Selection and Mechanism Study of Q-Markers for Xanthocerais lignum Anti-Rheumatoid Arthritis Based on Serum Spectrum–Effect Correlation Analysis
Abstract
:1. Introduction
2. Results
2.1. Chemical Constituents of Various Extracts of Xanthocerais lignum
2.2. Optimal Blood Sampling Time
2.3. Constituents Absorbed into Blood from Xanthocerais lignum
2.4. Results of Serum Spectrum–Effect Correlation Analysis
2.5. Mechanism of Xanthocerais lignum’s Anti-RA Q-Markers
2.6. Molecular Docking Outcomes
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Drugs and Reagents
4.3. Main Instruments
4.4. Preparation of Various Extracts of Xanthocerais lignum
4.4.1. Preparation of Total Ethanol Extract
4.4.2. Preparation of Different Polarity Extracts
4.5. Study of Chemical Constituents of Xanthocerais lignum
4.5.1. Preparation of Test Sample Solutions
4.5.2. Chromatographic and Mass Spectrometric Conditions
4.5.3. Identification of Chemical Constituents
4.6. Animal Modeling and Grouping
4.7. Serum Medicinal Chemistry Studies of Xanthocerais lignum
4.7.1. Preparation of Serum Test Sample Solutions
4.7.2. Chromatographic and Mass Spectrometric Conditions
4.7.3. Optimization of Optimal Blood Collection Time
4.7.4. Identification of Prototype Blood-Entering Components and Metabolites
4.8. Serum Spectrum–Effect Correlation Analysis of Xanthocerais lignum
4.9. Prediction of the Mechanism of Q-Markers of Xanthocerais lignum against RA
4.10. Validation by Molecular
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Finckh, A.; Gilbert, B.; Hodkinson, B.; Bae, S.C.; Thomas, R.; Deane, K.D.; Alpizar-Rodriguez, D.; Lauper, K. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 2022, 18, 591–602. [Google Scholar] [CrossRef]
- Rzhepakovsky, I.; Anusha Siddiqui, S.; Avanesyan, S.; Benlidayi, M.; Dhingra, K.; Dolgalev, A.; Enukashvily, N.; Fritsch, T.; Heinz, V.; Kochergin, S.; et al. Anti-arthritic effect of chicken embryo tissue hydrolyzate against adjuvant arthritis in rats (X-ray microtomographic and histopathological analysis). Food Sci. Nutr. 2021, 9, 5648–5669. [Google Scholar] [CrossRef] [PubMed]
- Porcello, A.; Gonzalez-Fernandez, P.; Jeannerat, A.; Peneveyre, C.; Abdel-Sayed, P.; Scaletta, C.; Raffoul, W.; Hirt-Burri, N.; Applegate, L.A.; Allémann, E.; et al. Thermo-Responsive Hyaluronan-Based Hydrogels Combined with Allogeneic Cytotherapeutics for the Treatment of Osteoarthritis. Pharmaceutics 2023, 15, 1528. [Google Scholar] [CrossRef] [PubMed]
- Editorial Committee of the Chinese Materia Medica. Chinese Materia Medica (Monk’s Medicine Volume); Shanghai Scientific & Technical Publishers: Shanghai, China, 2004. [Google Scholar]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Chinese Medicinal Plants (Volume VI); Peking University Medical Press: Beijing, China, 2020. [Google Scholar]
- Zhao, Y.; Zhao, L.; Cao, R. Flora of Inner Mongolia (Volume III); Inner Mongolia People’s Publishing House: Inner Mongolia, China, 2020. [Google Scholar]
- Liu, C.; Chen, S.; Xiao, X.; Zhang, T.; Hou, W.; Liao, M. A new concept on quality marker of Chinese materia medica: Quality control for Chinese medicinal products. Chin. Tradit. Herb. Drugs 2016, 47, 1443–1457. [Google Scholar]
- Zhu, C.; Jiang, Z.; Li, J.; Zhang, B. Overview research status in serum spectrum-effect of Chinese materia medica. Chin. Tradit. Herb. Drugs 2020, 51, 3569–3574. [Google Scholar]
- Wang, M.; Xia, Y.; Yang, M.; Wu, D.; Liu, L.; Ge, G.; Yang, L.; Hou, J. Advances in study on biosynthsis of O-glucuronides. Chin. Tradit. Herb. Drugs 2015, 46, 1065–1073. [Google Scholar]
- Borges, G.; Ottaviani, J.I.; van der Hooft, J.J.J.; Schroeter, H.; Crozier, A. Absorption, metabolism, distribution and excretion of (-)-epicatechin: A review of recent findings. Mol. Asp. Med. 2018, 61, 18–30. [Google Scholar] [CrossRef]
- Azzeh, M.; Neagu, D.; Cowling, P.I. Fuzzy grey relational analysis for software effort estimation. Empir. Softw. Eng. 2010, 15, 60–90. [Google Scholar] [CrossRef]
- Doi, K.; Murata, K.; Ito, S.; Suzuki, A.; Terao, C.; Ishie, S.; Umemoto, A.; Murotani, Y.; Nishitani, K.; Yoshitomi, H.; et al. Role of Lysine-Specific Demethylase 1 in Metabolically Integrating Osteoclast Differentiation and Inflammatory Bone Resorption Through Hypoxia-Inducible Factor 1α and E2F1. Arthritis Rheumatol. 2022, 74, 948–960. [Google Scholar] [CrossRef]
- Sadeghi Shaker, M.; Rokni, M.; Mahmoudi, M.; Farhadi, E. Ras family signaling pathway in immunopathogenesis of inflammatory rheumatic diseases. Front. Immunol. 2023, 14, 1151246. [Google Scholar] [CrossRef]
- Liu, F.; Feng, X.X.; Zhu, S.L.; Huang, H.Y.; Chen, Y.D.; Pan, Y.F.; June, R.R.; Zheng, S.G.; Huang, J.L. Sonic Hedgehog Signaling Pathway Mediates Proliferation and Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via MAPK/ERK Signaling Pathway. Front. Immunol. 2018, 9, 2847. [Google Scholar] [CrossRef]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Trentham, D.E.; Townes, A.S.; Kang, A.H. Autoimmunity to type II collagen an experimental model of arthritis. J. Exp. Med. 1977, 146, 857–868. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Qian, H.; Tao, W.; Zhang, Y.; Hu, C.; Mao, W.; Guo, Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front. Immunol. 2022, 13, 945129. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
- Shi, P.; Lin, X.; Yao, H. A comprehensive review of recent studies on pharmacokinetics of traditional Chinese medicines (2014-2017) and perspectives. Drug Metab. Rev. 2018, 50, 161–192. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Tai, W.; Yang, L.; Chen, Y.; Chen, C.; Liu, C. Challenges and Solutions of Pharmacokinetics for Efficacy and Safety of Traditional Chinese Medicine. Curr. Drug Metab. 2015, 16, 765–776. [Google Scholar] [CrossRef]
- Zhang, F.; Gong, X.; Xiao, B.; Zhang, C.; Wang, Z. Pharmacokinetics and tissue distribution of a bioactive sesquiterpenoid from Polygonum jucundum following oral and intravenous administrations to rats. J. Pharm. Biomed. Anal. 2013, 83, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Lou, Z.; Chen, S.; Gu, H.; Shan, L. Pharmacokinetics and tissue distribution of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside from traditional Chinese medicine Polygonum multiflorum following oral administration to rats. J. Ethnopharmacol. 2011, 137, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wen, X.; Kong, J. Recent Progress on Uric Acid Detection: A Review. Crit. Rev. Anal. Chem. 2020, 50, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Akram, M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014, 68, 475–478. [Google Scholar] [CrossRef]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B(12), folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr. Cancer 2020, 72, 386–397. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, Y.; Wang, Z.; Yang, Y.; Qiu, F.; Yan, X. Research progress on biosynthesis of glucuronides of plant natural products. Chin. Tradit. Herb. Drugs 2022, 53, 1875–1890. [Google Scholar]
- Natsume, M.; Osakabe, N.; Yasuda, A.; Baba, S.; Tokunaga, T.; Kondo, K.; Osawa, T.; Terao, J. In Vitro Antioxidative Activity of (−)-Epicatechin Glucuronide Metabolites Present in Human and Rat Plasma. Free Radic. Res. 2004, 38, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.D.; Ketheesan, N.; Haleagrahara, N. The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 2017, 57, 3601–3613. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Gao, H.; Yuan, R.; Han, S.; Li, X.X.; Tang, M.; Dong, B.; Li, J.X.; Zhao, L.C.; Feng, J.; et al. Procyanidin A2, a polyphenolic compound, exerts anti-inflammatory and anti-oxidative activity in lipopolysaccharide-stimulated RAW264.7 cells. PLoS ONE 2020, 15, e0237017. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.Q.; Wei, W.; Wang, X.Y. Effects and mechanisms of catechin for adjuvant arthritis in rats. Adv. Ther. 2007, 24, 679–690. [Google Scholar] [CrossRef]
- Wu, C.; Li, F.; Zhang, X.; Xu, W.; Wang, Y.; Yao, Y.; Han, Z.; Xia, D. (−)-Epicatechin Ameliorates Monosodium Urate-Induced Acute Gouty Arthritis Through Inhibiting NLRP3 Inflammasome and the NF-κB Signaling Pathway. Front. Pharmacol. 2022, 13, 799552. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Wang, Y.J.; Yang, G.T.; Gao, Q.L.; Tang, M.X. Taxifolin Inhibits Receptor Activator of NF-κB Ligand-Induced Osteoclastogenesis of Human Bone Marrow-Derived Macrophages in vitro and Prevents Lipopolysaccharide-Induced Bone Loss in vivo. Pharmacology 2019, 103, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, G. Hypoxia-Inducible Factor Is Critical for Pathogenesis and Regulation of Immune Cell Functions in Rheumatoid Arthritis. Front. Immunol. 2020, 11, 1668. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, Q.Y.; Teng, X.H.; Li, Z.P.; Zhu, M.T.; Gu, C.J.; Chen, B.J.; Xie, Q.Q.; Lu, O.X. The pathogenesis and regulatory role of HIF-1 in rheumatoid arthritis. Cent.-Eur. J. Immunol. 2023, 48, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Szekanecz, Z.; Besenyei, T.; Paragh, G.; Koch, A.E. Angiogenesis in rheumatoid arthritis. Autoimmunity 2009, 42, 563–573. [Google Scholar] [CrossRef]
- Rashid, M.; Zadeh, L.R.; Baradaran, B.; Molavi, O.; Ghesmati, Z.; Sabzichi, M.; Ramezani, F. Up-down regulation of HIF-1α in cancer progression. Gene 2021, 798, 145796. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wei, X.; Jiao, Y.; Bai, Y.; Sam, W.N.; Yan, Q.; Sun, X.; Li, G.; Ma, J.; Wei, W.; et al. STAT3/HIF-1α/fascin-1 axis promotes RA FLSs migration and invasion ability under hypoxia. Mol. Immunol. 2022, 142, 83–94. [Google Scholar] [CrossRef] [PubMed]
No | tR/min | Molecular Formula | Actual Measured Mr. | Theoretical Exact Mr. | Secondary Mass Spectral Fragmentation | Compounds | Source |
---|---|---|---|---|---|---|---|
1 | 0.955 | C12H22O11 | 387.11990 [M + HCOO]− | 342.11621 | 341.11288, 179.05743, 119.03507, 113.02441, 89.02404 | α-lactose | Z |
2 | 0.982 | C5H12O5 | 151.06256 [M − H]− | 152.06847 | 119.03532, 101.02454, 89.02424, 71.01341, 59.01327 | L-(−)-arabitol | Z, ZDC, S |
3 | 0.991 | C12H22O11 | 341.11420 [M − H]− | 342.11621 | 179.05785, 119.03532, 101.02451, 89.02422, 59.01324 | α,α-trehalose | S |
4 | 1.013 | C6H6N4O2 | 165.04208 [M − H]− | 166.04908 | 129.01997, 75.00842 | 7-methylxanthine | Z, ZDC, S |
5 | 1.022 | C5H10O5 | 149.04680 [M − H]− | 150.05282 | 101.02453, 89.02424, 71.01340, 59.01326 | D-(−)-ribose | Z, ZDC, S |
6 | 1.027 | C8H14O7 | 221.06966 [M − H]− | 222.07395 | 129.02008, 85.02930, 72.99276, 59.01329 | ethyl-β-d-glucuronide | S |
7 | 1.039 | C4H6O5 | 133.01527 [M − H]− | 134.02152 | 115.00395, 89.02425, 71.01343, 59.01318 | DL-malic acid | Z, YY, ZDC, S |
8 | 1.042 | C6H8O7 | 191.02213 [M − H]− | 192.02700 | 173.01054, 129.02000, 111.00899, 87.00854, 85.02927, 57.03399 | citric acid | Z, ZDC, S |
9 | 1.062 | C4H8O5 | 135.03085 [M − H]− | 136.03717 | 117.01963, 75.00843 | L-threonic acid | Z, ZDC, S |
10 | 1.082 | C6H12O6 | 179.05827 [M − H]− | 180.06339 | 119.03536, 113.02467, 101.02457, 89.02426, 71.01343, 59.01328 | D-(+)-glucose | Z, YY, ZDC, S |
11 | 1.083 | C6H14O6 | 181.07390 [M − H]− | 182.07904 | 163.06238, 119.03535, 101.02454, 89.02425, 71.01343, 59.01328 | D-(−)-mannitol | Z, YY, ZDC, S |
12 | 1.099 | C6H10O5 | 161.04715 [M − H]− | 162.05282 | 101.02460, 99.04536, 59.01328, 57.03459 | 3-hydroxy-3-methylglutaric acid | Z, ZDC, S |
13 | 1.522 | C5H7NO3 | 128.03622 [M − H]− | 129.04259 | 84.04505, 82.02949 | 4-oxoproline | Z, ZDC, S |
14 | 1.524 | C5H5N5 | 134.04825 [M − H]− | 135.05450 | 107.03640 | adenine | ZDC |
15 | 1.526 | C5H5N5O | 150.04346 [M − H]− | 151.05073 | 133,01624, 108.02042, 107.03648, 82.04082, 78.00912, 66.00903 | guanine | ZDC |
16 | 1.527 | C5H4N4O3 | 167.02277 [M − H]− | 168.02834 | 125.01711, 124.01567, 122.02525, 96.02033, 69.00870 | uric acid | ZDC |
17 | 1.538 | C5H4O3 | 111.00928 [M − H]− | 112.01604 | 68.02179, 67.01842 | 2-furoic acid | S |
18 | 1.601 | C9H12N2O6 | 243.06631 [M − H]− | 244.06954 | 200.05885, 153.03059, 152.03633, 140.03606, 110.02486 | uridine | ZDC, S |
19 | 1.645 | C6H5NO3 | 138.02071 [M − H]− | 139.02694 | 95.03307, 94.02973 | 6-hydroxypicolinic acid | ZDC |
20 | 1.708 | C6H6O6 | 173.01114 [M − H]− | 174.01644 | 129.01999, 111.00896, 101.02464, 85.02927, 83.01366, 59.01327 | 1,2,3-cyclopropanetricarboxylic acid | S |
21 | 1.747 | C5H8O5 | 147.03131 [M − H]− | 148.03717 | 129.01993, 101.02454, 99.00903, 85.02927, 71.01347, 59.01328 | D-ribono-1,4-lactone | S |
22 | 1.775 | C7H6O4 | 153.02077 [M − H]− | 154.02661 | 110.03291, 109.02972 | protocatechuic acid | S |
23 | 1.842 | C4H6O4 | 117.01985 [M − H]− | 118.02661 | 73.02905, 71.01340, 59.01314, 55.01809 | methylmalonic acid | Z, YY, ZDC, S |
24 | 2.030 | C6H12O6 | 179.05832 [M − H]− | 180.06339 | 161.04662, 119.03529, 101.02451, 89.02423, 71.01341, 59.01326 | D-(+)-mannose | S |
25 | 2.273 | C5H6O4 | 129.02031 [M − H]− | 130.02661 | 85.02927 | citraconic acid | S |
26 | 2.541 | C6H6O3 | 125.02518 [M − H]− | 126.03169 | 83.01349, 81.03407, 57.03392 | phloroglucinol | YY, ZDC |
27 | 2.862 | C7H6O5 | 169.01601 [M − H]− | 170.02152 | 125.02486, 97.02945, 81.03418, 69.03392 | gallic acid | Z, YY, ZDC, S |
28 | 2.864 | C6H6O3 | 125.02513 [M − H]− | 126.03169 | 97.02933, 59.01316 | pyrogallol | Z, YY, ZDC, S |
29 | 2.894 | C7H6O4 | 153.02032 [M − H]− | 154.02661 | 110.03296, 109.02961, 67.01838 | 3,5-dihydroxybenzoic acid | Z, YY, ZDC, S |
30 | 4.706 | C7H6O4 | 153.02036 [M − H]− | 154.02661 | 152.01241 | 2,3-dihydroxybenzoic acid | Z, YY, ZDC, S |
31 | 4.738 | C8H8O4 | 167.03642 [M − H]− | 168.04226 | 124.04897, 123.04552 | 6-methoxysalicylic acid | Z, YY |
32 | 5.469 | C10H10O6 | 225.04332 [M − H]− | 226.04774 | 135.04541, 121.02985, 109.02958, 59.01313 | (1,3-phenylenedioxy) diacetic acid | Z, YY, ZDC |
33 | 5.754 | C9H10O3 | 165.05710 [M − H]− | 166.06299 | 150.03308, 123.04549, 122.03756 | 3′,4′-dihydroxyphenylacetone | YY |
34 | 5.995 | C7H6O4 | 153.02031 [M − H]− | 154.02661 | 109.02957, 108.02189, 81.03415 | gentisic acid | Z, YY, ZDC, S |
35 | 8.990 | C7H6O3 | 137.02521 [M − H]− | 138.03169 | 136.01724, 109.02949 | 2,5-dihydroxybenzaldehyde | Z, YY, ZDC, S |
36 | 9.135 | C15H16O9 | 339.07727 [M − H]− | 340.07943 | 177.02081, 176.01295, 133.03027 | esculin | ZDC |
37 | 9.915 | C7H6O3 | 137.02522 [M − H]− | 138.03169 | 93.03439, 65.03909 | salicylic acid | Z, YY |
38 | 11.505 | C7H6O3 | 137.02502 [M − H]− | 138.03169 | 93.03434 | 3-hydroxybenzoic acid | Z, YY |
39 | 11.511 | C8H8O4 | 167.03632 [M − H]− | 168.04226 | 166.02802, 152.01221, 123.04551, 109.02940, 81.03425 | vanillic acid | YY |
40 | 11.624 | C15H14O7 | 305.07040 [M − H]− | 306.07394 | 219.06837, 167.03592, 137.02496, 125.02476 | epigallocatechin | Z, YY, ZDC, S |
41 | 12.790 | C15H14O6 | 289.07547 [M − H]− | 290.07904 | 245.08464, 205.05247, 179.03635, 151.04076, 137.02495, 125.02473 | catechin | Z, YY, ZDC, S |
42 | 11.840 | C8H8O3 | 151.04120 [M − H]− | 152.04734 | 109.02956 | resorcinol monoacetate | Z, YY |
43 | 12.505 | C8H8O4 | 167.03650 [M − H]− | 168.04226 | 152.01231, 123.04549, 108.02176, 91.01878, 81.03414 | methyl protocatechuate | YY |
44 | 13.250 | C9H6O4 | 177.02065 [M − H]− | 178.02661 | 133.03004, 105.03464 | esculetin | Z, YY, ZDC |
45 | 13.257 | C7H6O2 | 121.02996 [M − H]− | 122.03678 | 108.02162, 93.03463, 61.98763 | benzoic acid | Z, YY, ZDC, S |
46 | 14.036 | C9H8O4 | 179.03674 [M − H]− | 180.04226 | 135.04575, 134.03816, 107.05027, 93.03451 | 2,5-dihydroxycinnamic acid | Z, YY |
47 | 14.335 | C16H18O10 | 369.08844 [M − H]− | 370.09000 | 354.06393, 207.03201, 206.02415, 192.00818, 191.00055 | fraxin | ZDC |
48 | 15.978 | C27H30O14 | 577.14227 [M − H]− | 578.16357 | 407.08203, 289.07550, 245.08484, 161.02521, 125.02476 | kaempferitrin | Z, YY, ZDC |
49 | 17.256 | C15H12O8 | 319.03960 [M − H]− | 320.05267 | 193.01591, 175.00494, 151.00441, 125.02476 | dihydromyricetin | Z, YY, ZDC, S |
50 | 17.334 | C10H8O5 | 207.03236 [M − H]− | 208.03717 | 192.00827, 175.00537, 164.01242, 123.00889, 120.02198, 108.02187 | fraxetin | Z, YY |
51 | 17.604 | C15H14O6 | 289.07550 [M − H]− | 290.07904 | 245.08466, 205.05249, 179.03644, 151.04080, 137.02499, 125.02477 | epicatechin | Z, YY, ZDC, S |
52 | 18.084 | C21H22O11 | 449.11591 [M − H]− | 450.11621 | 287.06018, 269.04935, 259.06467, 243.06870, 179.00037, 125.02494 | dihydrokaempferol-7-O-β-d-glucopyranoside | Z, YY, ZDC |
53 | 18.476 | C9H10O5 | 197.04768 [M − H]− | 198.05282 | 123.00931 | syringic acid | Z, YY |
54 | 18.573 | C8H8O4 | 167.03664 [M − H]− | 168.04226 | 153.01599, 152.01239, 123.04564, 108.02164 | 5-methoxysalicylic acid | Z, ZDC |
55 | 19.379 | C9H8O4 | 179.03677 [M − H]− | 180.04226 | 166.02824, 151.00458, 109.02962 | caffeic acid | YY |
56 | 20.056 | C15H12O6 | 287.06024 [M − H]− | 288.06339 | 259.06451, 243.06905, 201.05765, 125.02485 | dihydrokaempferol | Z, YY, ZDC |
57 | 21.943 | C15H14O5 | 273.08102 [M − H]− | 274.08358 | 229.08942, 205.08894, 189.05740, 137.02499, 97.02942 | epiafzelechin | Z, YY, ZDC |
58 | 23.187 | C21H20O13 | 479.08969 [M − H]− | 480.09039 | 317.03189, 316.02646, 271.02771, 179.00029, 151.00427 | myricetin-3-O-β-d-galactopyranoside | Z, YY, ZDC |
59 | 24.958 | C8H8O4 | 167.03621 [M − H]− | 168.04226 | 151.00465, 125.02480, 123.04556, 81.03425 | 2,4,6-trihydroxyacetophenone | Z, YY |
60 | 26.457 | C15H12O7 | 303.05502 [M − H]− | 304.05829 | 285.04410, 177.02061, 125.02477 | dihydroquercetin | Z, YY, ZDC, S |
61 | 30.264 | C21H20O12 | 463.09525 [M − H]− | 464.09548 | 301.03836, 300.03162, 271.02808, 255.03275, 179.00040, 151.00453 | quercetin-3-O-β-d-glucoside | Z, YY |
62 | 31.091 | C9H10O4 | 181.05251 [M − H]− | 182.05791 | 153.02026, 152.01241, 109.02968 | DL-4-hydroxyphenyllactic acid | Z, YY |
63 | 31.500 | C30H24O12 | 575.12653 [M − H]− | 576.12622 | 449.09335, 423.07751, 289.07559, 285.04425, 245.08495, 125.02482 | proanthocyanidin A2 | Z, YY, ZDC |
64 | 32.618 | C9H16O4 | 187.09972 [M − H]− | 188.10486 | 169.08818, 143.10840, 125.09764, 97.06590 | azelaic acid | Z, YY |
65 | 33.737 | C15H12O7 | 303.05542 [M − H]− | 304.05775 | 151.00447, 125.02480, 107.01392 | (2R,3R)-3,3′,5,5′,7-pentahydroxydihydroflavone | Z, YY, ZDC |
66 | 34.608 | C10H12O5 | 211.02725 [M − H]− | 212.06793 | 179.00015, 151.00444 | 3,4,5-trimethoxy benzoic acid | Z, YY, ZDC, S |
67 | 35.002 | C10H8O4 | 191.03723 [M − H]− | 192.04226 | 147.04634, 143.86595, 111.00893 | 7,8-dihydroxy-4-methylcoumarin | YY |
68 | 36.413 | C36H54O13 | 693.34467 [M − H]− | 694.35644 | 161.04663, 143.03580, 131.03590, 113.02465, 101.02452 | apobioside | ZDC |
69 | 37.539 | C15H10O8 | 317.03439 [M − H]− | 318.03757 | 289.03931, 179.00020, 151.00458, 137.02512, 107.01401 | myricetin | Z, YY, ZDC, S |
70 | 39.059 | C15H10O7 | 301.04001 [M − H]− | 302.04265 | 300.03204, 151.00447, 149.02492 | quercetin | Z, YY, ZDC, S |
71 | 39.266 | C14H12O3 | 227.07462 [M − H]− | 228.07864 | 185.06258, 183.08304, 157.06697, 143.05128 | resveratrol | YY |
No | tR/min | Molecular Formula | Actual Measured Mr. | Theoretical Exact Mr. | Secondary Mass Spectral Fragmentation | Compounds | Source |
---|---|---|---|---|---|---|---|
1 | 1.023 | C2H7NO3S | 124.00883 [M − H]− | 125.01466 | 79.95736 | taurine | YY |
2 | 1.067 | C5H4N4O3 | 167.02339 [M − H]− | 168.02834 | 125.01845, 124.01601, 122.02512, 97.00449, 96.02065, 69.00910 | uric acid * | Z |
3 | 1.072 | C5H7NO3 | 128.03680 [M − H]− | 129.04259 | 84.04539, 82.02987 | 4-oxoproline * | Z, YY, ZDC, S |
4 | 1.118 | C6H12O7 | 195.05443 [M − H]− | 196.05830 | 177.04272, 129.02052, 99.00924, 87.00890, 75.00870, 59.01346 | gluconic acid | YY |
5 | 1.152 | C6H8O7 | 191.02295 [M − H]− | 192.02700 | 129.02043, 111.00939, 87.00887, 85.02956, 59.01345 | citric acid * | YY |
6 | 1.509 | C4H6O5 | 133.01605 [M − H]− | 134.02152 | 115.00466, 89.02476, 87.00907, 72.99312, 71.01383 | DL-malic acid * | Z, YY, ZDC, S |
7 | 1.698 | C6H12O6 | 179.05872 [M − H]− | 180.06339 | 119.03571, 113.02481, 101.02478, 89.02443, 71.01356, 59.01340 | D-(+)-glucose * | Z |
8 | 1.720 | C4H6O4 | 117.02027 [M − H]− | 118.02661 | 73.02927, 71.01345, 59.01336, 55.01847 | methylmalonic acid * | Z, YY, S |
9 | 1.778 | C5H8O5 | 147.03152 [M − H]− | 148.03717 | 129.02020, 89.02441, 85.02943, 59.01340 | D-ribono-1,4-lactone * | Z, YY |
10 | 2.314 | C8H9NO4 | 182.04890 [M − H]− | 183.05316 | 138.05753, 108.04621 | 4-pyridoxic acid | ZDC |
11 | 2.891 | C7H6O5 | 169.01643 [M − H]− | 170.02152 | 125.02541, 124.01739, 97.02994, 81.03459, 69.03433 | gallic acid * | Z, YY |
12 | 2.960 | C9H11NO2 | 164.07390 [M − H]− | 165.07898 | 147.04666, 118.06743, 103.05579, 91.05550, 72.00897 | L-phenylalanine | Z, YY, ZDC, S |
13 | 3.408 | C10H14N2O5 | 241.08748 [M − H]− | 242.09027 | 151.05276, 125.03672 | thymidine | YY |
14 | 6.943 | C11H12N2O2 | 203.08595 [M − H]− | 204.08988 | 186.05890, 159.09451, 142.06769, 116.05137, 74.02470, 72.00899 | D-(+)-tryptophan | ZDC, S |
15 | 7.670 | C9H10O4 | 181.05328 [M − H]− | 182.05791 | 163.04182, 135.04643, 119.05105 | DL-4-hydroxyphenyllactic acid * | Z, YY, ZDC |
16 | 8.061 | C6H6O4S | 172.99287 [M − H]− | 173.99868 | 109.02998, 93.03465, 79.95716 | 4-phenolsulfonic acid | Z, YY, ZDC, S |
17 | 11.550 | C15H14O7 | 305.07166 [M − H]− | 306.07394 | 219.06976, 179.03711, 167.03688, 137.02544, 125.02546 | epigallocatechin * | YY |
18 | 11.547 | C21H22O12 | 465.11096 [M − H]− | 466.11058 | 289.07651, 245.08553, 137.02544, 113.02486, 85.02943 | epicatechin-3′-O-glucuronide | Z, YY |
19 | 12.123 | C8H7NO4S | 212.00600 [M − H]− | 213.00958 | 132.04686, 120.04624, 118.03075, 80.96530, 79.95746 | 3-indoxyl sulphate | YY, ZDC, S |
20 | 12.710 | C15H14O6 | 289.07669 [M − H]− | 290.07904 | 245.08562, 203.07404, 179.03705, 125.02530, 109.02999 | catechin * | Z, YY |
21 | 14.693 | C8H15NO3 | 172.10043 [M − H]− | 173.10519 | 130.08870, 128.10936, 82.06647, 58.02952 | 2-(acetylamino)hexanoic acid | Z, YY, ZDC |
22 | 17.240 | C15H12O8 | 319.05203 [M − H]− | 320.05267 | 193.01700, 175.00581, 151.00520, 125.02543 | dihydromyricetin * | YY |
23 | 17.766 | C15H14O6 | 289.07736 [M − H]− | 290.07904 | 245.08604, 205.05362, 179.03735, 137.02571, 125.02541, 109.03013 | epicatechin * | Z, YY |
24 | 18.959 | C22H24O12 | 479.12704 [M − H]− | 480.12623 | 303.09225, 175.02661, 137.02541, 113.02486, 85.02940 | 4′-O-methyl-epicatechin-3′-O-glucuronide | Z, YY, ZDC |
25 | 19.246 | C11H13NO3 | 206.08531 [M − H]− | 207.08954 | 164.07327, 147.04642, 91.05540, 70.02953, 58.02937 | (R,Z)-2-[(1-hydroxyethylidene)amino]-3-phenylpropanoic acid | Z |
26 | 19.685 | C9H8O3 | 163.04227 [M − H]− | 164.04734 | 119.05114, 93.03474, 91.05582 | 2,3-dihydro-1-benzofuran-2-carboxylic acid | YY, ZDC |
27 | 23.110 | C11H11NO3 | 204.06943 [M − H]− | 205.07389 | 186.05820, 158.06247, 142.06714, 116.05107, 72.99293 | indole-3-lactic acid | Z |
28 | 24.607 | C9H7NO | 144.04698 [M − H]− | 145.05276 | 116.05098 | 4-indolecarbaldehyde | Z |
29 | 26.537 | C15H12O7 | 303.05502 [M − H]− | 304.05829 | 285.04410, 177.02061, 125.02477 | dihydroquercetin * | Z, YY |
30 | 30.011 | C21H18O13 | 477.07565 [M − H]− | 478.07474 | 301.04028, 179.00060, 151.00490, 121.03023, 113.02496, 71.01352 | quercetin-3-O-glucuronide | Z |
31 | 31.777 | C30H24O12 | 575.12909 [M − H]− | 576.12622 | 285.04523, 245.08562, 125.02518 | proanthocyanidin A2 * | Z, YY |
32 | 32.619 | C9H16O4 | 187.10034 [M − H]− | 188.10486 | 169.08893, 143.10909, 125.09803, 97.06611, 57.03410 | azelaic acid * | Z, YY, ZDC |
33 | 33.302 | C10H10O4 | 193.05389 [M − H]− | 194.05791 | 178.03018, 137.02583, 134.03888 | isoferulic acid | ZDC |
34 | 34.017 | C21H22O9 | 417.12589 [M − H]− | 418.12583 | 135.04620, 119.05073, 91.76878 | liquiritin | Z, YY, ZDC, S |
35 | 35.872 | C22H20O13 | 491.09137 [M − H]− | 492.08984 | 315.05624, 300.03238, 113.02492 | isorhamnetin-3-O-glucuronide | Z, YY |
36 | 37.760 | C15H10O8 | 317.03574 [M − H]− | 318.04161 | 179.00099, 151.00528, 137.02577, 107.01434 | myricetin * | YY |
Constituents Absorbed into Blood | Correlation | Rank |
---|---|---|
azelaic acid | 0.924 | 1 |
DL-4-hydroxyphenyllactic acid | 0.871 | 2 |
proanthocyanidin A2 | 0.846 | 3 |
D-ribono-1,4-lactone | 0.844 | 4 |
isorhamnetin-3-O-glucuronide | 0.842 | 5 |
epicatechin-3′-O-glucuronide | 0.839 | 6 |
epicatechin | 0.837 | 7 |
4′-O-methyl-epicatechin-3′-O-glucuronide | 0.834 | 8 |
dihydroquercetin | 0.834 | 9 |
catechin | 0.832 | 10 |
L-phenylalanine | 0.763 | 11 |
2-(acetylamino)hexanoic acid | 0.749 | 12 |
liquiritin | 0.748 | 13 |
4-oxoproline | 0.745 | 14 |
methylmalonic acid | 0.732 | 15 |
DL-malic acid | 0.717 | 16 |
3-indoxyl sulphate | 0.706 | 17 |
4-phenolsulfonic acid | 0.658 | 18 |
myricetin | 0.653 | 19 |
dihydromyricetin | 0.653 | 20 |
gallic acid | 0.653 | 21 |
epigallocatechin | 0.653 | 22 |
gluconic acid | 0.653 | 23 |
citric acid | 0.653 | 24 |
thymidine | 0.653 | 25 |
taurine | 0.653 | 26 |
2,3-dihydro-1-benzofuran-2-carboxylic acid | 0.649 | 27 |
uric acid | 0.648 | 28 |
D-(+)-glucose | 0.648 | 29 |
quercetin-3-O-glucuronide | 0.648 | 30 |
4-indolecarbaldehyde | 0.648 | 31 |
indole-3-lactic acid | 0.648 | 32 |
(R,Z)-2-[(1-hydroxyethylidene)amino]-3-phenylpropanoic acid | 0.648 | 33 |
4-pyridoxic acid | 0.582 | 34 |
isoferulic acid | 0.582 | 35 |
D-(+)-tryptophan | 0.582 | 36 |
Compound | Receptor | PDB ID | CDOCKER Interaction Energy (kcal·mol−1) |
---|---|---|---|
proanthocyanidin A2 | ERK | 6SLG | −71.2989 |
NF-κB | 1SVC | (-) | |
HIF-1α | 1LM8 | (-) | |
VEGF | 5T89 | −41.3564 | |
epicatechin | ERK | 6SLG | −43.0673 |
NF-κB | 1SVC | −33.9534 | |
HIF-1α | 1LM8 | −7.359 | |
VEGF | 5T89 | −26.992 | |
dihydroquercetin | ERK | 6SLG | −43.7723 |
NF-κB | 1SVC | −32.3677 | |
HIF-1α | 1LM8 | −9.4884 | |
VEGF | 5T89 | −23.7314 | |
catechin | ERK | 6SLG | −43.9609 |
NF-κB | 1SVC | −27.5155 | |
HIF-1α | 1LM8 | −14.743 | |
VEGF | 5T89 | −29.1681 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, H.; Su, L.; Yang, Y.; Tian, X.; Dai, Q.; Meng, F.; Wang, X. Selection and Mechanism Study of Q-Markers for Xanthocerais lignum Anti-Rheumatoid Arthritis Based on Serum Spectrum–Effect Correlation Analysis. Molecules 2024, 29, 3191. https://doi.org/10.3390/molecules29133191
Qian H, Su L, Yang Y, Tian X, Dai Q, Meng F, Wang X. Selection and Mechanism Study of Q-Markers for Xanthocerais lignum Anti-Rheumatoid Arthritis Based on Serum Spectrum–Effect Correlation Analysis. Molecules. 2024; 29(13):3191. https://doi.org/10.3390/molecules29133191
Chicago/Turabian StyleQian, Hao, Lei Su, Yaqiong Yang, Xiangyang Tian, Qingge Dai, Fantao Meng, and Xiaoqin Wang. 2024. "Selection and Mechanism Study of Q-Markers for Xanthocerais lignum Anti-Rheumatoid Arthritis Based on Serum Spectrum–Effect Correlation Analysis" Molecules 29, no. 13: 3191. https://doi.org/10.3390/molecules29133191
APA StyleQian, H., Su, L., Yang, Y., Tian, X., Dai, Q., Meng, F., & Wang, X. (2024). Selection and Mechanism Study of Q-Markers for Xanthocerais lignum Anti-Rheumatoid Arthritis Based on Serum Spectrum–Effect Correlation Analysis. Molecules, 29(13), 3191. https://doi.org/10.3390/molecules29133191