Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution–Precipitation Technique
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Hydroxyapatite Precipitation
3.2. Purification Process of Hydroxyaptite
3.3. Preparation of High-Quality PA and GP
3.4. Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, M.; Chen, J.; Liu, K.; Xing, H.; Song, C. Recent Advances in Biomedical Engineering of Nano-Hydroxyapatite Including Dentistry, Cancer Treatment and Bone Repair. Compos. B Eng. 2021, 215, 108790. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Dental Applications of Calcium Orthophosphates (CaPO4). J. Dent. Res. 2019, 1, 1007. [Google Scholar]
- Zhang, G.; Lu, Y.; Song, J.; Huang, D.; An, M.; Chen, W.; Han, P.; Yao, X.; Zhang, X. A Multifunctional Nano-Hydroxyapatite/MXene Scaffold for the Photothermal/Dynamic Treatment of Bone Tumours and Simultaneous Tissue Regeneration. J. Colloid. Interface Sci. 2023, 652, 1673–1684. [Google Scholar] [CrossRef]
- Machado, T.R.; Leite, I.S.; Inada, N.M.; Li, M.S.; da Silva, J.S.; Andrés, J.; Beltrán-Mir, H.; Cordoncillo, E.; Longo, E. Designing Biocompatible and Multicolor Fluorescent Hydroxyapatite Nanoparticles for Cell-Imaging Applications. Mater. Today Chem. 2019, 14, 100211. [Google Scholar] [CrossRef]
- Safitri, N.; Rauf, N.; Tahir, D. Enhancing Drug Loading and Release with Hydroxyapatite Nanoparticles for Efficient Drug Delivery: A Review Synthesis Methods, Surface Ion Effects, and Clinical Prospects. J. Drug Deliv. Sci. Technol. 2023, 90, 105092. [Google Scholar] [CrossRef]
- Widayat, W.; Hadiyanto, H.; Wardani, P.W.A.; Zuhra, U.A.; Prameswari, J. Preparation of KI/Hydroxyapatite Catalyst from Phosphate Rocks and Its Application for Improvement of Biodiesel Production. Molecules 2020, 25, 2565. [Google Scholar] [CrossRef] [PubMed]
- Ulas, B.; Yilmaz, Y.; Koc, S.; Kivrak, H. Hydroxyapatite Supported PdxIn100-x as a Novel Electrocatalyst for High-Efficiency Glucose Electrooxidation. Int. J. Hydrogen Energy 2023, 48, 6798–6810. [Google Scholar] [CrossRef]
- U. Tosun, G.; Sakhno, Y.; Jaisi, D.P. Synthesis of Hydroxyapatite Nanoparticles from Phosphorus Recovered from Animal Wastes. ACS Sustain. Chem. Eng. 2021, 9, 15117–15126. [Google Scholar] [CrossRef]
- Balasooriya, I.L.; Chen, J.; Gedara, S.M.K.; Han, Y.; Wickramaratne, M.N. Applications of Nano Hydroxyapatite as Adsorbents: A Review. Nanomaterials 2022, 12, 2324. [Google Scholar] [CrossRef]
- Coelho, C.C.; Grenho, L.; Gomes, P.S.; Quadros, P.A.; Fernandes, M.H. Nano-Hydroxyapatite in Oral Care Cosmetics: Characterization and Cytotoxicity Assessment. Sci. Rep. 2019, 9, 11050. [Google Scholar] [CrossRef]
- Rhaiti, H.; Laghzizil, A.; Saoiabi, A.; El Asri, S.; Lahlil, K.; Gacoin, T. Surface Properties of Porous Hydroxyapatite Derived from Natural Phosphate. Mater. Chem. Phys. 2012, 136, 1022–1026. [Google Scholar] [CrossRef]
- Zhang, H.B.; Zhou, K.C.; Li, Z.Y.; Huang, S.P. Plate-like Hydroxyapatite Nanoparticles Synthesized by the Hydrothermal Method. J. Phys. Chem. Solids 2009, 70, 243–248. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Wang, H.; Zhu, M.; Yan, H. Rapid Formation of Hydroxyapatite Nanostructures by Microwave Irradiation. Chem. Phys. Lett. 2004, 396, 429–432. [Google Scholar] [CrossRef]
- Cho, J.S.; Rhee, S.H. The Size Control of Hydroxyapatite Particles during Spray Pyrolysis. Key Eng. Mater. 2013, 529–530, 66–69. [Google Scholar] [CrossRef]
- Delgadillo-Velasco, L.; Hernández-Montoya, V.; Montes-Morán, M.A.; Gómez, R.T.; Cervantes, F.J. Recovery of Different Types of Hydroxyapatite by Precipitation of Phosphates of Wastewater from Anodizing Industry. J. Clean. Prod. 2020, 242, 118564. [Google Scholar] [CrossRef]
- Marrane, S.E.; Dänoun, K.; Allouss, D.; Sair, S.; Channab, B.E.; Rhihil, A.; Zahouily, M. A Novel Approach to Prepare Cellulose-g-Hydroxyapatite Originated from Natural Sources as an Efficient Adsorbent for Heavy Metals: Batch Adsorption Optimization via Response Surface Methodology. ACS Omega 2022, 7, 28076–28092. [Google Scholar] [CrossRef] [PubMed]
- Billah, R.E.K.; Abdellaoui, Y.; Anfar, Z.; Giácoman-Vallejos, G.; Agunaou, M.; Soufiane, A. Synthesis and Characterization of Chitosan/Fluorapatite Composites for the Removal of Cr (VI) from Aqueous Solutions and Optimized Parameters. Water Air Soil. Pollut. 2020, 231, 163. [Google Scholar] [CrossRef]
- Ibrahim, M.; Labaki, M.; Giraudon, J.M.; Lamonier, J.F. Hydroxyapatite, a Multifunctional Material for Air, Water and Soil Pollution Control: A Review. J. Hazard. Mater. 2020, 383, 121139. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Mandalunis, P.M. A Review of Metal Exposure and Its Effects on Bone Health. J. Toxicol. 2018, 2018, 4854152. [Google Scholar] [CrossRef]
- Liu, X.; Yin, H.; Liu, H.; Cai, Y.; Qi, X.; Dang, Z. Multicomponent Adsorption of Heavy Metals onto Biogenic Hydroxyapatite: Surface Functional Groups and Inorganic Mineral Facilitating Stable Adsorption of Pb(II). J. Hazard. Mater. 2023, 443, 130167. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Ammanoeil, R.N.; Saad, E.A.; Daoud, J.A. Purification of Crude Phosphoric Acid and Leached Apatite by Solvent Extraction with CYANEX 923 in Kerosene. Period. Polytech. Chem. Eng. 2019, 63, 122–129. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhao, L.; Zhang, P.; El-Shall, H.; Moudgil, B.; Huang, X.; Zhang, L. Recovery of Rare Earth Elements from Phosphate Rock by Hydrometallurgical Processes—A Critical Review. Chem. Eng. J. 2018, 335, 774–800. [Google Scholar] [CrossRef]
- Reyes, L.H.; Medina, I.S.; Mendoza, R.N.; Vázquez, J.R.; Rodríguez, M.A.; Guibal, E. Extraction of Cadmium from Phosphoric Acid Using Resins Impregnated with Organophosphorus Extractants. Ind. Eng. Chem. Res. 2001, 40, 1422–1433. [Google Scholar] [CrossRef]
- Khaless, K.; Chanouri, H.; Amal, S.; Ouaattou, A.; Mounir, E.M.; Haddar, H.; Benhida, R. Wet Process Phosphoric Acid Purification Using Functionalized Organic Nanofiltration Membrane. Separations 2022, 9, 100. [Google Scholar] [CrossRef]
- Abderrahim, N.; Djellabi, R.; Amor, H.B.; Fellah, I.; Giordana, A.; Cerrato, G.; Di Michele, A.; Bianchi, C.L. Sustainable Purification of Phosphoric Acid Contaminated with Cr(VI) by Ag/Ag3PO4 Coated Activated Carbon/Montmorillonite under UV and Solar Light: Materials Design and Photocatalytic Mechanism. J. Environ. Chem. Eng. 2022, 10, 107870. [Google Scholar] [CrossRef]
- Zieliński, J.; Huculak-Mączka, M.; Kaniewski, M.; Nieweś, D.; Hoffmann, K.; Hoffmann, J. Kinetic Modelling of Cadmium Removal from Wet Phosphoric Acid by Precipitation Method. Hydrometallurgy 2019, 190, 105157. [Google Scholar] [CrossRef]
- Norwood, V.M.; Tate, L.R. Removing Heavy Metals from Phosphoric Acid and Phosphate Fluid Fertilizers. ACS Symp. Ser. 1992, 509, 147–160. [Google Scholar] [CrossRef]
- Freitas, A.M.B.; Giulietti, M. Production of Defluorinated Dicalcium Phosphate from Phosphate Rock Concentrate. Nutr. Cycl. Agroecosyst 1997, 48, 235–240. [Google Scholar] [CrossRef]
- Lewis, A.E. Review of Metal Sulphide Precipitation. Hydrometallurgy 2010, 104, 222–234. [Google Scholar] [CrossRef]
- Abdel-Ghafar, H.M.; Abdel-Aal, E.A.; Ibrahim, M.A.M.; El-Shall, H.; Ismail, A.K. Purification of High Iron Wet-Process Phosphoric Acid via Oxalate Precipitation Method. Hydrometallurgy 2019, 184, 1–8. [Google Scholar] [CrossRef]
- Forouzesh, M.; Fatehifar, E.; Khoshbouy, R.; Daryani, M. Experimental Investigation of Iron Removal from Wet Phosphoric Acid through Chemical Precipitation Process. Chem. Eng. Res. Des. 2023, 189, 308–318. [Google Scholar] [CrossRef]
- Mahrou, A.; Jouraiphy, R.; Mazouz, H.; Boukhair, A.; Fahad, M. Magnesium Removal from Phosphoric Acid by Precipitation: Optimization by Experimental Design. Chem. Ind. Chem. Eng. Q. 2021, 27, 113–119. [Google Scholar] [CrossRef]
- Kaba, O.B.; Filippov, L.O.; Filippova, I.V.; Badawi, M. Interaction between Fine Particles of Fluorapatite and Phosphoric Acid Unraveled by Surface Spectroscopies. Powder Technol. 2021, 382, 368–377. [Google Scholar] [CrossRef]
- Lakrat, M.; Azzaoui, K.; Jodeh, S.; Akartasse, N.; Mejdoubi, E.; Lamhamdi, A. The Removal of Methyl Orange by Nanohydroxyapatite from Aqueous Solution: Isotherm, Kinetics and Thermodynamics Studies. Desalin. Water Treatm. 2017, 85, 237–249. [Google Scholar] [CrossRef]
- Lakrat, M.; Fadlaoui, S.; Aaddouz, M.; Asri, O.E.; Melhaoui, M.; Mejdoubi, E.M. Synthesis and Characterization of Composites Based on Hydroxyapatite Nanoparticles and Chitosan Extracted from Shells of the Freshwater Crab Potamon Algeriense. Prog. Chem. Appl. Chitin Deriv. 2020, 25, 132–142. [Google Scholar] [CrossRef]
- Azzaoui, K.; Mejdoubi, E.; Lamhamdi, A.; Lakrat, M.; Hamed, O.; Jodeh, S.; Berrabah, M.; Elidrissi, A.; el Meskini, I.; Daoudi, M. Preparation of Hydroxyapatite Biobased Microcomposite Film for Selective Removal of Toxic Dyes from Wastewater. Desalin. Water Treatm. 2019, 149, 28. [Google Scholar] [CrossRef]
- Akartasse, N.; Azzaoui, K.; Mejdoubi, E.; Hanbali, G.; Elansari, L.L.; Jodeh, S.; Hammouti, B.; Jodeh, W.; Lamhamdi, A. Study and Optimization of the Synthesis of Apatitic Nanoparticles by the Dissolution/Precipitation Method. Arab. J. Sci. Eng. 2022, 47, 7035–7051. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Self-Setting Calcium Orthophosphate (CaPO) Formulations. Adv. Nano-Bio. Mater. Dev. 2018, 3, 41–146. [Google Scholar] [CrossRef]
- Ressler, A.; Žužić, A.; Ivanišević, I.; Kamboj, N.; Ivanković, H. Ionic Substituted Hydroxyapatite for Bone Regeneration Applications: A Review. Open Ceram. 2021, 6, 100122. [Google Scholar] [CrossRef]
- Cacciotti, I. Cationic and Anionic Substitutions in Hydroxyapatite. In Handbook of Bioceramics and Biocomposites; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–211. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, B.; Wang, C.; Shi, B.; Chen, Y. Thermodynamic Analysis and Application for Preparing FePO4 from Nitric Acid Pressure Leach Laterite Residue by Selective Leaching in Phosphoric Acid and Induced Precipitation. Hydrometallurgy 2022, 212, 105896. [Google Scholar] [CrossRef]
- Lakrat, M.; Jodati, H.; Mejdoubi, E.M.; Evis, Z. Synthesis and Characterization of Pure and Mg, Cu, Ag, and Sr Doped Calcium-Deficient Hydroxyapatite from Brushite as Precursor Using the Dissolution-Precipitation Method. Powder Technol. 2023, 413, 118026. [Google Scholar] [CrossRef]
- Elsayed, A.A.A.; EL-Gohary, A.; Taha, Z.K.; Farag, H.M.; Hussein, M.S.; AbouAitah, K. Hydroxyapatite Nanoparticles as Novel Nano-Fertilizer for Production of Rosemary Plants. Sci. Hortic. 2022, 295, 110851. [Google Scholar] [CrossRef]
- Noruzi, M.; Hadian, P.; Soleimanpour, L.; Ma’mani, L.; Shahbazi, K. Hydroxyapatite Nanoparticles: An Alternative to Conventional Phosphorus Fertilizers in Acidic Culture Media. Chem. Biol. Technol. Agric. 2023, 10, 71. [Google Scholar] [CrossRef]
- Ahmed, I. Overview on the Removal of Iron from Phosphoric Acid: A Comparative Study. Arab. J. Nucl. Sci. Appl. 2021, 54, 37–49. [Google Scholar] [CrossRef]
- Hagag, M.S.; Morsy, A.M.A.; Ali, A.H.; El-Shiekh, A.S. Adsorption of Rare Earth Elements onto the Phosphogypsum a Waste Byproduct. Water Air Soil. Pollut. 2019, 230, 308. [Google Scholar] [CrossRef]
- El-Asmy, A.A.; Serag, H.M.; Mahdy, M.A.; Amin, M.I. Purification of Phosphoric Acid by Minimizing Iron, Copper, Cadmium and Fluoride. Sep. Purif. Technol. 2008, 61, 287–292. [Google Scholar] [CrossRef]
- Cao, W.; Yi, W.; Peng, J.; Yin, S. Relationship between the Evolution of Organic Impurities and Properties of β-Hemihydrate Phosphogypsum. Constr. Build. Mater. 2023, 409, 134125. [Google Scholar] [CrossRef]
- Ma, B.; Jin, Z.; Su, Y.; Lu, W.; Qi, H.; Hu, P. Utilization of Hemihydrate Phosphogypsum for the Preparation of Porous Sound Absorbing Material. Constr. Build. Mater. 2020, 234, 117346. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; He, X.; Su, Y.; Strnadel, B.; Miao, W. Hydration and Compressive Strength of Supersulfated Cement with Low-Activity High Alumina Ferronickel Slag. Cem. Concr. Compos. 2023, 136, 104892. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, J.; Kang, X.; Yu, J.; Fan, Y.; Dang, Y.; Zhang, W.; Wang, S. Belite-Calcium Sulfoaluminate Cement Prepared with Phosphogypsum: Influence of P2O5 and F on the Clinker Formation and Cement Performances. Constr. Build. Mater. 2019, 203, 432–442. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, X. Preparation of Gypsum with High Purity and Whiteness from Phosphogypsum for CO2 Mineral Sequestration. Sci. Rep. 2023, 13, 4156. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Teng, L.; Rohani, S.; Qin, Z.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.; Liang, B. CO2 Mineral Carbonation Using Industrial Solid Wastes: A Review of Recent Developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Awwad, N.S.; El-Nadi, Y.A.; Hamed, M.M. Successive Processes for Purification and Extraction of Phosphoric Acid Produced by Wet Process. Chem. Eng. Process. Process Intensif. 2013, 74, 69–74. [Google Scholar] [CrossRef]
Compound | CaO | P2O5 | SiO2 | F | Al2O3 | MnO | MgO | Fe2O3 | Na2O | SO3 | TiO2 | Other * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (wt%) | 44.01 | 39.58 | 5.26 | 5.12 | 1.50 | 0.56 | 0.40 | 0.30 | 0.22 | 0.64 | 0.06 | 0.17 |
Elements | Ca | P | Al | Fe | Mg | Mn | Ti | Cd | Sn | Pb |
---|---|---|---|---|---|---|---|---|---|---|
c-Liq (mg/L) | 142.4 | 101 | 22.983 | 17.134 | 14.438 | 0.369 | 0.5133 | 0.1954 | 0.1 | 0.05 |
Solution | Elements (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|
Sn | Pb | Cd | Mn | Ti | Mg | Al | Fe | |
c-Liq | 0.1 | 0.05 | 0.1954 | 0.369 | 0.3234 | 14.438 | 22.983 | 17.134 |
r-Liq | 0.053 | 0.0001 | 0.0209 | 0.1315 | 0.1311 | 5.416 | 7.399 | 7.962 |
r1-Liq | - | 0.0023 | 0.1151 | 0.09 | 4.771 | 6.138 | 6.513 | |
r3-Liq | - | - | - | 0.1012 | 0.007 | 4.642 | 5.294 | 5.013 |
Solution | Elements (mg/L) | ||||
---|---|---|---|---|---|
Mg | Al | Fe | Mn | Ti | |
r3-Liq | 4.242 | 5.894 | 5.013 | 0.1012 | 0.007 |
PA | 0.4647 | 0.3242 | 0.1897 | 0.0009 | - |
Compound | SO3 | CaO | Al2O3 | P2O5 | Fe2O3 | Other | LOI a |
---|---|---|---|---|---|---|---|
Concentration (wt.%) | 48.70 | 29.74 | 0.096 | 0.01602 | 0.09 | 0.129 | 21.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benataya, K.; Lakrat, M.; Hammani, O.; Aaddouz, M.; Ait Yassine, Y.; Abuelizz, H.A.; Zarrouk, A.; Karrouchi, K.; Mejdoubi, E. Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution–Precipitation Technique. Molecules 2024, 29, 3854. https://doi.org/10.3390/molecules29163854
Benataya K, Lakrat M, Hammani O, Aaddouz M, Ait Yassine Y, Abuelizz HA, Zarrouk A, Karrouchi K, Mejdoubi E. Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution–Precipitation Technique. Molecules. 2024; 29(16):3854. https://doi.org/10.3390/molecules29163854
Chicago/Turabian StyleBenataya, Karim, Mohammed Lakrat, Othmane Hammani, Mohamed Aaddouz, Youssef Ait Yassine, Hatem A. Abuelizz, Abdelkader Zarrouk, Khalid Karrouchi, and Elmiloud Mejdoubi. 2024. "Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution–Precipitation Technique" Molecules 29, no. 16: 3854. https://doi.org/10.3390/molecules29163854
APA StyleBenataya, K., Lakrat, M., Hammani, O., Aaddouz, M., Ait Yassine, Y., Abuelizz, H. A., Zarrouk, A., Karrouchi, K., & Mejdoubi, E. (2024). Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution–Precipitation Technique. Molecules, 29(16), 3854. https://doi.org/10.3390/molecules29163854