Cannabis sativa as an Herbal Ingredient: Problems and Prospects
Abstract
:1. Introduction
2. Methodology
3. Industrial Uses and Processing of Cannabis sativa or Hemp
3.1. Hemp Fiber
3.2. Hemp Seed
3.3. Hemp Flowers or CBD-Type Hemp
4. Hemp Chemical Composition
4.1. Tetrahydrocannabinol
4.2. Cannabidiol
4.3. Other Cannabinoids
4.4. Terpenes
5. Biological Activity of Cannabis sativa Compounds
5.1. Antimicrobial Activity
5.2. Anticoagulant Activity
5.3. Antidiabetic Activity
5.4. Anticancer Activity
5.5. Anti-Inflammatory and Analgesic Activities
5.6. Neuroprotective Activity
5.7. Neuropathic Chronic Pain Management
6. Global Scenario and Legality of Cannabis
7. Cannabis as a Food or Beverage
7.1. Cannabis or Hemp Food
7.2. Hemp Beer
8. Economic Importance of Cannabis
9. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dingha, B.; Sandler, L.; Bhowmik, A.; Akotsen-Mensah, C.; Jackai, L.; Gibson, K.; Turco, R. Industrial hemp knowledge and interest among North Carolina organic farmers in the United States. Sustainability 2019, 11, 2691. [Google Scholar] [CrossRef]
- Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J. Pharm. Biomed. Anal. 2017, 143, 228–236. [Google Scholar] [CrossRef]
- Johnson, R. Defining Hemp: A fact sheet. Congr. Res. Serv. 2019, R44742, 1–12. [Google Scholar]
- World Health Organization. Cannabis. 2019. Available online: https://www.who.int/teams/mental-health-and-substance-use/alcohol-drugs-and-addictive-behaviours/drugs-psychoactive/cannabis. (accessed on 30 November 2019).
- Mechoulam, R.; Parker, L.A.; Gallily, R. Cannabidiol: An overview of some pharmacological aspects. J. Clin. Pharmacol. 2002, 42, 11S–19S. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Zhang, J.; Zhang, H.; Qian, P.; Hao, J.; Li, L. Analytical characterization of hempseed (seed of Cannabis sativa L.) oil from eight regions in China. J. Diet. Suppl. 2010, 7, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Roche, H.M. Unsaturated fatty acids. Proc. Nutr. Soc. 1999, 58, 397–401. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Cortez, D. Craft beer and marijuana cohesiveness is possible how one can learn from the others regulatory madness. Ohio State Businees Law J. 2018, 12, 159–196. [Google Scholar]
- Davidson, M.; Reed, S.; Oosthuizen, J.; O’Donnell, G.; Gaur, P.; Cross, M.; Dennis, G. Occupational health and safety in cannabis production: An Australian perspective. Int. J. Occup. Environ. Health 2018, 24, 75–85. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [PubMed]
- Deng, G.; Du, G.; Yang, Y.; Bao, Y.; Liu, F. Planting Density and Fertilization Evidently Influence the Fiber Yield of Hemp (Cannabis sativa L.). Agronomy 2019, 9, 368. [Google Scholar] [CrossRef]
- Krüger, M.; van Eeden, T.; Beswa, D. Cannabis sativa cannabinoids as functional ingredients in snack foods—Historical and developmental aspects. Plants 2022, 11, 3330. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect οf genotype and growing year on the nutritional, phytochemical, and antioxidant properties of industrial hemp (Cannabis sativa L.) seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- De Meijer, E.P.; Bagatta, M.; Carboni, A.; Crucitti, P.; Moliterni, V.C.; Ranalli, P.; Mandolino, G. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 2003, 163, 335–346. [Google Scholar] [CrossRef]
- Pellati, F.; Brighenti, V.; Sperlea, J.; Marchetti, L.; Bertelli, D.; Benvenuti, S. New Methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L. (Hemp). Molecules 2018, 23, 2639. [Google Scholar] [CrossRef] [PubMed]
- Brighenti, V.; Licata, M.; Pedrazzi, T.; Maran, D.; Bertelli, D.; Pellati, F.; Benvenuti, S. Development of a new method for the analysis of cannabinoids in honey by means of high-performance liquid chromatography coupled with electrospray ionisation-tandem mass spectrometry detection. J. Chromatogr. 2019, 1597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Arendt, S. Sourcing Natural Ingredients. Everything about Hemp; Wander: Frederick, MD, USA, 2019. [Google Scholar]
- Boffman, J. CBD 101: The Basics and Product Navigation. Everything about Hemp; Thriv Nutraceuticals: Frederick, MD, USA, 2019; pp. 1–4. [Google Scholar]
- Głodowska, M.; Łyszcz, M. Cannabis sativa L. and its antimicrobial properties—A review. Strona 2016, 77–82. Available online: https://www.researchgate.net/publication/317185536_Cannabis_sativa_L_and_its_antimicrobial_properties_-_A_review (accessed on 30 July 2024).
- Pertwee, R.G. Pharmacological Actions of Cannabinoids. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 168. [Google Scholar]
- Oza, M.; William, B.; Gummadidala, P.M.; Dias, T.; Omebeyinje, M.H.; Chen, L.; Mitra, C.; Jesmin, R.; Chakraborty, P.; Sajish, M.; et al. Acute and short-term administrations of delta-9- tetrahydrocannabinol modulate major gut metabolomic regulatory pathways in C57BL/6 mice. Sci. Rep. 2019, 9, 10520. [Google Scholar] [CrossRef]
- Mueller, R.L.; Ellingson, J.M.; Bidwell, L.C.; Bryan, A.D.; Hutchison, K.E. Are the Acute Effects of THC Different in Aging Adults? Brain Sci. 2021, 11, 590. [Google Scholar] [CrossRef]
- Freeman, T.P.; Hindocha, C.; Green, S.F.; Bloomfield, M.A. Medicinal use of cannabis-based products and cannabinoids. Br. Med. J. 2019, 1141, 1–7. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Pavlovic, R.; Nenna, G.; Calvi, L.; Panseri, S.; Borgonovo, G.; Giupponi, L.; Cannazza, G.; Giorgi, A. Quality traits of cannabidiol oils: Cannabinoids content, terpene fingerprint and oxidation stability of European commercially available preparations. Molecules 2018, 23, 1230. [Google Scholar] [CrossRef]
- Skřivan, M.; Englmaierová, M.; Vít, T.; Skřivanová, E. Hempseed increases gamma-tocopherol in egg yolks and the breaking strength of tibias in laying hens. PLoS ONE 2019, 14, e0217509. [Google Scholar] [CrossRef]
- Whyte, L.S.; Ryberg, E.; Sims, N.A.; Ridge, S.A.; Mackie, K.; Greasley, P.J.; Ross, R.A.; Rogers, M.J. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 16511–16516. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD). Public Health Focus, Food and Drug Administration. 2021. Available online: https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd#farmbill (accessed on 24 July 2024).
- Iseppi, R.; Brighenti, V.; Licata, M.; Lambertini, A.; Sabia, C.; Messi, P.; Pellati, F.; Benvenuti, S. Chemical characterization and evaluation of the antibacterial activity of essential oils from fibre-type Cannabis sativa L. (Hemp). Molecules 2019, 24, 2302. [Google Scholar] [CrossRef]
- Novak, J.; Zitterl-Eglseer, K.; Deans, S.G.; Franz, C.M. Essential oils of different cultivars of Cannabis sativa L. and their antimicrobial activity. Flavour Fragr. J. 2001, 16, 259–262. [Google Scholar] [CrossRef]
- Frassinetti, S.; Gabriele, M.; Moccia, E.; Longo, V.; Di Gioia, D. Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp. LWT 2020, 124, 109149. [Google Scholar] [CrossRef]
- Anjum, M. 35. Evaluation of antimicrobial activity and ethnobotanical study of Cannabis sativa L. Pure Appl. Biol. 2018, 7, 706–713. [Google Scholar] [CrossRef]
- Manosroi, A.; Chankhampan, C.; Kietthanakorn, B.O.; Ruksiriwanich, W.; Chaikul, P.; Boonpisuttinant, K.; Sainakham, M.; Manosroi, W.; Tangjai, T.; Manosroi, J. Pharmaceutical and cosmeceutical biological activities of hemp (Cannabis sativa L. var. sativa) leaf and seed extracts. Chiang Mai J. Sci. 2019, 46, 180–195. [Google Scholar]
- Nafis, A.; Kasrati, A.; Jamali, C.A.; Mezrioui, N.; Setzer, W.; Abbad, A.; Hassani, L. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Ind. Crops Prod. 2019, 137, 396–400. [Google Scholar] [CrossRef]
- El Hamdaoui, A.; Msanda, F.; Boubaker, H.; Leach, D.; Bombarda, I.; Vanloot, P.; El Aouad, N.; Abbad, A.; Boudyach, E.; Achemchem, F. Essential oil composition, antioxidant and antibacterial activities of wild and cultivated Lavandula mairei Humbert. Biochem. Syst. Ecol. 2018, 76, 1–7. [Google Scholar] [CrossRef]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 1–8. [Google Scholar] [CrossRef]
- El Yaagoubi, M.; Mechqoq, H.; Ortiz, S.; Cavaleiro, C.; Lecsö-Bornet, M.; Pereira, C.G.; Rodrigues, M.J.; Custódio, L.; El Mousadik, A.; Picot, L. Chemical composition and biological screening of the essential oils of Micromeria macrosiphon and M. arganietorum (Lamiaceae). Chem. Biodivers. 2021, 18, e2100653. [Google Scholar] [CrossRef]
- Coetzee, C.; Levendal, R.-A.; Van de Venter, M.; Frost, C. Anticoagulant effects of a cannabis extract in an obese rat model. Phytomedicine 2007, 14, 333–337. [Google Scholar] [CrossRef]
- Xiong, W.T.; Gu, L.; Wang, C.; Sun, H.-X.; Liu, X. Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice. J. Ethnopharmacol. 2013, 150, 935–945. [Google Scholar] [CrossRef]
- Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci. 2016, 5, 1–8. [Google Scholar]
- Kajaria, D.; Tripathi, J.; Tripathi, Y.B.; Tiwari, S. In-vitro α-amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug—Shirishadi. J. Adv. Pharm. Technol. Res. 2013, 4, 206. [Google Scholar] [CrossRef]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L. Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. essential oil: A multidisciplinary study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef]
- Kar, P.; Banerjee, S.; Saleh-E-In, M.M.; Anandraj, A.; Kormuth, E.; Pillay, S.; Al-Ghamdi, A.A.; Ali, M.A.; Lee, J.; Sen, A.; et al. β-sitosterol conjugated silver nanoparticle-mediated amelioration of CCl4-induced liver injury in Swiss albino mice. J. King Saud Univ. Sci. 2022, 34, 102113. [Google Scholar] [CrossRef]
- Ligresti, A.; Moriello, A.S.; Starowicz, K.; Matias, I.; Pisanti, S.; De Petrocellis, L.; Laezza, C.; Portella, G.; Bifulco, M.; Di Marzo, V. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J. Pharmacol. Exp. Ther. 2006, 318, 1375–1387. [Google Scholar] [CrossRef]
- Sarfaraz, S.; Afaq, F.; Adhami, V.M.; Malik, A.; Mukhtar, H. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J. Biol. Chem. 2006, 281, 39480–39491. [Google Scholar] [CrossRef]
- Lukhele, S.T.; Motadi, L.R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Altern. Med. 2016, 16, 335. [Google Scholar] [CrossRef]
- Marcu, J.P.; Christian, R.T.; Lau, D.; Zielinski, A.J.; Horowitz, M.P.; Lee, J.; Pakdel, A.; Allison, J.; Limbad, C.; Moore, D.H. Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival: Cannabinoid synergy inhibits glioblastoma cell growth. Mol. Cancer Ther. 2010, 9, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Cianchi, F.; Papucci, L.; Schiavone, N.; Lulli, M.; Magnelli, L.; Vinci, M.C.; Messerini, L.; Manera, C.; Ronconi, E.; Romagnani, P. Cannabinoid receptor activation induces apoptosis through tumor necrosis factor-mediated ceramide de novo synthesis in colon cancer cells. Clin. Cancer Res. 2008, 14, 7691–7700. [Google Scholar] [CrossRef]
- McKallip, R.J.; Lombard, C.; Fisher, M.; Martin, B.R.; Ryu, S.; Grant, S.; Nagarkatti, P.S.; Nagarkatti, M. Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood J. Am. Soc. Hematol. 2002, 100, 627–634. [Google Scholar] [CrossRef]
- Armstrong, J.L.; Hill, D.S.; McKee, C.S.; Hernandez-Tiedra, S.; Lorente, M.; Lopez-Valero, I.; Anagnostou, M.E.; Babatunde, F.; Corazzari, M.; Redfern, C.P. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J. Investig. Dermatol. 2015, 135, 1629–1637. [Google Scholar] [CrossRef]
- Borrelli, F.; Pagano, E.; Romano, B.; Panzera, S.; Maiello, F.; Coppola, D.; De Petrocellis, L.; Buono, L.; Orlando, P.; Izzo, A.A. Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis 2014, 35, 2787–2797. [Google Scholar] [CrossRef]
- Galanti, G.; Fisher, T.; Kventsel, I.; Shoham, J.; Gallily, R.; Mechoulam, R.; Lavie, G.; Amariglio, N.; Rechavi, G.; Toren, A. D9-Tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells. Acta Oncol. 2008, 47, 1062–1070. [Google Scholar] [CrossRef]
- Galve-Roperh, I.; Sánchez, C.; Cortés, M.L.; del Pulgar, T.G.; Izquierdo, M.; Guzmán, M. Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat. Med. 2000, 6, 313–319. [Google Scholar] [CrossRef]
- McAllister, S.D.; Murase, R.; Christian, R.T.; Lau, D.; Zielinski, A.J.; Allison, J.; Almanza, C.; Pakdel, A.; Lee, J.; Limbad, C. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res. Treat. 2011, 129, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Solinas, M.; Massi, P.; Cinquina, V.; Valenti, M.; Bolognini, D.; Gariboldi, M.; Monti, E.; Rubino, T.; Parolaro, D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS ONE 2013, 8, e76918. [Google Scholar] [CrossRef]
- Klein, T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 2005, 5, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med. Chem. 2009, 1, 1333–1349. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.; Duparc, N.; Leblanc, V.; Cunin-Roy, C. L’hypnose et la douleur. Médecine Clin. Pour Les Pédiatres 2004, 11, 40–44. [Google Scholar]
- Munch, G. Le Cannabis, les deux Versants: Drogue et Medicament. Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2015. [Google Scholar]
- Jeannin, C. Évaluation et Prise en Charge de la Douleur chez le lapin de Compagnie: Comment les Optimiser en l’état Actuel des Connaissances? Master’s Thesis, University of Liege, Liege, Belgium, 2020. [Google Scholar]
- Li, J.; Wang, G.; Qin, Y.; Zhang, X.; Wang, H.-F.; Liu, H.W.; Zhu, L.J.; Yao, X.S. Neuroprotective constituents from the aerial parts of Cannabis sativa L. subsp. sativa. RSC Adv. 2020, 10, 32043–32049. [Google Scholar] [CrossRef] [PubMed]
- Landucci, E.; Mazzantini, C.; Lana, D.; Davolio, P.L.; Giovannini, M.G.; Pellegrini-Giampietro, D.E. Neuroprotective effects of cannabidiol but not Δ9-tetrahydrocannabinol in rat hippocampal slices exposed to oxygen-glucose deprivation: Studies with cannabis extracts and selected cannabinoids. Int. J. Mol. Sci. 2021, 22, 9773. [Google Scholar] [CrossRef] [PubMed]
- di Giacomo, V.; Chiavaroli, A.; Recinella, L.; Orlando, G.; Cataldi, A.; Rapino, M.; Di Valerio, V.; Ronci, M.; Leone, S.; Brunetti, L. Antioxidant and neuroprotective effects induced by cannabidiol and cannabigerol in rat CTX-TNA2 astrocytes and isolated cortexes. Int. J. Mol. Sci. 2020, 21, 3575. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Scuderi, C.; Savani, C.; Steardo Jr, L.; De Filippis, D.; Cottone, P.; Iuvone, T.; Cuomo, V.; Steardo, L. Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1 and iNOS expression. Br. J. Pharmacol. 2007, 151, 1272–1279. [Google Scholar] [CrossRef]
- Perez, M.; Benitez, S.U.; Cartarozzi, L.P.; Del Bel, E.; Guimaraes, F.S.; Oliveira, A.L. Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats. Eur. J. Neurosci. 2013, 38, 3424–3434. [Google Scholar] [CrossRef]
- Gierthmühlen, J.; Baron, R. Neuropathic Pain. Semin. Neurol. 2016, 36, 462–468. [Google Scholar]
- Szok, D.; Tajti, J.; Nyári, A.; Vécsei, L. Therapeutic approaches for peripheral and central neuropathic pain. Behav. Neurol. 2019, 2019, 8685954. [Google Scholar] [CrossRef]
- Van De Donk, T.; Niesters, M.; Kowal, M.; Olofsen, E.; Dahan, A.; Van Velzen, M. An experimental randomized study on the analgesic effects of pharmaceutical-grade cannabis in chronic pain patients with fibromyalgia. Pain 2019, 160, 860–869. [Google Scholar] [CrossRef]
- Poli, P.; Crestani, F.; Salvadori, C.; Valenti, I.; Sannino, C. Medical cannabis in patients with chronic pain: Effect on pain relief, pain disability, and psychological aspects. A prospective non-randomized single arm clinical trial. Clin. Ter. 2018, 169, e102–e107. [Google Scholar]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Rahn, E.J.; Hohmann, A.G. Cannabinoids as pharmacotherapies for neuropathic pain: From the bench to the bedside. Neurotherapeutics 2009, 6, 713–737. [Google Scholar] [CrossRef]
- Deiana, S. Potential medical uses of cannabigerol: A brief overview. In Handbook of Cannabis and Related Pathologies; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 958–967. [Google Scholar]
- Eldeeb, K.; Leone-Kabler, S.; Howlett, A. Comparison of Δ9-tetrahydrocannabinolic acid A (THCA-A) and Delta-9-tetrahydrocannabinol (THC) in neuronal cell functions. J. Pharmacol. Exp. Ther. 2023, 385, 551. [Google Scholar]
- Russo, E.B. Cannabidiol claims and misconceptions. Trends Pharmacol. Sci. 2017, 38, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Burstein, S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef]
- Ujváry, I.; Hanuš, L. Human metabolites of cannabidiol: A review on their formation, biological activity, and relevance in therapy. Cannabis Cannabinoid Res. 2016, 1, 90–101. [Google Scholar] [CrossRef]
- Kim, J.; Choi, P.; Park, Y.T.; Kim, T.; Ham, J.; Kim, J.C. The cannabinoids, CBDA and THCA, rescue memory deficits and reduce amyloid-beta and Tau pathology in an Alzheimer’s disease-like mouse model. Int. J. Mol. Sci. 2023, 24, 6827. [Google Scholar] [CrossRef]
- McPartland, J.M.; Russo, E.B. Cannabis and cannabis extracts: Greater than the sum of their parts? J. Cannabis Ther. 2001, 1, 103–131. [Google Scholar] [CrossRef]
- Muscarà, C.; Smeriglio, A.; Trombetta, D.; Mandalari, G.; La Camera, E.; Grassi, G.; Circosta, C. Phytochemical characterization and biological properties of two standardized extracts from a non-psychotropic Cannabis sativa L. cannabidiol (CBD)-chemotype. Phytother. Res. 2021, 35, 5269–5281. [Google Scholar] [CrossRef] [PubMed]
- Hartsel, J.A.; Eades, J.; Hickory, B.; Makriyannis, A. Cannabis sativa and hemp. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 735–754. [Google Scholar]
- El-Alfy, A.T.; Ivey, K.; Robinson, K.; Ahmed, S.; Radwan, M.; Slade, D.; Khan, I.; ElSohly, M.; Ross, S. Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav. 2010, 95, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Galletta, M.; Reekie, T.A.; Nagalingam, G.; Bottomley, A.L.; Harry, E.J.; Kassiou, M.; Triccas, J.A. Rapid antibacterial activity of cannabichromenic acid against methicillin-resistant Staphylococcus aureus. Antibiotics 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy-Tomczyk, M.; Typek, R. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as antioxidant agents and their intervention abilities in antioxidant action. Fitoterapia 2021, 152, 104915. [Google Scholar] [CrossRef]
- Cherney, J.; Small, E. Industrial hemp in North America: Production, politics and potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef]
- Carus, M.; Reinders, M.; Baňas, B.; Frank, B.; Kruse, D.; Sfrija, D. The Cologne Declaration on Industrial Hemp; European Industrial Hemp Association (EIHA): Hürth, Germany, 2017; Available online: https://eiha.org/media/2017/07/17-06-06%20EIHA%20Cologne%20Declaration_final.pdf (accessed on 30 July 2024).
- Amaducci, S.; Errani, M.; Venturi, G. Response of hemp to plant population and nitrogen fertilization. Ital. J. Agron. 2002, 6, 103–111. [Google Scholar]
- AheadIntel. Cannabis Market Report and Patent Landscape Analysis-2025. 2020. Available online: https://www.aheadintel.com/cannabis-market/ (accessed on 11 July 2020).
- Hall, W.; Stjepanović, D.; Caulkins, J.; Lynskey, M.; Leung, J.; Campbell, G.; Degenhardt, L. Public health implications of legalising the production and sale of cannabis for medicinal and recreational use. The Lancet 2019, 394, 1580–1590. [Google Scholar] [CrossRef]
- Gunn, J.K.; Rosales, C.B.; Center, K.E.; Nuñez, A.; Gibson, S.J.; Christ, C.; Ehiri, J.E. Prenatal exposure to cannabis and maternal and child health outcomes: A systematic review and meta-analysis. BMJ Open 2016, 6, e009986. [Google Scholar] [CrossRef]
- Coffey, C.; Patton, G.C. Cannabis use in adolescence and young adulthood: A review of findings from the Victorian Adolescent Health Cohort Study. Can. J. Psychiatry 2016, 6, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.C.; Slomiak, S.T.; Jones, J.D.; Rosen, A.F.G.; Moore, T.M.; Gur, R.C. Association of cannabis with cognitive functioning in adolescents and young adults: A systematic review and meta-analysis. JAMA Psychiatry 2018, 75, 585–595. [Google Scholar] [CrossRef]
- Stiby, A.I.; Hickman, M.; Munafò, M.R.; Heron, J.; Yip, V.L.; Macleod, J. Adolescent cannabis and tobacco use and educational outcomes at age 16: Birth cohort study. Addiction 2015, 110, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.H.; Zammit, S.; Lingford-Hughes, A.; Barnes, T.R.; Jones, P.B.; Burke, M.; Lewis, G. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. The Lancet 2007, 370, 319–328. [Google Scholar] [CrossRef]
- Borges, G.; Bagge, C.L.; Orozco, R. A literature review and meta-analyses of cannabis use and suicidality. J. Affect. Disord. 2016, 195, 63–74. [Google Scholar] [CrossRef]
- Gage, S.H.; Hickman, M.; Heron, J.; Munafò, M.R.; Lewis, G.; Macleod, J.; Zammit, S. Associations of cannabis and cigarette use with depression and anxiety at age 18: Findings from the Avon longitudinal study of parents and children. PLoS ONE 2015, 10, e0122896. [Google Scholar] [CrossRef]
- Bhandari, S.; Jha, P.; Lisdahl, K.M.; Hillard, C.J.; Venkatesan, T. Recent trends in cyclic vomiting syndrome—Associated hospitalizations with liberalization of cannabis use in the state of Colorado. Intern. Med. J. 2018, 49, 649–655. [Google Scholar] [CrossRef]
- Habibi, R.; Hoffman, S.J. Legalizing cannabis violates the UN drug control treaties, but progressive countries like Canada have options. Ottawa Law Rev. 2017, 49, 427. [Google Scholar]
- Bewley-Taylor, D.; Jelsma, M.; Rolles, S.; Walsh, J. Cannabis Regulation and the UN Drug Treaties: Strategies for Reform. 2016. Available online: https://www.tni.org/files/publication-downloads/cannabis_regulation_and_the_un_drug_treaties_june_2016_web_0.pdf (accessed on 26 April 2024).
- Chappell, B.U.N. Commission Removes Cannabis from Its Most Strict Drug Control List. NPR. 2020. Available online: https://www.npr.org/2020/12/02/941283185/u-n-commission-removes-cannabis-from-its-most-strict-drug-control-list#:~:text=Dray%2FGetty%20Images-,The%20U.N.,deems%20cannabis%20a%20controlled%20substance (accessed on 30 July 2024).
- European Monitoring Centre for Drugs and Drug Addiction. European Monitoring Centre for Drugs and Drug Addiction; Office for Official Publications of the European Communities: Luxembourg, 2003; Volume 2. [Google Scholar]
- Powell, B. The 7 Countries with the Strictest Weed Laws. High Times. 2018. Available online: https://web.archive.org/web/20201126132111/https://hightimes.com/guides/countries-strictest-weed-laws/ (accessed on 26 April 2024).
- Farrelly, K.N.; Wardell, J.D.; Marsden, E.; Scarfe, M.L.; Najdzionek, P.; Turna, J.; MacKillop, J. The impact of recreational cannabis legalization on cannabis use and associated outcomes: A systematic review. Subst. Abuse 2023, 17, 11782218231172054. [Google Scholar] [CrossRef] [PubMed]
- Knottnerus, J.A.; Blom, T.; van Eerden, S.; Mans, J.H.H.; Mheen, D.V.; de Neeling, J.N.D.; Schelfhout, D.C.L.; Seidell, J.C.; van Wijk, A.H.; van Wingerde, C.G.K.; et al. Cannabis policy in The Netherlands: Rationale and design of an experiment with a controlled legal (‘closed’) cannabis supply chain. Health Policy 2023, 129, 104699. [Google Scholar] [CrossRef]
- Baratta, F.; Pignata, I.; Ravetto Enri, L.; Brusa, P. Cannabis for medical use: Analysis of recent clinical trials in view of current legislation. Front. Pharmacol. 2022, 13, 888903. [Google Scholar] [CrossRef] [PubMed]
- National Conference of State Legislatures (NCSL). Medical Use of Cannabis. 2023. Available online: https://www.ncsl.org/health/state-medical-cannabis-laws (accessed on 26 April 2024).
- Chandra, S.; Lata, H.; ElSohly, M.A. Cannabis sativa L.—Botany and Biotechnology; Springer: New York, NY, USA, 2017. [Google Scholar]
- Aluko, R.E. Hemp Seed (Cannabis sativa L.) Proteins: Composition, Structure, Enzymatic Modification, and Functional or Bioactive Properties. Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017; pp. 121–132. [Google Scholar]
- Radočaj, O.; Dimić, E.; Tsao, R. Effects of hemp (Cannabis sativa L.) seed oil press-cake and decaffeinated green tea leaves (Camellia sinensis) on functional characteristics of gluten-free crackers. J. Food Sci. 2014, 79, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Busson, M.; Godfrey, D.V.; Drover, J.C. Characteristics of hemp (Cannabis sativa L.) seed oil. Food Chem. 2002, 76, 33–43. [Google Scholar] [CrossRef]
- Rabrenović, B.B.; Vujasinović, V.B. Industrial hempseed oil and lipids: Processing and properties. In Industrial Hemp; Academic Press: Cambridge, MA, USA, 2022; pp. 95–124. [Google Scholar] [CrossRef]
- Small, E.; Marcus, D. Hemp: A new crop with new uses for North America. In Trends in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Norfolk, VA, USA, 2002; pp. 284–326. [Google Scholar]
- Marangoni, I.P.; Marangoni, A.G. Cannabis edibles: Dosing, encapsulation, and stability considerations. Curr. Opin. Food Sci. 2019, 28, 1–6. [Google Scholar] [CrossRef]
- Yurasek, A.M.; Aston, E.R.; Metrik, J. Co-use of alcohol and cannabis: A review. Curr. Addict. Rep. 2017, 4, 184–193. [Google Scholar] [CrossRef] [PubMed]
- The German Federal Institute for Risk Assessment (BfR). BgVV Recommends Guidance Values for THC (Tetrahydrocannabinol) in Hemp-Containing Foods, Bundesinstitut für Risikobewertung (BfR). 2000. Available online: https://www.bfr.bund.de/en/presseinformation/2000/07/bgvv_recommends_guidance_values_for_thc__tetrahydrocannabinol__in_hemp_containing_foods-1309.html (accessed on 12 June 2024).
- Harper, M.L. A History Cannabis as a Cultural Communication Artifact. Communication Senior Capstones. 2022. 30. Available online: https://digitalcommons.humboldt.edu/senior_comm/3 (accessed on 12 July 2024).
- Bridgeman, M.B.; Abazia, D.T. Medicinal cannabis: History, pharmacology, and implications for the acute care setting. Pharm. Ther. 2017, 42, 180. [Google Scholar]
- Cannabis Business Times. 2024. Available online: https://www.cannabisbusinesstimes.com/news/california-cannabis-market-sales-taxes-billion-2024/#:~:text=Cannabis%20Business%20Times-California%27s%20Adult%2DUse%20Cannabis%20Market%20Eclipsed%20%245.1%20Billion%20in%20%27Taxable,year%2Dover%2Dyear%20decline (accessed on 12 June 2024).
- Baldavoo, K.; Hassen, S. Evaluating the revenue and taxation implications of cannabis legalization in South Africa: Insights from Canada and the United States. Econ. Manag. Sustain. 2024, 9, 43–52. [Google Scholar] [CrossRef]
- Roberts, S.; Kennis, M. Special Report on ASX-Listed Cannabis and Hemp Stocks. Pitt Strict Research. 2020. Available online: https://static1.squarespace.com/static/5af533a312b13fb602fe7d7b/t/5e9e9eada22fda7ad4f840f6/1587453622641/Pitt+Street+Research+Cannabis+and+Hemp+Special+Report+24+March+2020.pdf (accessed on 12 July 2024).
- World Bank. 2023. Available online: https://www.worldbank.org/en/country/lesotho/overview (accessed on 12 June 2024).
- Thetsane, R.M. Envisaging challenges for the emerging medicinal cannabis sector in Lesotho. J. Cannabis Res. 2024, 6, 23. [Google Scholar] [CrossRef]
- Adebisi, Y.A.; Quazeem Olaoye, D. Medical use of cannabis in Africa: The pharmacists’ perspective. Innov. Pharm. 2022, 13, 10. [Google Scholar] [CrossRef]
- Akhtar, S. Cannabinoid Profile and Regulatory Compliance of Non-Scheduled Cannabinoid-Containing Products in South Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2021. [Google Scholar]
Compounds | Biological Application | References |
---|---|---|
Δ9-Tetrahydro-cannabinol (Δ9-THC) | Anti-inflammation, antianalgesic, antioxidant, anti-ulcers, antipruritic | [72,73,74] |
Δ9-THCA | Anticancer and analgesic—stimulates CB1-dependent signaling in the N18TG2 neuroblastoma cell line | [75] |
Cannabidiol (CBD) | Antianxiety, antinausea, antiarthritic, antipsychotic, anti-inflammatory, and immunomodulatory properties, antidiabetes, atherosclerosis, treatment of alzheimer disease, hypertension, metabolic syndrome, ischemia–reperfusion injury, depression, and neuropathic pain. | [76,77,78] |
CBDA | Rescued memory deficits and reduced amyloid-beta and Tau pathology in an Alzheimer’s disease-like mouse model | [79] |
Cannabinol (CBN) | Sedative, antibiotic, anticonvulsant, anti-inflammatory | [80] |
CBNA | Antioxidant property due to free radical scavenging activity | [81] |
Cannabichromene (CBC) | Anti-inflammatory/analgesic, antidepressant | [82,83] |
CBCA | Rapid antibacterial activity against methicillin-resistant Staphylococcus aureus | [84] |
Cannabigerol (CBG) | Antioxidant, anti-inflammatory, analgesic effect | [74,82] |
CBGA | Exhibits antioxidant activity manifested in its ability to scavenge free radicals, to prevent the oxidation process, and to reduce metal ions | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oriola, A.O.; Kar, P.; Oyedeji, A.O. Cannabis sativa as an Herbal Ingredient: Problems and Prospects. Molecules 2024, 29, 3605. https://doi.org/10.3390/molecules29153605
Oriola AO, Kar P, Oyedeji AO. Cannabis sativa as an Herbal Ingredient: Problems and Prospects. Molecules. 2024; 29(15):3605. https://doi.org/10.3390/molecules29153605
Chicago/Turabian StyleOriola, Ayodeji O., Pallab Kar, and Adebola O. Oyedeji. 2024. "Cannabis sativa as an Herbal Ingredient: Problems and Prospects" Molecules 29, no. 15: 3605. https://doi.org/10.3390/molecules29153605
APA StyleOriola, A. O., Kar, P., & Oyedeji, A. O. (2024). Cannabis sativa as an Herbal Ingredient: Problems and Prospects. Molecules, 29(15), 3605. https://doi.org/10.3390/molecules29153605