Derivatization of Abietane Acids by Peptide-like Substituents Leads to Submicromolar Cytotoxicity at NCI-60 Panel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. One-Dose Assay
2.3. Five-Dose Assay
2.4. COMPARE Correlations
2.5. ADMET Studies
3. Materials and Methods
3.1. General
3.2. General Procedure for Passerini Reaction
3.2.1. 2-((2-Ethoxy-2-oxoethyl)amino)-2-oxoethyl-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylate (2a)
3.2.2. 2-((2-Ethoxy-2-oxoethyl)amino)-2-oxoethyl-12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carboxylate (2b)
3.2.3. 2-((2-Ethoxy-2-oxoethyl)amino)-2-oxoethyl-13-isopropyl-7,10a-dimethyl-1,4-dioxo-4,5,6,6a,7,8,9,10,10a,10b,11,12-dodecahydro-1H-4b,12-ethenochrysene-7-carboxylate (2d)
3.2.4. 2-((2-Morpholinoethyl)amino)-2-oxoethyl-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylate (3a)
3.2.5. 2-((2-Morpholinoethyl)amino)-2-oxoethyl-12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carboxylate (3b)
3.2.6. 2-((2-Morpholinoethyl)amino)-2-oxoethyl-13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-7-carboxylate (3c)
3.2.7. 2-((2-Morpholinoethyl)amino)-2-oxoethyl-13-isopropyl-7,10a-dimethyl-1,4-dioxo-4,5,6,6a,7,8,9,10,10a,10b,11,12-dodecahydro-1H-4b,12-ethenochrysene-7-carboxylate (3d)
3.3. General Procedure for Ugi Reaction
3.3.1. Ethyl N-benzyl-N-(7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carbonyl)glycylglycinate (4a)
3.3.2. Ethyl N-(7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carbonyl)-N-(2-methoxy-2-oxoethyl)glycylglycinate (5a)
3.3.3. Ethyl N-(12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carbonyl)-N-(2-methoxy-2-oxoethyl)glycylglycinate (5b)
3.3.4. Ethyl N-(13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-7-carbonyl)-N-(2-methoxy-2-oxoethyl)glycylglycinate (5c)
3.3.5. Methyl N-(2-((2-ethoxy-2-oxoethyl)amino)-2-oxoethyl)-N-(7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carbonyl)methioninate (6a)
3.3.6. Methyl N-(2-((2-ethoxy-2-oxoethyl)amino)-2-oxoethyl)-N-(13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-7-carbonyl)methioninate (6c)
3.3.7. Methyl N-(12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carbonyl)-N-(2-((2-morpholinoethyl)amino)-2-oxoethyl)histidinate (7b)
3.3.8. Methyl N-(13-isopropyl-7,10a-dimethyl-1,4-dioxo-2,3,4,4a,5,6,6a,7,8,9,10,10a,10b,11,12,12a-hexadecahydro-1H-4b,12-ethenochrysene-7-carbonyl)-N-(2-((2-morpholinoethyl)amino)-2-oxoethyl)histidinate (7c)
3.3.9. Methyl N-(12-isopropyl-6,9a-dimethyl-1,3-dioxo-3,3a,4,5,5a,6,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-3b,11-ethenophenanthro[1,2-c]furan-6-carbonyl)-N-(2-((2-morpholinoethyl)amino)-2-oxoethyl)phenylalaninate (8b)
3.3.10. N-Benzyl-N-(2-(tert-butylamino)-2-oxoethyl)-13-isopropyl-7,10a-dimethyl-1,4-dioxo-4,5,6,6a,7,8,9,10,10a,10b,11,12-dodecahydro-1H-4b,12-ethenochrysene-7-carboxamide (9d)
3.3.11. Methyl N-(2-(tert-butylamino)-2-oxoethyl)-N-(13-isopropyl-7,10a-dimethyl-1,4-dioxo-4,5,6,6a,7,8,9,10,10a,10b,11,12-dodecahydro-1H-4b,12-ethenochrysene-7-carbonyl)phenylalaninate (10d)
3.4. Biological Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.K. Annual Report to the Nation on the Status of Cancer, 1975–2005, Featuring Trends in Lung Cancer, Tobacco Use, and Tobacco Control. J. Natl. Cancer Inst. 2008, 100, 1672–1694. [Google Scholar] [CrossRef]
- Harris, A.L.; Hochhauser, D. Mechanisms of multidrug resistance in cancer treatment. Acta Oncol. 1992, 31, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, D.; Szewczyk, A.; Radzka, J.; Dubińska-Magiera, M.; Kazimierczak, W.; Daczewska, M.; Migocka-Patrzałek, M. The natural origins of cytostatic compounds used in rhabdomyosarcoma therapy. Adv. Clin. Exp. Med. 2023, 32, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Melfi, F.; Carradori, S.; Mencarelli, N.; Campestre, C.; Gallorini, M.; Di Giacomo, S.; Di Sotto, A. Natural products as a source of new anticancer chemotypes. Expert Opin. Ther. Pat. 2023, 33, 721–744. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Molavi, O.; Sabetkam, S.; Jafari, S.; Montazersaheb, S. Stimulators of immunogenic cell death for cancer therapy: Focusing on natural compounds. Cancer Cell. Int. 2023, 23, 200. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.C.; Kumar, N.V.A.; Thakur, G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur. J. Med. Chem. 2019, 177, 76–104. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Verma, N. Nature curing cancer—Review on structural modification studies with natural active compounds having anti-tumor efficiency. Biotechnol. Rep. 2015, 6, 64–78. [Google Scholar] [CrossRef]
- Lewandowska, U.; Fichna, J.; Gorlach, S. Enhancement of anticancer potential of polyphenols by covalent modifications. Biochem. Pharmacol. 2016, 109, 1–13. [Google Scholar] [CrossRef]
- Liu, Z.-Q. Ugi and Passerini Reactions as Successful Models for Investigating Multicomponent Reactions. Cur. Org. Chem. 2014, 18, 719–739. [Google Scholar] [CrossRef]
- De Moliner, F.; Banfi, L.; Riva, R.; Basso, A. Beyond Ugi and Passerini Reactions: Multicomponent Approaches Based on Isocyanides and Alkynes as an Efficient Tool for Diversity Oriented Synthesis. Comb. Chem. High Throughput Screen. 2011, 14, 782–810. [Google Scholar] [CrossRef] [PubMed]
- Ayoup, M.S.; Mansour, A.F.; Abdel-Hamid, H.; Abu-Serie, M.M.; Mohyeldin, S.M.; Teleb, M. Nature-inspired new isoindole-based Passerini adducts as efficient tumor-selective apoptotic inducers via caspase-3/7 activation. Eur. J. Med. Chem. 2023, 245, 114865. [Google Scholar] [CrossRef] [PubMed]
- Avilés, E.; Prudhomme, J.; Le Roch, K.G.; Franzblau, S.G.; Chandrasena, K.; Mayer, A.M.S.; Rodríguez, A.D. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold. Bioorganic Med. Chem. Lett. 2015, 25, 5339–5343. [Google Scholar] [CrossRef] [PubMed]
- Tomohara, K.; Ohashi, N.; Uchida, T.; Nose, T. Synthesis of natural product hybrids by the Ugi reaction in complex media containing plant extracts. Sci. Rep. 2022, 12, 15568. [Google Scholar] [CrossRef]
- Czollner, L.; Beseda, I.; Jordis, U.; Stanetty, C.; Amer, H.; Del Ruiz-Ruiz, M.C.; Kosma, P.; Classen-Houben, D. Ugi reactions of tertiary carboxylic acids: Combinatorial synthesis of glycyrrhetinic acid derivatives. In Proceedings of the 13th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-13), Sciforum Electronic Conference Series. elektronische Konferenz, 1–30 November 2009; Volume 13, p. b001. [Google Scholar]
- Rodríguez-López, F.; García-Gutiérrez, H.A.; Gámez-Montaño, R. Synthesis of Bis-Amides Employing a Plant-Derived Triterpenoid as Component in the Ugi Reaction. Chem. Proc. 2022, 12, 37. [Google Scholar] [CrossRef]
- Wiemann, J.; Heller, L.; Csuk, R. An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions. Eur. J. Med. Chem. 2018, 150, 176–194. [Google Scholar] [CrossRef]
- Sultani, H.N.; Morgan, I.; Hussain, H.; Roos, A.H.; Haeri, H.H.; Kaluderović, G.N.; Hinderberger, D.; Westermann, B. Access to New Cytotoxic Triterpene and Steroidal Acid-TEMPO Conjugates by Ugi Multicomponent-Reactions. Int. J. Mol. Sci. 2021, 22, 7125. [Google Scholar] [CrossRef]
- Veena, K.S.; Taniya, M.S.; Ravindran, J.; Thangarasu, A.K.; Priya, S.; Lankalapalli, R.S. Semi-synthetic diversification of coronarin D, a labdane diterpene, under Ugi reaction conditions. Nat. Prod. Res. 2020, 36, 334–340. [Google Scholar] [CrossRef]
- Wiemann, J.; Fischer, L.; Kessler, J.; Ströhl, D.; Csuk, R. Ugi multicomponent-reaction: Syntheses of cytotoxic dehydroabietylamine derivatives. Bioorg. Chem. 2018, 81, 567–576. [Google Scholar] [CrossRef]
- Heise, N.V.; Schmidt, A.; Schüler, J.-A.; Csuk, R. Dehydroabietylamine derived bistetrazoles from ultrasound-assisted pseudo-seven-component Ugi reactions act as efficient and selective inhibitors of cholinesterases. Eur. J. Med. Chem. Rep. 2024, 10, 100124. [Google Scholar] [CrossRef]
- Tretyakova, E.V.; Ma, X.; Kazakova, O.B.; Shtro, A.A.; Petukhova, G.D.; Smirnova, A.A.; Xu, H.; Xiao, S. Abietic, maleopimaric and quinopimaric dipeptide Ugi-4CR derivatives and their potency against influenza A and SARS-CoV-2. Nat. Prod. Res. 2023, 37, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, A.A.; Zakirova, L.M.; Smirnova, I.E.; Tretyakova, E.V. Synthesis of Novel Diterpenic Peptides via the Ugi Reaction and Their Anticancer Activities. Molbank 2023, 2023, M1707. [Google Scholar] [CrossRef]
- Smirnova, A.A.; Tretyakova, E.V.; Kazakova, O.B. Inhibiting the growth of cancer cells maleopimarate amidoimide bis-1H-tetrazoles synthesized via azido-Ugi reaction. Mendeleev Commun. 2024, 34, 509–510. [Google Scholar]
- Tolstikov, G.A.; Tolstikova, T.G.; Shults, E.E.; Tolstikov, S.E.; Khvostov, M.V. Resin acids of Russian conifers. In Chemistry, Pharmacology; Trofimov, B.A., Ed.; Geo: Novosibirsk, Russia, 2011; 395 p. (In Russian) [Google Scholar]
- Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol. 1992, 19, 622–638. [Google Scholar] [PubMed]
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Rev. Res. 1995, 34, 91–109. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronisie, P.; Viagro-Wolff, A.; et al. Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Monks, A.; Scudiero, D.; Johnson, G.S.; Paull, K.D.; Sausville, E.A. The NCI anti-cancer drug screen: A smart screen to identify effectors of novel targets. Anti-Cancer Drug Des. 1997, 12, 533–541. [Google Scholar]
- Weinstein, J.N.; Myers, T.G.; O’Connor, P.M.; Friend, S.H., Jr.; Fornace, A.J.; Kohn, K.W.; Fojo, T.; Bates, S.E.; Rubinstein, L.V.; Anderson, N.L.; et al. An Information-Intensive Approach to the Molecular Pharmacology of Cancer. Science 1997, 275, 343–349. [Google Scholar] [CrossRef] [PubMed]
- DTP Databases and Search Tools. Available online: https://dtp.cancer.gov/databases_tools/data_search.htm (accessed on 1 November 2018).
- Rostom, S.A.F. Synthesis and in vitro antitumor evaluation of some indeno [1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem. 2006, 14, 6475–6485. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Available online: https://ioa.cancer.gov/oncologydrugscompare/webpages/ (accessed on 4 March 2021).
- Mukaka, M.M. A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed Central]
- Duffy, M.J.; Tang, M.; Rajaram, S.; O’Grady, S.; Crown, J. Targeting Mutant p53 for Cancer Treatment: Moving Closer to Clinical Use? Cancers 2022, 14, 4499. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, K.M.; Zhang, B.Z.; Jackson, T.D.; Ogunkola, M.O.; Nijagal, B.; Milne, J.V.; Sallman, D.A.; Ang, C.-S.; Nikolic, I.; Kearney, C.J.; et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 2022, 8, eabm9427. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, P.L. 3-bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: Introduction to a special issue. J. Bioenerg. Biomembr. 2012, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Barnard, J.P.; Reynafarje, B.; Pedersen, P.L. Glucose catabolism in African trypanosomes. Evidence that the terminal step is catalyzed by a pyruvate transporter capable of facilitating uptake of toxic analogs. J. Biol. Chem. 1993, 268, 3654–3661. [Google Scholar] [CrossRef] [PubMed]
- Mina, R.; Falcone, A.P.; Bringhen, S.; Liberati, A.M.; Pescosta, N.; Petrucci, M.T.; Ciccone, G.; Capra, A.; Patriarca, F.; Rota-Scalabrini, D.; et al. Ixazomib-based induction regimens plus ixazomib maintenance in transplant-ineligible, newly diagnosed multiple myeloma: The phase II, multi-arm, randomized UNITO-EMN10 trial. Blood Cancer J. 2021, 11, 197. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.-C.; Lin, C.-C.; Lee, J.-H.; Yang, J.C.-H. Update on recent preclinical and clinical studies of T790M mutant-specific irreversible epidermal growth factor receptor tyrosine kinase inhibitors. J. Biomed. Sci. 2016, 23, 86. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, L.N.; Larkins, E.; Akinboro, O.; Roy, P.; Amatya, A.K.; Fiero, M.H.; Mishra-Kalyani, P.S.; Helms, W.S.; Myers, C.E.; Skinner, A.M.; et al. FDA Approval Summary: Capmatinib and Tepotinib for the Treatment of Metastatic NSCLC Harboring MET Exon 14 Skipping Mutations or Alterations. Clin. Cancer Res. 2022, 28, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef]
- Tretyakova, E.V.; Smirnova, I.E.; Kazakova, O.B.; Tolstikov, G.A.; Yavorskaya, N.P.; Golubeva, I.S.; Pugacheva, R.B.; Apryshko, G.N.; Poroikov, V.V. Synthesis and anticancer activity of quinopimaric and maleopimaric acids’ derivatives. Bioorg. Med. Chem. 2014, 22, 6481–6489. [Google Scholar] [CrossRef]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.-P.; Cao, D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Halbrook, N.J.; Lawrence, R.V. The Isolation of Dehydroabietic Acid from Disproportionated Rosin. J. Org. Chem. 1966, 31, 4246–4247. [Google Scholar] [CrossRef]
- Zalkov, L.U.; Ford, R.A.; Cutney, J.P. The Oxidation of Maleopimaric Acid with Alkaline Permanganate. J. Org. Chem. 1962, 27, 3535–3539. [Google Scholar] [CrossRef]
- Herz, W.; Nair, M.G. Resin acids. XIX. Structure and stereochemistry of adducts of levopimaric acid with cyclopentenone and 1-cyclopentene-3,5-dione. Fovarski reaction of an enedione Epoxide. J. Org. Chem. 1969, 34, 4016–4023. [Google Scholar] [CrossRef]
- Shul’ts, E.E.; Oleinikov, D.S.; Nechepurenko, I.V.; Shakirov, M.M.; Tolstikov, G.A. Synthetic transformations of higher terpenoids: XVIII. Synthesis of optically active 9,10-anthraquinone derivatives. Russ. J. Org. Chem. 2009, 45, 102–114. [Google Scholar] [CrossRef]
- Monga, M.; Sausville, E.A. Developmental Therapeutics Program at the NCI: Molecular Target and Drug Discovery Process. Leukemia 2002, 16, 520–526. [Google Scholar] [CrossRef]
Comp. | 60 Cell Lines Assay in 1 Dose 10 µM Conc. | The Most Sensitive Cell Lines (Growth, %), | |
---|---|---|---|
Mean Growth, % | Range of Growth, % | ||
2a | 100.70 | 79.35–120.08 | Not active |
2b | 62.71 | −6.49–122.05 | Leukemia: CCRF-CEM (26.08), HL-60(TB) (−6.49), K-562 (20.12), MOLT-4 (7.97), Breast cancer: MDA-MB-468 (−4.84) |
2d | 94.00 | 71.28–123.81 | Not active |
3a | 95.39 | 71.02–129.93 | Not active |
3b | 95.80 | 81.07–120.81 | Not active |
3c | 54.57 | 5.55–122.22 | Leukemia: CCRF-CEM (22.23), HL-60(TB) (14.38), K-562 (26.34), MOLT-4 (7.23), RPMI-8226 (30.27); Non-small cell lung cancer: NCI-H23 (27.10); Colon cancer: HCT-15 (23.52); CNS cancer: SF-295 (30.63); Breast cancer: MCF7 (27.74), MDA-MB-468 (5.55) |
3d | 13.04 | −91.75–130.07 | Leukemia: CCRF-CEM (6.56), HL-60(TB) (−21.04), K-562 (4.78), MOLT-4 (−10.26), RPMI-8226 (4.56); Non-small cell lung cancer: EKVX (26.13), NCI-H23 (19.00); Colon cancer: COLO 205 (−74.16), HCT-116 (−52.25), HCT-15 (−34.49), HT29 (16.18), SW-620 (−62.07); Melanoma: LOX IMVI (−90.25), M14 (23.24), SK-MEL-28 (−84.21), SK-MEL-5 (10.35), UACC-257 (8.02); Renal cancer: 786–0 (−47.24), ACHN (−89.15), RXF 393 (−72.41); Prostate cancer: PC-3 (24.47); Breast cancer: MCF7 (0.08), MDA-MB-231/ATCC (5.52), BT-549 (16.70), T-47D (−64.38), MDA-MB-468 (−91.75) |
4a | 62.87 | 8.35–120.50 | Leukemia: CCRF-CEM (26.59), HL-60(TB) (14.83), K-562 (29.77), MOLT-4 (8.35), RPMI-8226 (19.69), SR (17.58); Colon cancer: HCT-116 (24.61); Prostate cancer: PC-3 (15.70); Breast cancer: MCF7 (25.47), MDA-MB-468 (10.22) |
4b | 63.00 | 4.44–109.54 | Leukemia: CCRF-CEM (15.58), HL-60(TB) (9.46), K-562 (24.90), MOLT-4 (27.78), RPMI-8226 (15.16), SR (4.44); Colon cancer: HCT-15 (18.05); Melanoma: LOX IMVI (24.03); Breast cancer: MCF7 (30.70) |
4c | 54.63 | −75.11–120.11 | Leukemia: CCRF-CEM (16.43), HL-60(TB) (2.73), K-562 (25.32), MOLT-4 (15.79), RPMI-8226 (19.80), SR (8.03); Colon cancer: HCT-15 (17.64); Melanoma: LOX IMVI (−75.11); Ovarian cancer: IGROV1 (18.24); Breast cancer: MCF7 (13.09), MDA-MB-468 (3.12) |
5a | 96.93 | 53.19–148.98 | Not active |
5b | 93.20 | 45.12–139.93 | Not active |
5c | 96.87 | 77.93–116.93 | Not active |
6a | 96.91 | 68.74–156.30 | Not active |
6c | 94.76 | 65.96–135.59 | Not active |
7b | 97.61 | 74.39–122.20 | Not active |
7c | 70.95 | −0.15–139.14 | Leukemia: CCRF-CEM (24.83), MOLT-4 (29.95); Ovarian cancer: OVCAR3 (31.67); Breast cancer: MDA-MB-468 (−0.15) |
8b | 85.76 | 28.01–126.65 | Leukemia: RPMI-8226 (28.01); |
9d | 23.98 | −98.89–84.16 | Leukemia: CCRF-CEM (−98.89), HL-60(TB) (−98.56), MOLT-4 (−99.48), RPMI-8226 (−97.65); Non-small cell lung cancer: HOP-62 (−29.84) HOP-92 (−17.26); Colon cancer: KM-12 (−22.70); CNS cancer: SF-268 (19.57), SNB-75 (−8.25), Melanoma: MDA-MB-435 (23.74), SK-MEL-2 (−65.65); Ovarian cancer: IGROV1 (22.80), OVCAR-3 (26.94), Renal cancer: RXF-393 (−24.68); Prostate cancer: PC-3 (6.90); Breast cancer: MCF7 (−2.81), HS 578T (−13.39), BT-549 (15.85), MDA-MB-468 (−73.94) |
10d | −1.86 | −99.18–87.09 | Leukemia: CCRF-CEM (−98.14), HL-60(TB) (−99.18), MOLT-4 (−99.21), RPMI-8226 (−98.36); Non-small cell lung cancer: EKVX (5.96), HOP-62 (−4.39), HOP-92 (−5.69), NCI-H226 (−3.96), NCI-H23 (−22.24), NCI-H522 (−98.70); Colon cancer: COLO 205 (22.31), HCT-116 (−4.09), HCT-15 (−10.28), KM-12 (−38.06), SW-620 (−60.75); CNS cancer: SF-268 (6.85), SF-539 (−5.90), SNB-19 (13.62), SNB-75 (−14.67), U251 (22.59); Melanoma: LOX IMVI (5.13), MALME-3M (−65.32), SK-MEL-2 (−71.35), UACC-257 (7.82), UACC-62 (22.38); Ovarian cancer: IGROV1 (26.89), OVCAR-3 (−34.84), OVCAR-4 (−20.86), OVCAR-8 (31.67); Renal cancer: ACHN (11.90), CAKI-1 (−66.46), RXF-393 (−76.56), SN12C (30.34), TK-10 (12.97); Prostate cancer: PC-3 (−10.13); Breast cancer: MCF7 (−13.16), HS 578T (−30.68), BT-549 (−63.49), MDA-MB-468 (−87.09) |
Cancer Cell Lines | Antiproliferative Activity In Vitro, μM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3d | 9d | 10d | DRB | 5-FU | |||||||
GI50 | TGI | LC50 | GI50 | TGI | LC50 | GI50 | TGI | LC50 | GI50 | GI50 | |
Leukemia | |||||||||||
CCRF-CEM | 0.42 | 2.56 | 54.9 | 1.21 | 2.13 | 3.73 | 1.6 | 2.97 | 5.51 | 0.08 | 9.97 |
HL-60(TB) | 1.98 | 5.56 | >100 | 2.58 | 8.91 | 23.3 | 1.31 | 2.60 | 5.17 | 0.19 | 2.30 |
K-562 | 2.26 | >100 | >100 | 17.1 | >60 | >60 | 2.16 | 4.52 | 9.45 | - | 3.58 |
MOLT-4 | 3.15 | 11.1 | 98.4 | 1.23 | 2.12 | 3.65 | 1.75 | 3.15 | 5.66 | 0.03 | 0.35 |
RPMI-8226 | 3.01 | 10.0 | >100 | 7.26 | 15.8 | 34.3 | 1.98 | 4.18 | 8.85 | 0.08 | 0.04 |
SR | 2.48 | 7.99 | >100 | 3.63 | 11.0 | 26.3 | 2.05 | 3.86 | 7.29 | 0.03 | - |
Non-Small Cell Lung Cancer | |||||||||||
A549/ATCC | 10.1 | 23.8 | 56.1 | 17.7 | >60 | >60 | 7.07 | 24.6 | 71.0 | 0.06 | 0.18 |
EKVX | 7.99 | 20.9 | 46.8 | - | - | - | - | - | - | 0.41 | - |
HOP-62 | 13.9 | 31.5 | 71.3 | 25.5 | 34.5 | >60 | 25.2 | 50.2 | >100 | 0.07 | 0.39 |
HOP-92 | 4.65 | 18.0 | 50.3 | 8.65 | >60 | >60 | 4.56 | 15.3 | 39.2 | 0.10 | 77.9 |
NCI-H226 | 8.25 | 23.5 | 58.9 | 39.7 | >60 | >60 | 12.9 | 29.3 | 66.4 | 0.05 | 54.7 |
NCI-H23 | 9.17 | 22.5 | 52.3 | 26.8 | >60 | >60 | 3.51 | 12.4 | 35.5 | 0.15 | 0.33 |
NCI-H322M | 15.5 | 29.4 | 55.5 | >60 | >60 | >60 | 23.1 | 56.4 | >100 | - | - |
NCI-H460 | 9.89 | 22.5 | 50.9 | 31.6 | >60 | >60 | 15.2 | 28.7 | 54.3 | 0.02 | 0.05 |
NCI-H522 | 3.07 | 11.9 | 37.5 | 37.2 | >60 | >60 | 1.81 | 3.22 | 5.74 | 0.03 | 7.27 |
Colon Cancer | |||||||||||
COLO 205 | 3.68 | 11.8 | 45.8 | 43.2 | >60 | >60 | 3.81 | 10.7 | 32.8 | 0.18 | 0.15 |
HCC-2998 | 13.1 | 26.5 | 53.3 | >60 | >60 | >60 | 19.3 | 39.2 | 79.7 | 0.26 | 0.05 |
HCT-116 | 2.34 | 5.96 | >100 | 16.4 | >60 | >60 | 2.68 | 7.99 | 28.0 | 0.08 | 0.22 |
HCT-15 | 3.46 | 14.5 | 44.5 | 22.6 | >60 | >60 | 9.20 | 21.5 | 47.5 | 6.46 | 0.11 |
HT29 | 2.20 | 4.96 | 16.2 | 29.6 | >60 | >60 | 13.9 | 27.0 | 52.6 | 0.12 | 0.17 |
KM12 | 7.74 | 20.6 | 4.81 | 23.0 | >60 | >60 | 13.5 | 26.7 | 52.8 | 0.27 | 0.21 |
SW-620 | 1.48 | 2.99 | 6.05 | 27.8 | >60 | >60 | 1.83 | 3.34 | 6.11 | 0.09 | 0.92 |
CNS Cancer | |||||||||||
SF-268 | 11.0 | 25.3 | 58.3 | 18.7 | >60 | >60 | 5.60 | 18.6 | 43.5 | 0.10 | 1.62 |
SF-295 | 14.0 | 27.6 | 54.6 | 43.9 | >60 | >60 | 20.1 | 81.9 | >100 | 0.10 | - |
SF-539 | 16.1 | 29.9 | 55.4 | 27.9 | >60 | >60 | 3.80 | 12.5 | 35.5 | 0.12 | 0.06 |
SNB-19 | 13.3 | 26.1 | 51.3 | >60 | >60 | >60 | 5.37 | 17.6 | 43.1 | 0.04 | 3.81 |
SNB-75 | 5.12 | 18.6 | 47.0 | 22.9 | >60 | >60 | 5.59 | 18.3 | 43.4 | 0.07 | 78.7 |
U251 | 8.09 | 21.8 | 51.2 | 30.8 | >60 | >60 | 3.67 | 13.2 | 37.2 | 0.04 | 0.92 |
Melanoma | |||||||||||
LOX IMVI | 1.81 | 3.75 | 7.76 | 24.5 | >60 | >60 | 3.16 | 11.6 | 34.7 | 0.07 | 0.24 |
MALME-3M | 1.73 | 3.42 | 6.78 | >60 | >60 | >60 | 12.6 | 25.1 | 50.2 | 0.12 | 0.05 |
M14 | 3.60 | 16.0 | 65.4 | >60 | >60 | >60 | 7.29 | 19.9 | 44.7 | 0.18 | 0.98 |
MDA-MB-435 | 4.96 | 17.6 | 43.8 | 55.9 | >60 | >60 | 17.8 | 32.5 | 59.3 | 0.25 | 0.07 |
SK-MEL-2 | 10.5 | 23.2 | 51.6 | 14.2 | 35.8 | >60 | 2.73 | 8.73 | 29.5 | 0.17 | 56.7 |
SK-MEL-28 | 3.68 | 13.9 | 38.0 | 42.6 | >60 | >60 | 11.4 | 23.7 | 49.1 | 0.21 | 1.03 |
SK-MEL-5 | 3.77 | 15.4 | 40.5 | 13.7 | >60 | >60 | 10.3 | 22.0 | 47.1 | 0.08 | 0.46 |
UACC-257 | 5.51 | 19.1 | 46.8 | 26.9 | >60 | >60 | 6.31 | 18.2 | 42.7 | 0.14 | 3.55 |
UACC-62 | 4.16 | 18.0 | 43.9 | 50.8 | >60 | >60 | 5.04 | 15.6 | 39.6 | 0.12 | 0.52 |
Ovarian Cancer | |||||||||||
IGROV1 | 6.14 | 20.3 | 53.9 | >60 | >60 | >60 | 17.3 | 31.8 | 58.5 | 0.17 | 1.22 |
OVCAR-3 | 1.56 | 3.22 | 6.65 | 17.2 | >60 | >60 | 5.17 | 17.3 | 41.8 | 0.39 | 0.01 |
OVCAR-4 | 4.39 | 17.9 | 49.4 | 16.0 | 59.9 | >60 | 2.95 | 7.85 | 27.0 | 0.37 | 4.43 |
OVCAR-5 | 13.9 | 27.4 | 53.9 | 54.1 | >60 | >60 | 15.3 | 3.49 | 79.6 | 0.41 | 10.9 |
OVCAR-8 | 11.0 | 26.0 | 61.2 | 58.6 | >60 | >60 | 11.1 | 2.38 | 51.0 | 0.10 | 1.74 |
NCI/ADR-RES | 4.67 | 18.8 | 54.8 | 39.2 | >60 | >60 | 13.6 | 2.78 | 56.5 | 7.16 | 0.31 |
SK-OV-3 | 14.8 | 30.9 | 64.6 | 22.3 | >60 | >60 | 12.2 | 2.77 | 63.0 | 0.22 | 21.8 |
Renal Cancer | |||||||||||
786-0 | 2.18 | 5.38 | 39.8 | 30.6 | >60 | >60 | 12.3 | 24.8 | 50.0 | 0.13 | 0.72 |
A498 | 16.9 | 30.7 | 55.8 | 35.4 | >60 | >60 | 13.9 | 31.1 | 69.7 | 0.10 | 0.35 |
ACHN | 1.66 | 3.27 | 6.42 | >60 | >60 | >60 | 5.53 | 17.7 | 42.2 | 0.08 | 0.27 |
CAKI-1 | 1.52 | 3.46 | 7.92 | 27.0 | >60 | >60 | 4.53 | 16.9 | 4.13 | 0.95 | 0.07 |
RXF 393 | 2.06 | 5.01 | 17.7 | - | - | - | - | - | - | 0.10 | 2.61 |
SN12C | 8.62 | 21.9 | 50.1 | 44.6 | >60 | >60 | 13.0 | 25.7 | 51.0 | 0.07 | 0.49 |
TK-10 | 7.72 | 20.6 | 46.3 | 58.9 | >60 | >60 | 13.3 | 26.2 | 51.7 | - | 1.12 |
UO-31 | 1.52 | 3.16 | 6.58 | 35.5 | >60 | >60 | 3.58 | 12.4 | 35.4 | 0.49 | 1.42 |
Prostate Cancer | |||||||||||
PC-3 | 3.85 | 16.8 | 57.8 | 11.6 | 46.0 | >60 | 6.85 | 20.3 | 49.4 | 0.32 | 2.36 |
DU-145 | 6.86 | 19.7 | 44.7 | >60 | >60 | >60 | 16.4 | 30.2 | 55.9 | 0.11 | 0.36 |
Breast Cancer | |||||||||||
MCF7 | 3.04 | 10.7 | 54.2 | 18.0 | >60 | >60 | 7.17 | 19.5 | 44.7 | 0.03 | 0.07 |
MDA-MB-31/ATCC | 6.25 | 20.2 | 50.3 | 21.0 | 56.1 | >60 | 19.0 | 33.3 | 58.3 | 0.51 | 6.60 |
HS 578T | 9.09 | 37.4 | >100 | 17.4 | >60 | >60 | 3.08 | 12.3 | 35.4 | 0.33 | 9.77 |
BT-549 | 6.78 | 23.9 | 67.2 | 27.8 | >60 | >60 | 2.62 | 7.43 | 26.4 | 0.23 | 10.6 |
T-47D | 1.71 | 4.19 | >100 | 8.64 | 17.8 | 36.7 | 1.75 | 3.91 | 8.75 | 0.06 | 8.12 |
MDA-MB-468 | 2.05 | 4.61 | 11.5 | 4.74 | 11.8 | 27.0 | 1.09 | 2.56 | 6.00 | 0.05 | - |
Subpanel | Compound (Mean GI50)/(SI) | ||
---|---|---|---|
3d | 9d | 10d | |
Leukemia | 2.22/2.77 | 5.50/5.49 | 1.80/4.72 |
NSCL Cancer | 9.17/0.67 | 30.89/0.98 | 11.67/0.73 |
Colon Cancer | 4.86/1.27 | 31.80/0.95 | 9.17/0.93 |
CNS Cancer | 11.27/0.55 | 34.03/0.89 | 7.36/1.15 |
Melanoma | 4.41/1.39 | 38.73/0.78 | 8.51/0.99 |
Ovarian Cancer | 8.07/0.76 | 36.77/0.82 | 11.09/0.77 |
Renal Cancer | 5.27/1.17 | 41.71/0.72 | 9.42/0.90 |
Prostate Cancer | 5.35/1.15 | 35.80/0.84 | 11.62/0.73 |
Breast Cancer | 4.82/1.28 | 16.26/1.86 | 5.79/1.47 |
Full Panel | 6.26 | 30.17 | 8.49 |
Compound | Vector | ||
---|---|---|---|
GI50 | TGI | LC50 | |
3d | Eprenatapopt r = 0.65 (58) [a] 3-Bromopyruvic acid r = 0.55 (59) Ixazomib r = 0.52 (58) | Eprenetapopt 0.58 (58) Olmutinib 0.57 (55) Tepotinib 0.54 (59) Sunitinib 0.51 (59) | Tepotinib 0.42 (59) |
9d | 6-mercaptopurine 0.42 (59) | Regorafenib 0.37 (57) | Bendamustine 0.21 (59) |
10d | 6-mercaptopurine 0.41 (59) | Regorafenib 0.34 (57) | Lapatinib 0.18 (59) |
ADMET Predicted Profile | 3d | 9d | 10d | Doxorubicin | ||||
---|---|---|---|---|---|---|---|---|
Value | Probability | Value | Probability | Value | Probability | Value | Probability | |
cLogP | 3.1959 | 5.8837 | 5.8247 | 0.1673 | ||||
F | >50% | 0.894 | >50% | 0.995 | >50% | 0.52 | <20% | 0.959 |
Drug likeness | 3.9501 | 3.4304 | 1.5298 | 6.6484 | ||||
Predicted toxicity class | 6 | 5 | 5 | 3 | ||||
Hepatotoxicity | − | 0.86 | − | 0.82 | − | 0.80 | − | 0.86 |
Neurotoxicity | + | 0.58 | − | 0.59 | − | 0.57 | + | 0.74 |
Nephrotoxicity | + | 0.56 | − | 0.67 | + | 0.54 | + | 0.80 |
Respiratory toxicity | + | 0.85 | + | 0.86 | + | 0.87 | + | 0.91 |
Cardiotoxicity | − | 0.79 | − | 0.71 | − | 0.54 | + | 0.64 |
Immunotoxicity | + | 0.91 | + | 0.85 | + | 0.60 | + | 0.99 |
Mutagenicity | − | 0.65 | − | 0.74 | − | 0.73 | + | 0.98 |
BCRP inhibitor | − | ~1 | − | ~1 | − | ~1 | − | ~1 |
P-glycoprotein inhibitor | − | 0.99 | − | 0.79 | + | 0.81 | − | ~1 |
P-glycoprotein substrate | − | ~1 | − | ~1 | − | ~1 | + | 0.99 |
AR-LBD | − | 0.98 | − | 0.97 | − | 0.95 | − | 0.55 |
Aromatase | − | 0.80 | − | 0.86 | − | 0.86 | + | 0.52 |
Estrogen receptor | − | 0.95 | − | 0.95 | − | 0.92 | − | 0.74 |
THRα | − | 0.90 | − | 0.90 | − | 0.90 | − | 0.90 |
THRβ | − | 0.78 | − | 0.78 | − | 0.78 | − | 0.78 |
TTR | − | 0.97 | − | 0.97 | − | 0.97 | − | 0.97 |
RYR | − | 0.98 | − | 0.98 | − | 0.98 | − | 0.98 |
GABAR | − | 0.96 | − | 0.96 | − | 0.96 | − | 0.96 |
AChE | − | 0.86 | − | 0.82 | − | 0.80 | − | 0.86 |
PPAR-γ | − | 0.95 | − | 0.95 | − | 0.93 | − | 0.97 |
Nrf2/ARE | − | 0.89 | − | 0.88 | − | 0.89 | − | 0.98 |
HSE | − | 0.89 | − | 0.88 | − | 0.89 | − | 0.98 |
MMP | − | 0.78 | − | 0.82 | − | 0.76 | − | 0.56 |
ATAD5 | − | 0.94 | − | 0.96 | − | 0.92 | − | 0.63 |
NIS | − | 0.98 | − | 0.98 | − | 0.98 | − | 0.98 |
BBB | + | 0.93 | + | 0.99 | + | 0.93 | − | ~1 |
BSEP inhibitor | + | ~1 | + | ~1 | + | ~1 | − | 0.81 |
Caco-2 | −5.27 | −4.96 | −5.09 | −6.26 | ||||
CYP1A2 | − | 0.99 | − | 0.96 | − | 0.97 | − | 0.99 |
CYP2C19 | − | 0.91 | − | 0.82 | − | 0.78 | − | 0.97 |
CYP2C9 | − | 0.68 | − | 0.55 | + | 0.52 | − | 0.73 |
CYP2D6 | − | 0.72 | − | 0.68 | − | 0.73 | − | 0.92 |
CYP3A4 | − | 0.70 | − | 0.61 | + | 0.81 | − | 0.98 |
CYP2E1 | − | 0.99 | − | ~1 | − | ~1 | − | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tretyakova, E.; Smirnova, A.; Babkov, D.; Kazakova, O. Derivatization of Abietane Acids by Peptide-like Substituents Leads to Submicromolar Cytotoxicity at NCI-60 Panel. Molecules 2024, 29, 3532. https://doi.org/10.3390/molecules29153532
Tretyakova E, Smirnova A, Babkov D, Kazakova O. Derivatization of Abietane Acids by Peptide-like Substituents Leads to Submicromolar Cytotoxicity at NCI-60 Panel. Molecules. 2024; 29(15):3532. https://doi.org/10.3390/molecules29153532
Chicago/Turabian StyleTretyakova, Elena, Anna Smirnova, Denis Babkov, and Oxana Kazakova. 2024. "Derivatization of Abietane Acids by Peptide-like Substituents Leads to Submicromolar Cytotoxicity at NCI-60 Panel" Molecules 29, no. 15: 3532. https://doi.org/10.3390/molecules29153532
APA StyleTretyakova, E., Smirnova, A., Babkov, D., & Kazakova, O. (2024). Derivatization of Abietane Acids by Peptide-like Substituents Leads to Submicromolar Cytotoxicity at NCI-60 Panel. Molecules, 29(15), 3532. https://doi.org/10.3390/molecules29153532