huh, Y.S. 3D macroporous graphene frameworks for supercapacitors with high Energy and Power Densities. ACS Nano 2012, 6, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zhou, W.; Liu, X.; Sang, Y.; Ji, S.; Li, W.; Lu, J.; Li, L.; Niu, W.; Liu, H.; et al. Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 2015, 12, 510–520. [Google Scholar] [CrossRef]
- Cao, H.; Wu, N.; Liu, Y.; Wang, S.; Du, W.; Liu, J. Facile synthesis of rod-like manganese molybdate crystallines with two-dimentional nanoflakes for supercapacitor application. Electrochim. Acta 2017, 225, 605–613. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Selvan, R.K. Hydrothermal synthesis and electrochemical performances of 1.7V NiMoO4⋅xH2O||FeMoO4 aqueous hybrid supercapacitor. J. Colloid Interface Sci. 2014, 426, 280–286. [Google Scholar] [CrossRef]
- Lv, Q.Y.; Wang, S.; Sun, H. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites. Nano Lett. 2016, 16, 40–47. [Google Scholar] [CrossRef]
- Cheng, J.; Sprik, M. Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 2012, 14, 11245–11267. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, D.H.; Jang, J. Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage. Energy Environ. Sci. 2015, 8, 3030–3039. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, D.H.; Jun, J.; Lee, C.; Jang, J. Fe3O4/Carbon Hybrid Nanoparticle Electrodes for High-Capacity Electrochemical Capacitors. ChemSusChem 2014, 7, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Kim, Y.K.; Lee, H.; Lee, S.B.; Park, H.S. Back Cover: Superior Pseudocapacitive Behavior of Confined Lignin Nanocrystals for Renewable Energy-Storage Materials (ChemSusChem 4/2014). ChemSusChem 2014, 7, 1196. [Google Scholar] [CrossRef]
- Li, S.; Chang, Y.; Han, G.; Song, H.; Chang, Y.; Xiao, Y. Asymmetric supercapacitor based on reduced graphene oxide/MnO2 and polypyrrole deposited on carbon foam derived from melamine sponge. J. Phys. Chem. Solids 2019, 130, 100–110. [Google Scholar] [CrossRef]
- Du, P.; Wei, W.; Liu, D.; Kang, H.; Liu, C.; Liu, P. Fabrication of hierarchical MoO3–PPy core–shell nanobelts and “worm-like” MWNTs–MnO2 core–shell materials for high-performance asymmetric supercapacitor. J. Mater. Sci. 2018, 53, 5255–5269. [Google Scholar] [CrossRef]
- Duay, J.; Gillette, E.; Liu, R.; Lee, S.B. Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. Phys. Chem. Chem. Phys. 2012, 14, 3329–3337. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Niu, R.; Duan, J.; Liu, W.; Shen, W. Fe3O4@Carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 19475–19483. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.G.; Chang, S.-J.; Kang, H.-W.; Park, C.P.; Kim, H.J.; Hong, W.H.; Lee, S.; Huh, Y.S. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 2012, 4, 4983–4988. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chen, H.; Chen, M.; Liu, N.; Li, Q. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 3408–3416. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Zhu, M.; He, X. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power Sources 2015, 282, 179–186. [Google Scholar] [CrossRef]
- Gao, H.; Xiao, F.; Ching, C.B.; Duan, H. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 2012, 4, 7020–7026. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tang, Z.; Leng, M.; Xue, J. Flexible solid-state supercapacitor based on graphene-based hybrid films. Adv. Funct. Mater. 2014, 24, 7495–7502. [Google Scholar] [CrossRef]
- Xie, Y.; Cheng, Z.; Guo, B.; Qiu, Y.; Fan, H.; Sun, S.; Wu, T.; Jin, L.; Fan, L. Preparation of activated carbon paper by modified Hummer’s method and application as vanadium redox battery. Ionics 2015, 21, 283–287. [Google Scholar] [CrossRef]
Electrode Materials | Electrolyte | Energy Density (Wh kg−1) | Stability (Capacitance Retention %, Cycles) | Ref. |
---|---|---|---|---|
MoO3-PPy/CNTs-MnO2 | Na2SO4/PVA gel | 21.0 | 76.0, 10,000 cycles | [55] |
MnO2@PEDOT/PEDOT | LiClO4/PMMA gel | 9.8 | 86.0, 1250 cycles | [56] |
Fe3O4 embedded in carbon nanosheet/porous carbon | KOH/PVA gel | 18.3 | 70.8, 5000 cycles | [57] |
Graphene (IL-CMG)/RuO2-IL-CMG | H2SO4/PVA gel | 19.7 | 95.0, 2000 cycles | [58] |
CNTs/MnO2/CNTs/PANI | Na2SO4/PVP gel | 24.8 | - | [59] |
Co3O4 nanowires/Ni foam/ carbon aerogel | KOH/PVA gel | 17.9 | - | [60] |
Mn3O4 nanoparticle/graphene/CNT/graphene | KCl/PVA gel | 32.7 | 86.0, 10,000 cycles | [61] |
Graphene/Ni(OH)2/graphene/CNT | KOH/PVA gel | 18 | - | [62] |
MoO3/rGO/CC/MnO2/CC | Na2SO4/PVA gel | 32.1 | 88.1, 6000 cycles | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, Z. Flexible Asymmetric Supercapacitors Constructed by Reduced Graphene Oxide/MoO3 and MnO2 Electrochemically Deposited on Carbon Cloth. Molecules 2024, 29, 3116. https://doi.org/10.3390/molecules29133116
Li S, Li Z. Flexible Asymmetric Supercapacitors Constructed by Reduced Graphene Oxide/MoO3 and MnO2 Electrochemically Deposited on Carbon Cloth. Molecules. 2024; 29(13):3116. https://doi.org/10.3390/molecules29133116
Chicago/Turabian StyleLi, Sha, and Zhiying Li. 2024. "Flexible Asymmetric Supercapacitors Constructed by Reduced Graphene Oxide/MoO3 and MnO2 Electrochemically Deposited on Carbon Cloth" Molecules 29, no. 13: 3116. https://doi.org/10.3390/molecules29133116
APA StyleLi, S., & Li, Z. (2024). Flexible Asymmetric Supercapacitors Constructed by Reduced Graphene Oxide/MoO3 and MnO2 Electrochemically Deposited on Carbon Cloth. Molecules, 29(13), 3116. https://doi.org/10.3390/molecules29133116