Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristic Features of Eu-CPs
2.2. Investigation of the Reaction of Eu-CPs and DPA
2.3. Analytical Performance of DPA
2.4. Determination of the Bacterial Spores Amount
2.5. DPA Monitoring of the Germination of Bacterial Spores
3. Experimental Section
3.1. Materials and Reagents
3.2. Apparatus
3.3. Synthesis of Eu-CPs
3.4. FL Response of Eu-CPs to DPA
3.5. Bacterial Spore Culture
3.6. DPA Determination during Spore Germination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sogues, A.; Fioravanti, A.; Jonckheere, W.; Pardon, E.; Steyaert, J.; Remaut, H. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat. Commun. 2023, 14, 7051. [Google Scholar] [CrossRef]
- Holay, M.; Krishnan, N.; Zhou, J.R.; Duan, Y.O.; Guo, Z.Y.; Gao, W.W.; Fang, R.H.; Zhang, L.F. Single low-dose nanovaccine for long-term protection against anthrax toxins. Nano Lett. 2022, 22, 9672–9678. [Google Scholar] [CrossRef] [PubMed]
- Bower, W.A.; Yu, Y.; Person, M.K.; Parker, C.M.; Kennedy, J.L.; Sue, D.; Hesse, E.M.; Cook, R.; Bradley, J.; Bulitta, J.B.; et al. CDC guidelines for the prevention and treatment of anthrax, 2023. MMWR Recomm Rep 2023, 72, 1–47. [Google Scholar] [CrossRef]
- Wu, J.F.; Chen, P.P.; Chen, J.; Ye, X.X.; Cao, S.R.; Sun, C.Q.; Jin, Y.; Zhang, L.Y.; Du, S.H. Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Biosens. Bioelectron. 2022, 214, 114538. [Google Scholar] [CrossRef]
- Hardenbrook, N.J.; Liu, S.H.; Zhou, K.; Ghosal, K.; Zhou, Z.H.; Krantz, B.A. Atomic structures of anthrax toxin protective antigen channels bound to partially unfolded lethal and edema factors. Nat. Commun. 2020, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, M.A.; Liu, S.H.; Portley, M.K.; O’Mard, D.; Fattah, R.; Szabo, R.; Bugge, T.H.; Khillan, J.S.; Leppla, S.H.; Moayeri, M. Anthrax lethal factor cleaves regulatory subunits of phosphoinositide-3 kinase to contribute to toxin lethality. Nat. Microbiol. 2020, 5, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.J.; Isensee, J.; Neel, D.V.; Quadros, A.U.; Zhang, H.-X.B.; Lauzadis, J.; Liu, S.M.; Shiers, S.; Belu, A.; Palan, S.; et al. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2+ DRG sensory neurons. Nat. Neurosci. 2022, 25, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Shao, X.Y.; Lin, X.X.; Ding, L.H.; Song, B.C.; Sun, J. Tb3+-xylenol orange complex-based colorimetric and luminometric dual-readout sensing platform for dipicolinic acid and metal ions. Chin. Chem. Lett. 2023, 34, 107203. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Liu, X.; Zhang, S.Q.; Yang, T.; Chen, M.L.; Wang, J.H. Placeholder strategy with upconversion nanoparticles-eriochrome black T conjugate for a colorimetric assay of an anthrax biomarker. Anal. Chem. 2019, 91, 12094–12099. [Google Scholar] [CrossRef]
- Wang, D.B.; Cui, M.M.; Li, M.; Zhang, X.E. Biosensors for the detection of Bacillus anthracis. Acc. Chem. Res. 2021, 54, 4451–4461. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, Q.; Sun, X.C.; Asif, M.; Aziz, A.; Zhang, Y.; Dong, C.; Wang, R.B.; Shuang, S.M. Dual fluorophores embedded in zeolitic imidazolate framework-8 for ratiometric fluorescence sensing of a biomarker of anthrax spores. Chem. Eng. J. 2024, 490, 151582. [Google Scholar] [CrossRef]
- Yu, L.; Feng, L.X.; Xiong, L.; Li, S.; Wang, S.; Wei, Z.Y.; Xiao, Y.X. Portable visual assay of Bacillus anthracis biomarker based on ligand-functionalized dual-emission lanthanide metal-organic frameworks and smartphone-integrated mini-device. J. Hazard. Mater. 2022, 434, 128914. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Shi, C.T.; Lv, C.Z.; Xu, K.L.; Hou, X.D.; Wu, L. Tb3+-based off–on fluorescent platform for multicolor and dosage-sensitive visualization of bacterial spore marker. Anal. Chem. 2023, 95, 8137–8144. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Luo, J.J.; Deng, L.; Ma, F.H.; Yang, M.H. In situ incorporation of fluorophores in zeolitic imidazolate framework-8 (ZIF-8) for ratio-dependent detecting a biomarker of anthrax spores. Anal. Chem. 2020, 92, 7114–7122. [Google Scholar] [CrossRef]
- Lin, X.D.; Wu, H.T.; Zeng, S.Y.; Peng, T.; Zhang, P.; Wan, X.H.; Lang, Y.H.; Zhang, B.; Jia, Y.W.; Shen, R.; et al. A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens. Bioelectron. 2023, 230, 115283. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, Z.W.; Zhang, P.; Gong, X.; Wang, Y. Energy transfer-based ratiometric fluorescence sensing anthrax biomarkers in bimetallic lanthanide metal-organic frameworks. Sens. Actuators B 2023, 383, 133596. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Yue, F.Z.; Zhang, L.; Bi, N.; Gou, J.; Li, Y.X.; Huang, Y.Y.; Zhao, T.Q.; Jia, L. Smartphone-assisted mobile fluorescence sensor for self-calibrated detection of anthrax biomarker, Cu2+, and cysteine in food analysis. Food Chem. 2024, 451, 139410. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Wang, X.; Xu, K.X.; Zhai, F.W.; Shu, J.; Tao, Y.; Wang, J.R.; Jiang, L.S.; Yang, L.W.; Wang, Y.X.; et al. Near-unity energy transfer from uranyl to europium in a heterobimetallic organic framework with record-breaking quantum yield. J. Am. Chem. Soc. 2023, 145, 13161–13168. [Google Scholar] [CrossRef]
- Tong, Y.J.; Gong, X.Y.; Chen, Y.X.; Wu, L.H.; Wang, D.M.; Xu, J.Q.; Gong, Z.J. Promoting photoluminescent sensing performances of lanthanide materials with auxiliary ligands. Trends Anal. Chem. 2024, 171, 117482. [Google Scholar] [CrossRef]
- Yang, D.F.; Zheng, W.; Huang, P.; Zhang, M.R.; Zhang, W.; Shao, Z.Q.; Zhang, W.; Yi, X.D.; Chen, X.Y. A sandwiched luminescent heterostructure based on lanthanide-doped Gd2O2S@NaYF4 core/shell nanocrystals. Aggregate 2023, 4, e387. [Google Scholar] [CrossRef]
- Zhang, T.T.; Chen, Z.H.; Shi, G.Y.; Zhang, M. Eu3+-doped Bovine Serum Albumin-derived Carbon Dots for Ratiometric Fluorescent Detection of Tetracycline. J. Anal. Test. 2022, 6, 365–373. [Google Scholar] [CrossRef]
- Utochnikova, V.V. The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds. Coord. Chem. Rev. 2019, 398, 113006. [Google Scholar] [CrossRef]
- Du, Y.Y.; Jiang, Y.; Sun, T.Y.; Zhao, J.X.; Huang, B.L.; Peng, D.F.; Wang, F. Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 2018, 31, 1807062. [Google Scholar] [CrossRef] [PubMed]
- Paderni, D.; Giorgi, L.; Fusi, V.; Formica, M.; Ambrosi, G.; Micheloni, M. Chemical sensors for rare earth metal ions. Coord. Chem. Rev. 2021, 429, 213639. [Google Scholar] [CrossRef]
- Koo, T.M.; Ko, M.J.; Park, B.C.; Kim, M.S.; Kim, Y.K. Fluorescent detection of dipicolinic acid as a biomarker in bacterial spores employing terbium ion-coordinated magnetite nanoparticles. J. Hazard. Mater. 2021, 408, 124870. [Google Scholar] [CrossRef]
- Mohapatro, U.; Mishra, L.; Mishra, M.; Mohapatra, S. Zn-CD@Eu ratiometric fluorescent probe for the detection of dipicolinic acid, uric acid, and ex vivo uric acid imaging. Anal. Chem. 2024, 96, 8630–8640. [Google Scholar] [CrossRef]
- He, J.H.; Cheng, Y.Y.; Yang, T.; Zou, H.Y.; Huang, C.Z. Functional preserving carbon dots-based fluorescent probe for mercury (II) ions sensing in herbal medicines via coordination and electron transfer. Anal. Chim. Acta 2018, 1035, 203–210. [Google Scholar] [CrossRef]
- Chen, B.B.; Liu, M.L.; Zhan, L.; Li, C.M.; Huang, C.Z. Terbium(III) modified fluorescent carbon dots for highly selective and sensitive ratiometry of stringent. Anal. Chem. 2018, 90, 4003–4009. [Google Scholar] [CrossRef]
- Chen, X.B.; Qi, C.-X.; Xu, Y.-B.; Li, H.; Xu, L.; Liu, B. A quantitative ratiometric fluorescent Hddb-based MOF sensor and its on-site detection of the anthrax biomarker 2,6-dipicolinic acid. J. Mater. Chem. C 2020, 8, 17325–17335. [Google Scholar] [CrossRef]
- Liu, M.L.; Chen, B.B.; He, J.H.; Li, C.M.; Li, Y.F.; Huang, C.Z. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots. Talanta 2019, 191, 443–448. [Google Scholar] [CrossRef]
- Jiang, L.; Ding, H.; Lu, S.; Geng, T.; Xiao, G.; Zou, B.; Bi, H. Photoactivated fluorescence enhancement in F,N-doped carbon dots with piezochromic behavior. Angew. Chem. Int. Ed. 2019, 59, 9986–9991. [Google Scholar] [CrossRef]
- Jiang, Z.W.; Zou, Y.C.; Zhao, T.T.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal-node-dependent photocatalytic performance. Angew. Chem. Int. Ed. 2020, 59, 3300–3306. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Wang, X.Y.; Hu, C.Y.; Wu, X.J.; Guo, W.; Zhen, S.J.; Huang, C.Z.; Li, Y.F. Dual-ligand two-dimensional europium-organic gels nanosheets for ratiometric fluorescence detecting anthrax spore biomarker. Chem. Eng. J. 2022, 435, 134912. [Google Scholar] [CrossRef]
- Pei, X.J.; Lai, T.C.; Tao, G.Y.; Hong, H.; Liu, F.; Li, N. Ultraspecific multiplexed detection of Low-abundance single-nucleotide variants by combining a masking tactic with fluorescent nanoparticle counting. Anal. Chem. 2018, 90, 4226–4233. [Google Scholar] [CrossRef]
- Ma, F.; Wang, Q.; Xu, Q.F.; Zhang, C.Y. Self-assembly of superquenched gold nanoparticle nanosensors for lighting up BACE-1 in live cells. Anal. Chem. 2021, 93, 15124–15132. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.P.; Li, Z.J.; Yao, R.H.; Deng, Y.H.; Gong, C.C.; Zhang, D.B.; Fan, C.B.; Pu, S.Z. Dual-ligand lanthanide metal–organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid. Spectrochim. Acta Part A 2022, 282, 121700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xiong, Y.F.; Nevo, Y.; Kahan, T.; Yakovian, O.; Alon, S.; Bhattacharya, S.; Rosenshine, I.; Sinai, L.; Ben-Yehuda, S. Dormant bacterial spores encrypt a long-lasting transcriptional program to be executed during revival. Mol. Cell 2023, 83, 4158–4173.e7. [Google Scholar] [CrossRef]
- Liang, Y.; Yan, Y.; Zou, H.Y.; Yang, T.; Zhen, S.J.; Li, C.M.; Huang, C.Z. Europium coordination polymer particles based electrospun nanofibrous film for point-of-care testing of copper (II) ions. Talanta 2021, 228, 122270. [Google Scholar] [CrossRef]
- Dey, N.; Biswakarma, D.; Bhattacharya, S. Metal complex as an optical sensing platform for rapid multimodal recognition of a pathogenic biomarker in real-life samples. ACS Sustainable Chem. Eng. 2019, 7, 569–577. [Google Scholar] [CrossRef]
- Halawa, M.I.; Li, B.S.; Xu, G.B. Novel synthesis of thiolated gold nanoclusters induced by lanthanides for ultrasensitive and luminescent detection of the potential anthrax spores’ biomarker. ACS Appl. Mater. Interfaces 2020, 12, 32888–32897. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Zhang, L.; Zhang, L.Y.; Yu, B.H.; Wang, Y.J.; Zhang, W.B. Multiporous terbium phosphonate coordination polymer microspheres as fluorescent probes for trace anthrax biomarker detection. ACS Appl. Mater. Interfaces 2019, 11, 15998–16005. [Google Scholar] [CrossRef] [PubMed]
- Rong, M.C.; Yang, X.H.; Huang, L.Z.; Chi, S.T.; Zhou, Y.B.; Shen, Y.E.; Chen, B.Y.; Deng, X.Z.; Liu, Z.Q. Hydrogen peroxide-assisted ultrasonic synthesis of BCNO QDs for anthrax biomarker detection. ACS Appl. Mater. Interfaces 2019, 11, 2336–2343. [Google Scholar] [CrossRef]
- Cao, Y.T.; Gong, X.L.; Li, L.; Li, H.H.; Zhang, X.M.; Guo, D.Y.; Wang, F.X.; Pan, Q.H. Xylenol orange-modified CdTe quantum dots as a fluorescent/colorimetric dual-modal probe for anthrax biomarker based on competitive coordination. Talanta 2023, 261, 124664. [Google Scholar] [CrossRef] [PubMed]
- Na, M.; Zhang, S.P.; Liu, J.J.; Ma, S.D.; Han, Y.X.; Wang, Y.; He, Y.X.; Chen, H.L.; Chen, X.G. Determination of pathogenic bacteria―Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. J. Hazard. Mater. 2020, 386, 121956. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.L.; Liu, B.; Xu, L.; Jiao, H. Ratiometric fluorescence detection of anthrax biomarker 2,6-dipicolinic acid using hetero MOF sensors through ligand regulation. J. Mater. Chem. C 2020, 8, 4392–4400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liang, Y.; Tian, C.; Zou, H.; Zhan, L.; Wang, L.; Huang, C.; Li, C. Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer. Molecules 2024, 29, 4259. https://doi.org/10.3390/molecules29174259
Li J, Liang Y, Tian C, Zou H, Zhan L, Wang L, Huang C, Li C. Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer. Molecules. 2024; 29(17):4259. https://doi.org/10.3390/molecules29174259
Chicago/Turabian StyleLi, Jing, Yu Liang, Chun Tian, Hongyan Zou, Lei Zhan, Lijuan Wang, Chengzhi Huang, and Chunmei Li. 2024. "Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer" Molecules 29, no. 17: 4259. https://doi.org/10.3390/molecules29174259