Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity
Abstract
:1. Introduction
- Improved barrier properties by the addition of gelatin to CH films and application of the films on red peppers to extend their shelf life [42].
- Enhanced antioxidant activity by the incorporation of Tricholoma terreum extract in CH films [43].
- Improved mechanical stability and decreased oxygen permeability by the addition of nanoclay to HPMC films [44].
- Improved mechanical stability and decreased water vapor permeability by the addition of CNC to carboxymethylcellulose-based films [45].
2. Results and Discussion
2.1. Properties of the Functional Composite Edible Films with Incorporation of NE
2.1.1. Mechanical and Optical Properties
- Maximum breaking force (F) and percent of elongation at break (ε) regarding the mechanical properties;
- Color difference from a white plate (ΔE) and chrome (C*) regarding the optical properties.
2.1.2. Barrier Properties
2.2. Properties of the Functional Composite Edible Films with Incorporation of C
2.2.1. Mechanical and Optical Properties
2.2.2. Barrier Properties
2.2.3. Antioxidant Activity
2.3. Investigation of the Application of Functional Composite Edible Coatings with NE on Strawberries
2.3.1. Weight Loss (WL) of the Strawberry Samples
2.3.2. Color Difference (ΔE) of the Strawberry Samples
2.3.3. Hardness of the Strawberry Samples
2.3.4. Quantity of O2 and CO2 in the Packages of the Strawberry Samples
2.3.5. Moisture (Mw) of the Strawberry Samples
2.3.6. Statistical Analysis of the Results for the Strawberry Samples
2.4. Investigation of the Application of Functional Composite Edible Coatings with C on Avocado
2.4.1. Weight Loss (WL) of the Avocado Samples
2.4.2. Color Difference (ΔE) of the Avocado Samples
2.4.3. Hardness of the Avocado Samples
2.4.4. Peroxide Value (PV) of the Avocado Samples
2.4.5. Statistical Analysis of the Results for the Avocado Samples
3. Materials and Methods
3.1. Materials
3.2. Preparation of Functional Composite Edible Films
- The NE was prepared with 10% w/w OPO, 6% Tween 40 and 84% H2O. To prepare the liquid phase, the emulsifier (Tween 40) was mixed with H2O and was stirred with a magnetic stirrer for 1 h. Then, the lipid phase (OPO) was added, and the final mixture was homogenized for 10 min at a speed of 10,000 rpm, using a high-speed homogenizer (CAT Unidrive 1000, CAT Scientific, Paso Robles, CA, USA). Finally, the emulsion was sonicated for 10 min at 45% amplitude, using a 20 kHz high intensity ultrasonic processor (VC 400, Sonic & Materials, Newtown, CT, USA).
- The C solution was prepared by dissolving C powder in deionized water at 1% w/v.
3.3. Measurements in the Composite Edible Films
3.3.1. Mechanical Properties
3.3.2. Color
3.3.3. Oxygen Permeability
3.3.4. Water Vapor Permeability
3.3.5. Antioxidant Activity in Functional Composite Edible Films with Incorporation of C
3.4. Preparation of Strawberry Samples
3.5. Preparation of Avocado Samples
3.6. Measurements in Strawberry and Avocado Samples
3.6.1. Weight Loss
3.6.2. Color Difference
3.6.3. Hardness
3.6.4. Quantity of CO2 and O2 in the Packages of the Strawberry Samples
3.6.5. Moisture of Strawberry Samples
3.6.6. Degree of Oxidation in Avocado Samples
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | antioxidant activity |
Abs | absorbance |
AFM | atomic force microscopy |
AL | aluminum foil |
C | caffeine |
C* | chrome |
CD | beta-cyclodextrin |
CH | chitosan |
CNC | cellulose nanocrystals |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
EFSA | European Food Safety Authority |
F | maximum breaking force |
FDA | Food and Drug Administration |
FTIR | Fourier-transform infrared spectroscopy |
HPMC | hydroxypropyl methylcellulose |
Mw | moisture |
NE | pomace oil-based nanoemulsion |
OP | oxygen permeability |
OPO | olive pomace oil |
PE | polyethylene |
PET | polyethylene terephthalate |
PV | peroxide value |
ROS | reactive oxygen species |
SEM | scanning electron microscopy |
Τ40 | Tween 40 |
WL | weight loss |
WVP | water vapor permeability |
XRD | X-ray diffraction |
ΔE | color difference |
ε | elongation |
References
- Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Technol. 2011, 22, 662–671. [Google Scholar] [CrossRef]
- Hamad, A.F.; Han, J.H.; Kim, B.C.; Rather, I.A. The intertwine of nanotechnology with the food industry. Saudi J. Biol. Sci. 2018, 25, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Bizymis, A.P.; Tzia, C. Edible films and coatings: Properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit. Rev. Food Sci. Nutr. 2021, 62, 8777–8792. [Google Scholar] [CrossRef] [PubMed]
- Mitelut, A.C.; Popa, E.E.; Drăghici, M.C.; Popescu, P.A.; Popa, V.I.; Bujor, O.C.; Ion, V.A.; Popa, M.E. Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods 2021, 10, 2821. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Sathiyaseelan, A.; Saravanakumar, K.; Mariadoss, A.V.A.; Ramachandran, C.; Hu, X.; Oh, D.H.; Wang, M.-H. Chitosan-Tea Tree Oil Nanoemulsion and Calcium Chloride Tailored Edible Coating Increase the Shelf Life of Fresh Cut Red Bell Pepper. Prog. Org. Coat. 2021, 151, 106010. [Google Scholar] [CrossRef]
- Kong, I.; Degraeve, P.; Pui, L.P. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation—A Review. Foods 2022, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Bizymis, A.P.; Kalantzi, S.; Mamma, D.; Tzia, C. Addition of Silver Nanoparticles to Composite Edible Films and Coatings to Enhance Their Antimicrobial Activity and Application to Cherry Preservation. Foods 2023, 12, 4295. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, C.A.; Otoni, C.G. Nanoemulsions: Synthesis, Characterization, and Application in Bio-Based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 264–285. [Google Scholar]
- Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res. Int. 2018, 111, 509–523. [Google Scholar] [CrossRef]
- Galus, S.; Kadzinska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Otoni, C.G.; de Moura, M.R.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; Soares, N.d.F.; Mattoso, L.H. Food Hydrocolloids Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber of ficinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Gahruie, H.H.; Ziaee, E.; Eskandari, M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Saffarionpour, S. Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism. Food Bioprocess Technol. 2020, 13, 1292–1328. [Google Scholar] [CrossRef]
- Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Bin Song, K.; Min, S.C. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT-Food Sci. Technol. 2017, 75, 742–750. [Google Scholar] [CrossRef]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef]
- Filho, J.G.d.O.; Bezerra, C.C.d.O.N.; Albiero, B.R.; Oldoni, F.C.A.; Miranda, M.; Egea, M.B.; de Azeredo, H.M.C.; Ferreira, M.D. New Approach in the Development of Edible Films: The use of Carnauba Wax Micro- or Nanoemulsions in Arrowroot Starch-Based Films. Food Packag. Shelf Life 2020, 26, 100589. [Google Scholar] [CrossRef]
- Tastan, O.; Ferrari, G.; Baysal, T.; Donsì, F. Understanding the Effect of Formulation on Functionality of Modified Chitosan Films Containing Carvacrol Nanoemulsions. Food Hydrocoll. 2016, 61, 756–771. [Google Scholar] [CrossRef]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol Nanoemulsions Incorporated in Quinoa Protein/Chitosan Edible Films; Antifungal Effect in Cherry Tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Alginate Biocomposite Films Incorporated with Cinnamon Essential Oil Nanoemulsions: Physical, Mechanical, and Antibacterial Properties. Int. J. Polym. Sci. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Kovacevic, D.B.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Edible and Biodegradable Starch Films: A Review. Food Bioprocess Technol. 2012, 5, 2058–2076. [Google Scholar] [CrossRef]
- Teixeira, C.B.; Macedo, G.A.; Macedo, J.A.; da Silva, L.H.M.; Rodrigues, A.M.d.C. Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeis guineensis) by an aqueous enzymatic process. Bioresour. Technol. 2013, 129, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, B.; Frédéric, D.; Thomas, K. Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activities. Crit. Rev. Food Sci. Nutr. 2018, 59, 3431–3455. [Google Scholar]
- Jridi, M.; Abdelhedi, O.; Salem, A.; Kechaou, H.; Nasri, M.; Menchari, Y. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocoll. 2020, 103, 105688. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Suppakul, P. Active and intelligent packaging: The indication of quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 808–831. [Google Scholar] [CrossRef] [PubMed]
- Benbettaïeb, N.; Tanner, C.; Cayot, P.; Karbowiak, T.; Debeaufort, F. Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chem. 2018, 242, 369–377. [Google Scholar] [CrossRef]
- Rosenbloom, R.A.; Zhao, Y. Hydroxypropyl Methylcellulose or Soy Protein Isolate-Based Edible, Water-Soluble, and Antioxidant Films for Safflower Oil Packaging. J. Food Sci. 2021, 86, 129–139. [Google Scholar] [CrossRef]
- Hashemi, M.; Hashemi, M.; Daneshamooz, S.; Raesi, M.; Jannat, B.; Taheri, S.; Noori, S.M.A. An Overview on Antioxidants Activity of Polysaccharide Edible Films and Coatings Contains Essential Oils and Herb Extracts in Meat and Meat Products. Adv. Anim. Vet. Sci. 2020, 8, 198–207. [Google Scholar] [CrossRef]
- Zareie, Z.; Yazdi, F.T.; Mortazavi, S.A. Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydr. Polym. 2020, 244, 116491. [Google Scholar] [CrossRef]
- Mirón-Mérida, V.A.; Yáñez-Fernández, J.; Montañez-Barragán, B.; Huerta, B.E.B. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT-Food Sci. Technol. 2019, 101, 167–174. [Google Scholar] [CrossRef]
- Pérez-Flores, J.G.; Contreras-López, E.; Castañeda-Ovando, A.; Pérez-Moreno, F.; Aguilar-Arteaga, K.; Álvarez-Romero, G.A.; Téllez-Jurado, A. Physicochemical characterization of an arabinoxylan-rich fraction from brewers’ spent grain and its application as a release matrix for caffeine. Food Res. Int. 2019, 116, 1020–1030. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, D.; Jiang, W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: A meta-analysis of prospective studies. Eur. J. Nutr. 2014, 53, 25–38. [Google Scholar] [CrossRef]
- Wadhawan, M.; Anand, A.C. Review Article–Coffee and Liver Disease. J. Clin. Exp. Hepatol. 2016, 16, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Orsini, N. Coffee Consumption and Risk of Stroke: A Dose-Response Meta-Analysis of Prospective Studies. Am. J. Epidemiol. 2011, 174, 993–1001. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Food Code 2022 Recommendations of the United States Public Health Service Food and Drug Administration. FDA Food Code 2022 2022, 10, 1–668. [Google Scholar]
- Flaten, V.; Laurent, C.; Coelho, J.E.; Sandau, U.; Batalha, V.L.; Burnouf, S.; Hamdane, M.; Humez, S.; Boison, D.; Lopes, L.V.; et al. From epidemiology to pathophysiology: What about caffeine in Alzheimer’s disease? Biochem. Soc. Trans. 2015, 42, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Bizymis, A.P.; Giannou, V.; Tzia, C. Improved Properties of Composite Edible Films Based on Chitosan by Using Cellulose Nanocrystals and Beta-Cyclodextrin. Appl. Sci. 2022, 12, 8729. [Google Scholar] [CrossRef]
- Bizymis, A.P.; Giannou, V.; Tzia, C. Contribution of Hydroxypropyl Methylcellulose to the Composite Edible Films and Coatings Properties. Food Bioprocess Technol. 2023, 16, 1488–1501. [Google Scholar] [CrossRef]
- Poverenov, E.; Zaitsev, Y.; Arnon, H.; Granit, R.; Alkalai-Tuvia, S.; Perzelan, Y.; Weinberg, T.; Fallik, E. Effects of a composite chitosan–gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biol. Technol. 2014, 96, 106–109. [Google Scholar] [CrossRef]
- Koc, B.; Akyuz, L.; Cakmak, Y.S.; Sargin, I.; Salaberria, A.M.; Labidi, J.; Ilk, S.; Cekic, F.O.; Akata, I.; Kaya, M. Production and characterization of chitosan-fungal extract films. Food Biosci. 2020, 35, 100545. [Google Scholar] [CrossRef]
- George, J.; Kumar, R.; Sajeevkumar, V.A.; Sabapathy, S.N.; Siddaramaiah. Amine functionalised nanoclay incorporated hydroxypropyl methyl cellulose nanocomposites: Synthesis and characterisation. Int. J. Plast. Technol. 2014, 18, 252–262. [Google Scholar] [CrossRef]
- Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and characterization of carboxymethyl cellulose-based composite fi lms reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112. [Google Scholar] [CrossRef]
- Basch, C.Y.; Jagus, R.J.; Flores, S.K. Physical and Antimicrobial Properties of Tapioca Starch-HPMC Edible Films Incorporated with Nisin and/or Potassium Sorbate. Food Bioprocess Technol. 2013, 6, 2419–2428. [Google Scholar] [CrossRef]
- Perone, N.; Torrieri, E.; Cavella, S.; Masi, P. Effect of Rosemary Oil and HPMC Concentrations on Film Structure and Properties. Food Bioprocess Technol. 2013, 7, 605–609. [Google Scholar] [CrossRef]
- Kouser, F.; Kumar, S.; Bhat, H.F.; Hassoun, A.; Bekhit, A.E.D.A.; Bhat, Z.F. Aloe barbadensis Based Bioactive Edible Film Improved Lipid Stability and Microbial Quality of the Cheese. Foods 2023, 12, 229. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sojka, M.; Skora, B.; Balawejder, M. Quality and antioxidant activity of highbush blueberry fruit coated with starch-based and gelatine-based film enriched with cinnamon oil. Food Control 2022, 138, 109015. [Google Scholar] [CrossRef]
- Reyna, L.E.A.; Gastelum, Y.G.U.; Díaz, B.H.C.; Maruri, D.T.; López, M.E.L.E.; Velázquez, J.G.L.; García, M.O.V. Antifungal Activity of a Chitosan and Mint Essential Oil Coating on the Development of Colletotrichum Gloeosporioides in Papaya Using Macroscopic and Microscopic Analysis. Food Bioprocess Technol. 2022, 15, 368–378. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Zhao, R.; Guan, W.; Zheng, P.; Tian, F.; Zhang, Z.; Sun, Z.; Cai, L. Development of edible composite film based on chitosan nanoparticles and their application in packaging of fresh red sea bream fillets. Food Control 2022, 132, 108545. [Google Scholar] [CrossRef]
- Zikmanis, P.; Juhņeviča-Radenkova, K.; Radenkovs, V.; Segliņa, D.; Krasnova, I.; Kolesovs, S.; Orlovskis, Z.; Šilaks, A.; Semjonovs, P. Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use. Food Bioprocess Technol. 2021, 14, 1432–1445. [Google Scholar] [CrossRef]
- Tosif, M.M.; Bains, A.; Goksen, G.; Ali, N.; Rusu, A.V.; Trif, M.; Chawla, P. Application of Taro (Colocasia esculenta) Mucilage as a Promising Antimicrobial Agent to Extend the Shelf Life of Fresh-Cut Brinjals (Eggplants). Gels 2023, 9, 904. [Google Scholar] [CrossRef]
- Tosif, M.M.; Bains, A.; Sridhar, K.; Inbaraj, B.S.; Ali, N.; Dikkala, P.K.; Kumar, A.; Chawla, P.; Sharma, M. Fabrication and Characterization of Taro (Colocasia esculenta)-Mucilage-Based Nanohydrogel for Shelf-Life Extension of Fresh-Cut Apples. Gels 2024, 10, 95. [Google Scholar] [CrossRef]
- Iacovino, S.; Cofelice, M.; Sorrentino, E.; Cuomo, F.; Messia, M.C.; Lopez, F. Alginate-Based Emulsions and Hydrogels for Extending the Shelf Life of Banana Fruit. Gels 2024, 10, 245. [Google Scholar] [CrossRef]
- Hou, C.Y.; Hazeena, S.H.; Hsieh, S.L.; Li, B.H.; Chen, M.H.; Wang, P.Y.; Zheng, B.Q.; Liang, Y.S. Effect of D-Limonene Nanoemulsion Edible Film on Banana (Musa sapientum Linn.) Post-Harvest Preservation. Molecules 2022, 27, 6157. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, H.; Guo, X.; Qin, Y.; Shen, P.; Peng, Q. A Novel Sodium Alginate-Carnauba Wax Film Containing Calcium Ascorbate: Structural Properties and Preservative Effect on Fresh-Cut Apples. Molecules 2023, 28, 367. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, M.; Li, G. Preparation and Characterization of Collagen/Hydroxypropyl Methylcellulose (HPMC) Blend Film. Carbohydr. Polym. 2015, 119, 194–201. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Asl, A.K. Effect of Various Additives on the Properties of the Films and Coatings Derived from Hydroxypropyl Methylcellulose—A Review. Food Sci. Nutr. 2019, 7, 3363–3377. [Google Scholar] [CrossRef]
- Navarro-Tarazaga, M.L.; Massa, A.; Pérez-Gago, M.B. Effect of Beeswax Content on Hydroxypropyl Methylcellulose-Based Edible Film Properties and Postharvest Quality of Coated Plums (Cv. Angeleno). LWT-Food Sci. Technol. 2011, 44, 2328–2334. [Google Scholar] [CrossRef]
- Osorio, F.A.; Molina, P.; Matiacevich, S.; Enrione, J.; Skurtys, O. Characteristics of Hydroxy Propyl Methyl Cellulose (HPMC) Based Edible Film Developed for Blueberry Coatings. Procedia Food Sci. 2011, 1, 287–293. [Google Scholar] [CrossRef]
- Pavinatto, A.; Mattos, A.V.d.A.; Malpass, A.C.G.; Okura, M.H.; Balogh, D.T.; Sanfelice, R.C. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int. J. Biol. Macromol. 2020, 151, 1004–1011. [Google Scholar] [CrossRef]
- Bilbao-Sainz, C.; Avena-Bustillos, R.J.; Wood, D.F.; Williams, T.G.; McHugh, T.H. Composite Edible Films Based on Hydroxypropyl Methylcellulose Reinforced with Microcrystalline Cellulose Nanoparticles. J. Agric. Food Chem. 2010, 58, 3753–3760. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2012, 6, 36–60. [Google Scholar] [CrossRef]
- Sothornvit, R. Relationship Between Solution Rheology and Properties of Hydroxypropyl Methylcellulose Films. Songklanakarin J. Sci. Technol. 2021, 43, 761–766. [Google Scholar]
- Fernández-Catalán, A.; Palou, L.; Taberner, V.; Grimal, A.; Argente-Sanchis, M.; Pérez-Gago, M.B. Hydroxypropyl Methylcellulose-Based Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-Stored “Rojo Brillante” Persimmons. Agronomy 2021, 11, 757. [Google Scholar] [CrossRef]
- Di Millo, B.; Martínez-Blay, V.; Pérez-Gago, M.B.; Argente-Sanchis, M.; Grimal, A.; Baraldi, E.; Palou, L. Antifungal Hydroxypropyl Methylcellulose (HPMC)-Lipid Composite Edible Coatings and Modified Atmosphere Packaging (MAP) to Reduce Postharvest Decay and Improve Storability of “Mollar De Elche” Pomegranates. Coatings 2021, 11, 308. [Google Scholar] [CrossRef]
- Viacava, G.E.; Cenci, M.P.; Ansorena, M.R. Effect of Chitosan Edible Coatings Incorporated with Free or Microencapsulated Thyme Essential Oil on Quality Characteristics of Fresh-Cut Carrot Slices. Food Bioprocess Technol. 2022, 15, 768–784. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Rajoka, M.S.R.; Zhao, L.; Mehwish, H.M.; Wu, Y.; Mahmood, S. Chitosan and its derivatives: Synthesis, biotechnological applications, and future challenges. Appl. Microbiol. Biotechnol. 2019, 103, 1557–1571. [Google Scholar] [CrossRef] [PubMed]
- Hubbe, M.A.; Ferrer, A.; Tyagi, P.; Yin, Y.; Salas, C.; Pal, L.; Rojas, O.J. Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources 2017, 12, 2143–2233. [Google Scholar] [CrossRef]
- Nguyet, N.T.M.; Lam, N.D.; Tuan, P.A. Cellulose Nanocrystals: Synthesis, Characteristics and Effect on Hydroxypropyl Methylcellulose-Based Composite Films and Coatings. J. Sience Technol. 2016, 54, 105–114. [Google Scholar]
- El-Wakil, N.A.; Hassan, E.A.; Abou-Zeid, R.E.; Dufresne, A. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr. Polym. 2015, 124, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Revol-Junelles, A.M.; René, N.; Jamshidian, M.; Akhtar, M.J.; Arab-Tehrany, E.; Jacquot, M.; Desobry, S. Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll. 2012, 29, 407–419. [Google Scholar] [CrossRef]
- Bajer, D.; Burkowska-But, A. Innovative and environmentally safe composites based on starch modified with dialdehyde starch, caffeine, or ascorbic acid for applications in the food packaging industry. Food Chem. 2022, 374, 131639. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Edible Films and Coatings for Food Packaging Applications: A Review. Environ. Chem. Lett. 2022, 20, 875–900. [Google Scholar] [CrossRef]
- Poonia, A.; Dhewa, T. (Eds.) Edible Food Packaging Applications, Innovations and Sustainability, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–545. [Google Scholar]
- ASTM D882-10. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PN, USA, 2010; Volume 1, pp. 1–10.
- Tracton, A.A. (Ed.) Coatings Technology Handbook, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 1–1316. [Google Scholar]
- ASTM D3985-05. Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International: West Conshohocken, PN, USA, 2013; Volume 15, pp. 1–7.
- Vogel, A.I. Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed.; Jeffery, G.H., Bassett, J., Mendham, J., Denney, R.C., Eds.; Longman Scientifc and Technical: London, UK, 1989; pp. 395–396. [Google Scholar]
- Bertuzzi, M.A.; Armada, M.; Gottifredi, J.C. Physicochemical characterization of starch based films. J. Food Eng. 2007, 82, 17–25. [Google Scholar] [CrossRef]
Sample | NE (% v/v) | F (N) | ε (%) | ΔE (-) | C* (-) |
---|---|---|---|---|---|
CH-CNC-CD | 0 | 19.31 ± 1.13 aA | 16.78 ± 0.39 aA | 47.59 ± 2.86 aA | 1.41 ± 0.69 aA |
5 | 13.51 ± 0.69 aB | 23.95 ± 3.54 aB | 28.99 ± 0.03 aB | 1.15 ± 0.02 aA | |
10 | 10.07 ± 0.54 aB | 23.43 ± 0.95 aB | 35.39 ± 0.04 aB | 0.84 ± 0.03 aA | |
15 | 7.12 ± 0.70 aB | 30.03 ± 6.97 aB | 29.37 ± 0.20 aB | 0.36 ± 0.04 aA | |
HPMC-CNC-CD | 0 | 13.44 ± 2.39 bA | 14.08 ± 1.38 bA | 30.37 ± 0.19 aA | 1.41 ± 0.15 aA |
5 | 5.53 ± 0.74 bB | 19.48 ± 1.80 bB | 34.49 ± 0.14 aB | 0.95 ± 0.03 aA | |
10 | 4.80 ± 0.67 bB | 23.50 ± 2.05 bB | 34.95 ± 0.10 aB | 0.58 ± 0.04 aA | |
15 | 3.31 ± 0.67 bB | 25.95 ± 2.62 bB | 35.10 ± 0.16 aB | 0.20 ± 0.02 aA |
Sample | NE (% v/v) | OP (g·s−1·Pa−1·m−1)·10−12 | WVP (g·s−1·Pa−1·m−1)·10−9 |
---|---|---|---|
CH-CNC-CD | 0 | 1.89 ± 0.09 aA | 2.26 ± 0.08 aA |
5 | 1.74 ± 0.01 aB | 1.93 ± 0.00 aB | |
10 | 1.40 ± 0.00 aC | 1.62 ± 0.00 aC | |
15 | 1.02 ± 0.01 aD | 1.22 ± 0.00 aD | |
HPMC-CNC-CD | 0 | 1.60 ± 0.03 bA | 1.72 ± 0.00 bA |
5 | 1.42 ± 0.03 bB | 1.59 ± 0.00 bB | |
10 | 1.24 ± 0.03 bC | 1.40 ± 0.00 bC | |
15 | 1.04 ± 0.03 bD | 1.13 ± 0.00 bD |
Sample | C (% v/v) | F (N) | ε (%) | ΔE (-) | C* (-) |
---|---|---|---|---|---|
CH-CNC-CD | 0 | 19.31 ± 1.13 aA | 16.78 ± 0.39 aA | 47.59 ± 2.86 aA | 1.41 ± 0.69 aA |
5 | 19.15 ± 2.80 aA | 16.88 ± 2.44 aA | 32.68 ± 0.02 aB | 0.90 ± 0.03 aA | |
10 | 19.15 ± 1.12 aA | 16.90 ± 0.35 aA | 33.59 ± 0.04 aB | 0.66 ± 0.04 aA | |
15 | 19.27 ± 0.65 aA | 16.18 ± 3.08 aA | 32.28 ± 0.06 aB | 0.63 ± 0.01 aA | |
HPMC-CNC-CD | 0 | 13.44 ± 2.39 bA | 14.08 ± 1.38 bA | 30.37 ± 0.19 aA | 1.41 ± 0.15 aA |
5 | 19.02 ± 4.02 bA | 16.55 ± 2.05 bA | 32.43 ± 0.20 aB | 0.92 ± 0.02 aA | |
10 | 19.01 ± 5.92 bA | 16.03 ± 2.79 bA | 32.31 ± 0.23 aB | 0.87 ± 0.06 aA | |
15 | 18.67 ± 3.37 bA | 16.28 ± 1.73 bA | 31.27 ± 0.03 aB | 0.62 ± 0.15 aA |
Sample | C (% v/v) | OP (g·s−1·Pa−1·m−1)·10−12 | WVP (g·s−1·Pa−1·m−1)·10−9 |
---|---|---|---|
CH-CNC-CD | 0 | 1.89 ± 0.09 aA | 2.26 ± 0.08 aA |
5 | 1.25 ± 0.01 aB | 1.43 ± 0.00 aB | |
10 | 1.22 ± 0.01 aB | 1.40 ± 0.00 aB | |
15 | 1.20 ± 0.01 aB | 1.38 ± 0.00 aB | |
HPMC-CNC-CD | 0 | 1.60 ± 0.03 bA | 1.72 ± 0.00 bA |
5 | 1.23 ± 0.01 bB | 1.42 ± 0.00 bB | |
10 | 1.19 ± 0.01 bB | 1.40 ± 0.00 bB | |
15 | 1.16 ± 0.01 bB | 1.36 ± 0.00 bB |
Sample | C (% v/v) | Antioxidant Activity (%) |
---|---|---|
CH-CNC-CD | 0 | 81.04 ± 1.64 aA |
5 | 84.06 ± 0.66 aB | |
10 | 86.46 ± 0.33 aC | |
15 | 88.54 ± 0.22 aD | |
HPMC-CNC-CD | 0 | 72.14 ± 0.44 bA |
5 | 76.93 ± 0.22 bB | |
10 | 79.80 ± 0.33 bC | |
15 | 81.19 ± 0.11 bD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizymis, A.-P.; Giannou, V.; Tzia, C. Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity. Molecules 2024, 29, 3754. https://doi.org/10.3390/molecules29163754
Bizymis A-P, Giannou V, Tzia C. Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity. Molecules. 2024; 29(16):3754. https://doi.org/10.3390/molecules29163754
Chicago/Turabian StyleBizymis, Angelos-Panagiotis, Virginia Giannou, and Constantina Tzia. 2024. "Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity" Molecules 29, no. 16: 3754. https://doi.org/10.3390/molecules29163754
APA StyleBizymis, A.-P., Giannou, V., & Tzia, C. (2024). Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity. Molecules, 29(16), 3754. https://doi.org/10.3390/molecules29163754