Effect of Bi2MoO6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. Structural Characteristics
2.1.2. Thermal Stability and Textural Properties
2.1.3. Near-Surface Composition
2.1.4. Optical, Electronic, and Photo-Electrochemical Characterization
2.2. Adsorption of 2,4-D
2.3. Photocatalytic Degradation of 2,4-D
2.3.1. Results of Blue Light Irradiation
2.3.2. Influence of H2O2
2.3.3. Proposed Photocatalytic Degradation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Bi2MoO6
3.3. Characterization
3.4. Electrochemical Characterization
3.5. Adsorption Experiments
3.6. Photocatalytic Degradation Experiments
3.6.1. Photocatalytic 2,4-D Degradation
3.6.2. Scavenger Experiments
3.6.3. Photocatalytic Experiment in Flow
Coating of the Aluminum Mesh
Photocatalytic Flow Experiments with Recirculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.; Xu, L.; Zhu, J.; Zhao, M.; Muños, S.; Li, Q.X.; Zhou, W. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef] [PubMed]
- Soloneski, S.; González, N.V.; Reigosa, M.A.; Larramendy, M.L. Herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-induced cytogenetic damage in human lymphocytes in vitro in presence of erythrocytes. Cell Biol. Int. 2007, 31, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Buenrostro-Zagal, J.; Ramirez-Oliva, A.; Caffarel-Mendez, S.; Schettino-Bermudez, B.; Poggi-Varaldo, H. Treatment of a 2,4-dichlorophenoxyacetic acid (2,4-D) contamined wastewater in a membrane bioreactor. Water Sci. Technol. 2000, 42, 185–192. [Google Scholar] [CrossRef]
- Cycoń, M.; Żmijowska, A.; Piotrowska-Seget, Z. Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil. Cent. Eur. J. Biol. 2011, 6, 188–198. [Google Scholar] [CrossRef]
- Samir, R.; Essam, T.; Ragab, Y.; Hashem, A. Enhanced photocatalytic–biological degradation of 2, 4 dichlorophenoxyacetic acid. Bull. Fac. Pharm. Cairo Univ. 2015, 53, 77–82. [Google Scholar] [CrossRef]
- Samarghandi, M.R.; Nemattollahi, D.; Asgari, G.; Shokoohi, R.; Ansari, A.; Dargahi, A. Electrochemical process for 2,4-D herbicide removal from aqueous solutions using stainless steel 316 and graphite anodes: Optimization using response surface methodology. Sep. Purif. Technol. 2019, 54, 478–493. [Google Scholar] [CrossRef]
- Dargahi, A.; Nematollahi, D.; Asgari, G.; Shokoohi, R.; Ansari, A.; Samarghandi, M.R. Electrodegradation of 2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three-dimensional electrode reactor with G/β-PbO2 anode: Taguchi optimization and degradation mechanism determination. RSC Adv. 2018, 8, 39256–39268. [Google Scholar] [CrossRef]
- Takanabe, K. Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Li, C.; Zhu, D.; Cheng, S.; Zuo, Y.; Wang, Y.; Ma, C.; Dong, H. Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, 33, 1141–1153. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, E.; Tang, J. Insight on reaction pathways of photocatalytic CO2 conversion. ACS Catal. 2022, 12, 7300–7316. [Google Scholar] [CrossRef]
- Gisbertz, S.; Pieber, B. Heterogeneous photocatalysis in organic synthesis. ChemPhotoChem 2020, 4, 456–475. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, Q.; Huang, W.-Y.; Yang, K.; Zhang, Y.-C.; Liang, T.-X.; Liu, Z.-Q. Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis. Rare Metals 2022, 41, 2094–2107. [Google Scholar] [CrossRef]
- Huang, L.; Liu, H.; Zhang, T.C.; Wang, Y.; Yuan, S. Peroxymonosulfate-assisted BiVO4/exfoliated g-C3N4 heterojunction for high-performance photodegradation of tetracycline induced by visible light. Ind. Eng. Chem. Res. 2022, 61, 16418–16430. [Google Scholar] [CrossRef]
- Huang, L.; Liu, H.; Wang, Y.; Zhang, T.C.; Yuan, S. Construction of ternary Bi2O3/biochar/g-C3N4 heterojunction to accelerate photoinduced carrier separation for enhanced tetracycline photodegradation. Appl. Surf. Sci. 2023, 616, 156509. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Yin, Y.; Zhou, H. Construction of oxygen vacancy enriched Bi2MoO6/BiFeWO6 heterojunction for efficient degradation of organic pollutants. J. Solid State Chem. 2022, 312, 123210. [Google Scholar] [CrossRef]
- Vaya, D.; Surolia, P.K. Semiconductor based photocatalytic degradation of pesticides: An overview. Environ. Technol. Innov. 2020, 20, 101128. [Google Scholar] [CrossRef]
- Bai, X.; Chen, W.; Wang, B.; Sun, T.; Wu, B.; Wang, Y. Photocatalytic degradation of some typical antibiotics: Recent advances and future outlooks. Int. J. Mol. Sci. 2022, 23, 8130. [Google Scholar] [CrossRef]
- Silva, R.; Lima, A.; Costa, M.; Ferreira, M.; Santos, R.; Caldeira, V.; Santos, A.; Martins, F.; Luz, G., Jr. Effective photodegradation of 2,4-dichlorophenoxyacetic acid on TiO2 nanocrystals anchored on SBA-15 mesoporous material. Int. J. Environ. Sci. Technol. 2022, 19, 11905–11918. [Google Scholar] [CrossRef]
- Limón-Rocha, I.; Marizcal-Barba, A.; Guzmán-González, C.A.; Anaya-Esparza, L.M.; Ghotekar, S.; González-Vargas, O.A.; Pérez-Larios, A. Co, Cu, Fe, and Ni Deposited over TiO2 and Their Photocatalytic Activity in the Degradation of 2,4-Dichlorophenol and 2,4-Dichlorophenoxyacetic Acid. Inorganics 2022, 10, 157. [Google Scholar] [CrossRef]
- Mantilla, A.; Tzompantzi, F.; Fernández, J.; Góngora, J.D.; Mendoza, G.; Gómez, R. Photodegradation of 2,4-dichlorophenoxyacetic acid using ZnAlFe layered double hydroxides as photocatalysts. Catal. Today 2009, 148, 119–123. [Google Scholar] [CrossRef]
- Lv, X.; Ma, Y.; Li, Y.; Yang, Q. Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles. Water 2020, 12, 2909. [Google Scholar] [CrossRef]
- Kundu, S.; Pal, A.; Dikshit, A.K. UV induced degradation of herbicide 2,4-D: Kinetics, mechanism and effect of various conditions on the degradation. Sep. Purif. Technol. 2005, 44, 121–129. [Google Scholar] [CrossRef]
- Yin, G.; Jia, Y.; Lin, Y.; Zhang, C.; Zhu, Z.; Ma, Y. A review on hierarchical Bi2MoO6 nanostructures for photocatalysis applications. New J. Chem. 2022, 46, 906–918. [Google Scholar] [CrossRef]
- Qiu, P.; Yao, J.; Chen, H.; Jiang, F.; Xie, X. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst. J. Hazard. Mater. 2016, 317, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Josephine, G.S.; Jayaprakash, K.; Suresh, M.; Sivasamy, A. Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid: A herbicide by nanocrystalline semiconductor material under visible light irradiation. Mater. Today Proc. 2019, 17, 345–353. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Miessner, H.; Mueller, S.; Mahyar, A.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 2018, 343, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Li, X.; Hao, Z.; Liu, L. Enhancement of 3D Bi2MoO6 mesoporous spheres photocatalytic performance by vacancy engineering. J. Colloid Interface Sci. 2020, 560, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, Z. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. J. Mol. Catal. A Chem. 2016, 423, 533–549. [Google Scholar] [CrossRef]
- Shi, M.; Yang, H.; Zhao, Z.; Ren, G.; Meng, X. Bismuth-based semiconductors applied in photocatalytic reduction processes: Fundamentals, advances and future perspectives. Chem. Commun. 2023, 59, 4274–4287. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Zhang, Y.; Tian, N. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation. J. Alloys Compd. 2015, 619, 807–811. [Google Scholar] [CrossRef]
- Varma, R.; Chaurasia, S.; Patel, N.; Bhanage, B. Interplay of adsorption, photo-absorption, electronic structure and charge carrier dynamics on visible light driven photocatalytic activity of Bi2MoO6/rGO (0D/2D) heterojunction. J. Environ. Chem. Eng. 2020, 8, 104551. [Google Scholar] [CrossRef]
- Wang, M.; You, M.; Guo, P.; Tang, H.; Lv, C.; Zhang, Y.; Zhu, T.; Han, J. Hydrothermal synthesis of Sm-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B. J. Alloys Compd. 2017, 728, 739–746. [Google Scholar] [CrossRef]
- Li, X.; Su, M.; Zhu, G.; Zhang, K.; Zhang, X.; Fan, J. Fabrication of a novel few-layer WS 2/Bi2MoO6 plate-on-plate heterojunction structure with enhanced visible-light photocatalytic activity. Dalton Trans. 2018, 47, 10046–10056. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, M.; Chai, Z.; Wang, X. Assembling Bi2MoO6/Ru/g-C3N4 for highly effective oxygen generation from water splitting under visible-light irradiation. Inorg. Chem. 2019, 58, 7374–7384. [Google Scholar] [CrossRef] [PubMed]
- Stelo, F.; Kublik, N.; Ullah, S.; Wender, H. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants. J. Alloys Compd. 2020, 829, 154591. [Google Scholar] [CrossRef]
- Sun, K.; Zhou, H.; Li, X.; Ma, X.; Zhang, D.; Li, M. The novel 2-dimensional Bi2MoO6-Bi2O3-Ag3PO4 ternary photocatalyst with nnp heterojunction for enhanced degradation performance. J. Alloys Compd. 2022, 913, 165119. [Google Scholar] [CrossRef]
- Qiao, X.-Q.; Zhang, Z.-W.; Li, Q.-H.; Hou, D.; Zhang, Q.; Zhang, J.; Li, D.-S.; Feng, P.; Bu, X. In situ synthesis of n–n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr (VI). J. Mater. Chem. A 2018, 6, 22580–22589. [Google Scholar]
- Tian, Y.; Zhou, F.; Zhan, S.; Zhu, Z.; He, Q. Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C3N4/Bi2MoO6 under the visible-light. J. Photochem. Photobiol. A 2018, 350, 10–16. [Google Scholar] [CrossRef]
- Zuo, G.; Wang, Y.; Teo, W.L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W. Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@ 2D-MXene Schottky junction nanohybrid. Chem. Eng. J. 2021, 403, 126328. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, R.; Dai, S.; Zhao, T.; Chen, M.; Zhang, Q. In-situ mechanochemical fabrication of pn Bi2MoO6/CuBi2O4 heterojunctions with efficient visible light photocatalytic performance. J. Alloys Compd. 2021, 882, 160681. [Google Scholar] [CrossRef]
- Kumar, R.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, V.K.; Saini, A.; Saini, V.; Singh, P. An overview on bismuth molybdate based photocatalytic systems: Controlled morphology and enhancement strategies for photocatalytic water purification. J. Environ. Chem. Eng. 2020, 8, 104291. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Jin, C.; Li, Z.; Chai, T.; Zhu, T. Fabrication of novel ternary heterojunctions of Pd/g-C3N4/Bi2MoO6 hollow microspheres for enhanced visible-light photocatalytic performance toward organic pollutant degradation. Sep. Purif. Technol. 2019, 211, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, K.; Lu, L.; Liang, C.; Geng, L. Large scale and facile synthesis of novel Z-scheme Bi2MoO6/Ag3PO4 composite for enhanced visible light photocatalyst. Mater. Lett. 2016, 169, 250–253. [Google Scholar] [CrossRef]
- Ma, D.; Wu, J.; Gao, M.; Xin, Y.; Chai, C. Enhanced debromination and degradation of 2,4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photocatalyst. Chem. Eng. J. 2017, 316, 461–470. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z. Plasmonic Z-scheme Ag2O-Bi2MoO6 pn heterojunction photocatalysts with greatly enhanced visible-light responsive activities. Mater. Lett. 2017, 189, 267–270. [Google Scholar] [CrossRef]
- Li, B.; Lai, C.; Qin, L.; Chu, C.; Zhang, M.; Liu, S.; Liu, X.; Yi, H.; He, J.; Li, L. Anchoring single-unit-cell defect-rich bismuth molybdate layers on ultrathin carbon nitride nanosheet with boosted charge transfer for efficient photocatalytic ciprofloxacin degradation. J. Colloid Interface Sci. 2020, 560, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.; Singh, A.; Shukla, C. Kinetics and mechanism of solid-state reaction between bismuth (III) oxide and molybdenum (VI) oxide. J. Solid State Chem. 1982, 42, 136–148. [Google Scholar] [CrossRef]
- Keulks, G.W.; Hall, J.L.; Daniel, C.; Suzuki, K. The catalytic oxidation of propylene: IV. Preparation and characterization of α-bismuth molybdate. J. Catal. 1974, 34, 79–97. [Google Scholar] [CrossRef]
- Trifiro, F.; Hoser, H.; Scarle, R. Relationship between structure and activity of mixed oxides as oxidation catalysts: I. Preparation and solid state reactions of Bi-molybdates. J. Catal. 1972, 25, 12–24. [Google Scholar] [CrossRef]
- Guo, C.; Xu, J.; Wang, S.; Li, L.; Zhang, Y.; Li, X. Facile synthesis and photocatalytic application of hierarchical mesoporous Bi2MoO6 nanosheet-based microspheres. CrystEngComm 2012, 14, 3602–3608. [Google Scholar] [CrossRef]
- Bi, J.; Che, J.; Wu, L.; Liu, M. Effects of the solvent on the structure, morphology and photocatalytic properties of Bi2MoO6 in the solvothermal process. Mater. Res. Bull. 2013, 48, 2071–2075. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, T.; Zhao, X.; Zhu, Y. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B Environ. 2010, 98, 138–146. [Google Scholar] [CrossRef]
- Ren, G.; Liu, S.; Li, Z.; Bai, H.; Hu, X.; Meng, X. Highly Selective Photocatalytic Reduction of CO2 to CO Over Ru-Modified Bi2MoO6. Sol. RRL 2022, 6, 2200154. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, J.; Xu, H.; Hu, J. Construction of Bi2MoO6/gC3N4 heterostructures with enhanced visible light photocatalytic performance. New J. Chem. 2021, 45, 20402–20409. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Li, K.; Wang, H. Preparation, characterization and photocatalytic properties of nanoplate Bi2MoO6 catalysts. J. Mater. Sci. 2008, 43, 7026–7034. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, K.K.; Xu, J.; Chen, Q.G.; Xu, B.G.; Xu, A.W. Fabrication of one-dimensional Bi2O3–Bi14MoO24 heterojunction photocatalysts with high interface quality. CrystEngComm 2017, 19, 237–245. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Nanan, S. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. J. Colloid Interface Sci. 2021, 582, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liang, Y.; Li, K.; Yang, J.; Wang, K.; Xu, R.; Xie, X. Engineering the dimension and crystal structure of bismuth molybdate photocatalysts via a molten salt-assisted assembly approach. J. Alloys Compd. 2020, 844, 156231. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, Q.; Liu, B. Two-step method to prepare the direct Z-scheme heterojunction hierarchical flower-like Ag@AgBr/Bi2MoO6 microsphere photocatalysts for waste water treatment under visible light. J. Mater. Sci. Mater. Electron. 2020, 31, 5054–5067. [Google Scholar] [CrossRef]
- Salari, H. Facile synthesis of new Z-scheme Bi2WO6/Bi2MoO6 p–n junction photocatalysts with high photocatalytic activity: Structure, kinetics and mechanism approach. Mater. Res. Bull. 2020, 131, 110979. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. Bi SPR-promoted Z-scheme Bi2MoO6/CdS-diethylenetriamine composite with effectively enhanced visible light photocatalytic hydrogen evolution activity and stability. ACS Sustain. Chem. Eng. 2018, 6, 696–706. [Google Scholar] [CrossRef]
- Sun, M.; Yin, Y.; Song, C.; Wang, Y.; Xiao, J.; Qu, S.; Zheng, W.; Li, C.; Dong, W.; Zhang, L. Preparation of Bi2MoO6 nanomaterials and theirs gas-sensing properties. J. Inorg. Organomet. Polym. Mater. 2016, 26, 294–301. [Google Scholar] [CrossRef]
- Yang, G.; Liang, Y.; Li, K.; Yang, J.; Xu, R.; Xie, X. Construction of a Ce3+ doped CeO2/Bi2MoO6 heterojunction with a mutual component activation system for highly enhancing the visible-light photocatalytic activity for removal of TC or Cr (vi). Inorg. Chem. Front. 2019, 6, 1507–1517. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Douvas, A.M.; Georgiadou, D.G.; Palilis, L.C.; Kennou, S.; Sygellou, L.; Soultati, A.; Kostis, I.; Papadimitropoulos, G.; Davazoglou, D. The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and gap states for application in organic optoelectronics. JACS 2012, 134, 16178–16187. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, C.; Li, X.; Xin, J.; Tao, R.; Liu, Y. Assembling n-Bi2MoO6 nanosheets on electrospun p-CuAl2O4 hollow nanofibers: Enhanced photocatalytic activity based on highly efficient charge separation and transfer. ACS Sustain. Chem. Eng. 2018, 6, 10714–10723. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Wei, X.; Alothman, Z.A.; Albaqami, M.D.; Malgras, V.; Yamauchi, Y.; Kang, Y.; Wang, M.; Guan, W. Direct Z-scheme CuInS2/Bi2MoO6 heterostructure for enhanced photocatalytic degradation of tetracycline under visible light. J. Hazard. Mater. 2021, 415, 125591. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, G.; Shi, Y.; Xiao, Y.; Fu, H. Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity. Appl. Catal. B Environ. 2015, 164, 40–47. [Google Scholar] [CrossRef]
- Serra-Clusellas, A.; De Angelis, L.; Lin, C.-H.; Vo, P.; Bayati, M.; Sumner, L.; Lei, Z.; Amaral, N.B.; Bertini, L.M.; Mazza, J. Abatement of 2,4-D by H2O2 solar photolysis and solar photo-Fenton-like process with minute Fe (III) concentrations. Water Res. 2018, 144, 572–580. [Google Scholar] [CrossRef]
- Shirato, M.; Ikai, H.; Nakamura, K.; Hayashi, E.; Kanno, T.; Sasaki, K.; Kohno, M.; Niwano, Y. Synergistic effect of thermal energy on bactericidal action of photolysis of H2O2 in relation to acceleration of hydroxyl radical generation. Antimicrob. Agents Chemother. 2012, 56, 295–301. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Chen, Q.; He, Y.; Pan, M.; Huang, G.; Bi, J. Insights into Photocatalytic Degradation Pathways and Mechanism of Tetracycline by an Efficient Z-Scheme NiFe-LDH/CTF-1 Heterojunction. Nanomaterials 2022, 12, 4111. [Google Scholar] [CrossRef]
- Warshagha, M.Z.; Muneer, M. Direct Z-scheme AgBr/β-MnO2 photocatalysts for highly efficient photocatalytic and anticancer activity. ACS Omega 2022, 7, 30171–30183. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Zhao, J. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122. [Google Scholar] [CrossRef]
- Oseghe, E.O.; Maddila, S.; Ndungu, P.G.; Jonnalagadda, S.B. Effect of surfactant concentration on active species generation and photocatalytic properties of TiO2. Appl. Catal. B Environ. 2015, 176, 288–297. [Google Scholar] [CrossRef]
- Chachvalvutikul, A.; Luangwanta, T.; Pattisson, S.; Hutchings, G.J.; Kaowphong, S. Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light–responsive Bi2WO6/ZnIn2S4 heterojunction. Appl. Surf. Sci. 2021, 544, 148885. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A. Removal of 2,4-D herbicide from aqueous solution by aminosilane-grafted mesoporous carbons. Adsorption 2019, 25, 345–355. [Google Scholar] [CrossRef]
- Binh, Q.A.; Nguyen, H.-H. Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar. Bioresour. Technol. 2020, 11, 100520. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Q.; Yang, Z.; Wang, W. Adsorption of 2,4-D on magnetic graphene and mechanism study. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 367–375. [Google Scholar] [CrossRef]
- Vinayagam, R.; Pai, S.; Murugesan, G.; Varadavenkatesan, T.; Narayanasamy, S.; Selvaraj, R. Magnetic activated charcoal/Fe2O3 nanocomposite for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: Synthesis, characterization, optimization, kinetic and isotherm studies. Chemosphere 2022, 286, 131938. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Lu, X.; Deng, H.; Zhang, X. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions using MIEX resin. Ind. Eng. Chem. Res. 2012, 51, 11226–11235. [Google Scholar] [CrossRef]
- Hernández-Moreno, E.; de la Cruz, A.M.; Hinojosa-Reyes, L.; Guzmán-Mar, J.; Gracia-Pinilla, M.; Hernández-Ramírez, A. Synthesis, characterization, and visible light–induced photocatalytic evaluation of WO3/NaNbO3 composites for the degradation of 2,4-D herbicide. Mater. Today Chem. 2021, 19, 100406. [Google Scholar] [CrossRef]
- Chawla, H.; Garg, S.; Rohilla, J.; Szamosvölgyi, Á.; Efremova, A.; Szenti, I.; Ingole, P.P.; Sápi, A.; Kónya, Z.; Chandra, A. Visible LED-light driven photocatalytic degradation of organochlorine pesticides (2,4-D & 2,4-DP) by Curcuma longa mediated bismuth vanadate. J. Clean. Prod. 2022, 367, 132923. [Google Scholar]
- Sánchez, O.A.; Rodríguez, J.L.; Barrera-Andrade, J.M.; Borja-Urby, R.; Valenzuela, M.A. High performance of Ag/BiVO4 photocatalyst for 2,4-Dichlorophenoxyacetic acid degradation under visible light. Appl. Catal. A Gen. 2020, 600, 117625. [Google Scholar] [CrossRef]
- Amiri, F.; Dehghani, M.; Amiri, Z.; Yousefinejad, S.; Azhdarpoor, A. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid from aqueous solutions by Ag3PO4/TiO2 nanoparticles under visible light: Kinetic and thermodynamic studies. Water Sci. Technol. 2021, 83, 3110–3122. [Google Scholar] [CrossRef]
Sample | Solvent | SA (m2·g−1) | PV (cm3·g−1) | Dcryst (nm) | Band Gap (eV) |
---|---|---|---|---|---|
BMO-150 (EG) | EG | - | - | 7.7 (6.7) | 2.75 (2.79) |
BMO-400 (EG) | EG | 33.4 | 0.21 | 10.9 (6.7) | 2.74 (2.79) |
BMO-400 (2 EtOH + 1 EG) | EtOH + EG | 16.0 | 0.15 | 11.5 (10.8) | 2.74 |
BMO-400 (1 EtOH + 2 H2O) | EtOH + H2O | 7.0 | 0.04 | 14.5 * (14.3 ** 10.4 ***) | 2.77 |
BMO-400 (H2O) | H2O | 16.6 | 0.08 | 16.4 (15.6) | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, T.T.H.; Ding, S.; Sebek, M.; Lund, H.; Bartling, S.; Peppel, T.; Le, T.S.; Steinfeldt, N. Effect of Bi2MoO6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid. Molecules 2024, 29, 3255. https://doi.org/10.3390/molecules29143255
Duong TTH, Ding S, Sebek M, Lund H, Bartling S, Peppel T, Le TS, Steinfeldt N. Effect of Bi2MoO6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid. Molecules. 2024; 29(14):3255. https://doi.org/10.3390/molecules29143255
Chicago/Turabian StyleDuong, Thi Thanh Hoa, Shuoping Ding, Michael Sebek, Henrik Lund, Stephan Bartling, Tim Peppel, Thanh Son Le, and Norbert Steinfeldt. 2024. "Effect of Bi2MoO6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid" Molecules 29, no. 14: 3255. https://doi.org/10.3390/molecules29143255
APA StyleDuong, T. T. H., Ding, S., Sebek, M., Lund, H., Bartling, S., Peppel, T., Le, T. S., & Steinfeldt, N. (2024). Effect of Bi2MoO6 Morphology on Adsorption and Visible-Light-Driven Degradation of 2,4-Dichlorophenoxyacetic Acid. Molecules, 29(14), 3255. https://doi.org/10.3390/molecules29143255