Laser Desorption of Explosives from the Surface of Different Real-World Materials Studied Using C2Cl6-Dopant-Assisted Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection of Explosives
2.2. Limit of Detection
3. Materials and Methods
3.1. Experimental Setup
3.2. Chemicals and Materials
3.3. Sample Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eiceman, G.A.; Stone, J.A. Peer Reviewed: Ion Mobility Spectrometers in National Defense. Anal. Chem. 2004, 76, 390A–397A. [Google Scholar] [CrossRef] [PubMed]
- Novik, L.C.G.P. When a Safety Measure Becomes a Risk Accelerant: Removing the Option to Blast-in-Place When Clearing Explosive Remnants of War. J. Conv. Weapons Destr. 2023, 27, 26–39. [Google Scholar]
- To, K.C.; Ben-Jaber, S.; Parkin, I.P. Recent Developments in the Field of Explosive Trace Detection. Am. Chem. Soc. 2020, 14, 10804–10833. [Google Scholar] [CrossRef] [PubMed]
- Pesenti, A.; Taudte, R.V.; McCord, B.; Doble, P.; Roux, C.; Blanes, L. Coupling Paper-Based Microfluidics and Lab on a Chip Technologies for Confirmatory Analysis of Trinitro Aromatic Explosives. Anal. Chem. 2014, 86, 4707–4714. [Google Scholar] [CrossRef]
- Capitán-Vallvey, L.F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M.M.; Palma, A.J. Recent developments in computer vision-based analytical chemistry: A tutorial review. Anal. Chim. Acta 2015, 899, 23–56. [Google Scholar] [CrossRef]
- Krauss, S.T.; Holt, V.C.; Landers, J.P. Simple reagent storage in polyester-paper hybrid microdevices for colorimetric detection. Sens. Actuators B Chem. 2017, 246, 740–747. [Google Scholar] [CrossRef]
- Singh, P.; Onodera, T.; Mizuta, Y.; Matsumoto, K.; Miura, N.; Toko, K. Dendrimer modified biochip for detection of 2,4,6 trinitrotoluene on SPR immunosensor: Fabrication and advantages. Sens. Actuators B Chem. 2009, 137, 403–409. [Google Scholar] [CrossRef]
- Patil, S.J.; Duragkar, N.; Rao, V.R. An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection. Sens. Actuators B Chem. 2014, 192, 444–451. [Google Scholar] [CrossRef]
- Cletus, B.; Olds, W.; Izake, E.L.; Sundarajoo, S.; Fredericks, P.M.; Jaatinen, E. Combined time- and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards. Anal. Bioanal. Chem. 2012, 403, 255–263. [Google Scholar] [CrossRef]
- Wojtas, J.; Mikolajczyk, J.; Bielecki, Z. Aspects of the application of cavity enhanced spectroscopy to nitrogen oxides detection. Sensors 2013, 13, 7570–7598. [Google Scholar] [CrossRef]
- Trofimov, V.A.; Varentsova, S.A. A possible way for the detection and identification of dangerous substances in ternary mixtures using thz pulsed spectroscopy. Sensors 2019, 19, 2365. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Ampadu, E.K.; Kim, M.; Noh, D.; Oh, E.; Lee, D. Detection of explosives by SERS platform using metal nanogap substrates. Sensors 2021, 21, 5567. [Google Scholar] [CrossRef] [PubMed]
- Dreier, L.B.; Kölbl, C.; Jeuk, V.; Beleites, C.; Köhntopp, A.; Duschek, F. Setup and Analysis of a Mid-Infrared Stand-Off System to Detect Traces of Explosives on Fabrics. Sensors 2022, 22, 7839. [Google Scholar] [CrossRef] [PubMed]
- Sabo, M.; Malásková, M.; Matejčík, Š. Ion mobility spectrometry–mass spectrometry studies of ion processes in air at atmospheric pressure and their application to thermal desorption of 2,4,6-trinitrotoluene. Plasma Sources Sci. Technol. 2014, 23, 015025. [Google Scholar] [CrossRef]
- Sabo, M.; Malásková, M.; Matejčík, Š. Laser desorption with corona discharge ion mobility spectrometry for direct surface detection of explosives. Analyst 2014, 139, 5112–5117. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.D.; Kolaitis, L.; Lubman, D.M. Detection of Explosives Using Laser Desorption in Ion Mobility Spectrometry/Mass Spectrometry. Appl. Spectrosc. 1987, 41, 1371–1376. [Google Scholar] [CrossRef]
- Baumbach, J.I.; Eiceman, G.A. Ion mobility spectrometry: Arriving on site and moving beyond a low profile. Appl. Spectrosc. 1999, 53, 338A–355A. [Google Scholar] [CrossRef]
- Hilton, C.K.; Krueger, C.A.; Midey, A.J.; Osgood, M.; Wu, J.; Wu, C. Improved analysis of explosives samples with electrospray ionization-high resolution ion mobility spectrometry (ESI-HRIMS). Int. J. Mass Spectrom. 2010, 298, 64–71. [Google Scholar] [CrossRef]
- Najarro, M.; Morris, M.E.D.; Staymates, M.E.; Fletcher, R.; Gillen, G. Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry. Analyst 2012, 137, 2614. [Google Scholar] [CrossRef]
- Ehlert, S.; Walte, A.; Zimmermann, R. Ambient Pressure Laser Desorption and Laser-Induced Acoustic Desorption Ion Mobility Spectrometry Detection of Explosives. Anal. Chem. 2013, 85, 11047–11053. [Google Scholar] [CrossRef]
- Ilbeigi, V.; Sabo, M.; Valadbeigi, Y.; Matejcik, S.; Tabrizchi, M. Laser desorption-ion mobility spectrometry as a useful tool for imaging of thin layer chromatography surface. J. Chromatogr. A 2016, 1459, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Kostarev, V.A.; Kotkovskii, G.E.; Chistyakov, A.A.; Akmalov, A.E. Detection of explosives in vapor phase by field asymmetric ion mobility spectrometry with dopant-assisted laser ionization. Talanta 2022, 245, 123414. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Sun, T.; Zhao, J.; Wang, D.; Zhang, Z.; Yu, W. Development of a plug-type IMS-MS instrument and its applications in resolving problems existing in in-situ detection of illicit drugs and explosives by IMS. Talanta 2018, 184, 65–72. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Krylov, E.V.; Krylova, N.S.; Nazarov, E.G.; Miller, R.A. Separation of Ions from Explosives in Differential Mobility Spectrometry by Vapor-Modified Drift Gas. Anal. Chem. 2004, 76, 4937–4944. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.G.; Atkinson, D.A.; Eiceman, G.A.; Ewing, G.J. A Critical Review of Ion Mobility Spectrometry for the Detection of Explosives and Explosive Related Compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef]
- Verkouteren, J.R.; Staymates, J.L. Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples. Forensic Sci. Int. 2011, 206, 190–196. [Google Scholar] [CrossRef]
- Li, L.; Gu, H.; Lv, Y.; Zhang, Y.; He, X.; Li, P. Ultra-Fast Polarity Switching, Non-Radioactive Drift Tube for the Miniaturization of Drift-Time Ion Mobility Spectrometer. Sensors 2022, 22, 4866. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z. Ion Mobility Spectrometry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; Volume 350. [Google Scholar] [CrossRef]
- Borsdorf, H.; Mayer, T.; Zarejousheghani, M.; Eiceman, G.A. Recent Developments in Ion Mobility Spectrometry. Appl. Spectrosc. Rev. 2011, 46, 472–521. [Google Scholar] [CrossRef]
- Yun, C.M.; Otani, Y.; Emi, H. Development of unipolar ion generator—Separation of ions in axial direction of flow. Aerosol Sci. Technol. 1997, 26, 389–397. [Google Scholar] [CrossRef]
- Li, F.; Xie, Z.; Schmidt, H.; Sielemann, S.; Baumbach, J.I. Ion mobility spectrometer for online monitoring of trace compounds. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1563–1574. [Google Scholar] [CrossRef]
- Sielemann, S.; Baumbach, J.I.; Schmidt, H. IMS with non radioactive ionization sources suitable to detect chemical warfare agent simulation substances. Int. J. Ion Mobil. Spectrom. 2002, 5, 143–148. [Google Scholar]
- Dreisewerd, K. The Desorption Process in MALDI. Chem. Rev. 2003, 103, 395–426. [Google Scholar] [CrossRef] [PubMed]
- Cody, R.B.; Laramée, J.A.; Nilles, J.M.; Durst, H.D. Direct analysis in real time (DART) mass spectrometry. JEOL News 2005, 40, 8–12. [Google Scholar]
- Cody, R.B.; Laramée, J.A.; Durst, H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef] [PubMed]
- Sabo, M.; Malásková, M.; Harmathová, O.; Hradski, J.; Masár, M.; Radjenovic, B.; Matejčík, Š. Direct Liquid Sampling for Corona Discharge Ion Mobility Spectrometry. Anal. Chem. 2015, 87, 7389–7394. [Google Scholar] [CrossRef]
- Sabo, M.; Páleník, J.; Kučera, M.; Han, H.; Wang, H.; Chu, Y.; Matejčík, Š. Atmospheric Pressure Corona Discharge Ionisation and Ion Mobility Spectrometry/Mass Spectrometry study of the negative corona discharge in high purity oxygen and oxygen/nitrogen mixtures. Int. J. Mass Spectrom. 2010, 293, 23–27. [Google Scholar] [CrossRef]
- Ross, S.K.; Bell, A.J. Reverse flow continuous corona discharge ionisation applied to ion mobility spectrometry. Int. J. Mass Spectrom. 2002, 218, L1–L6. [Google Scholar] [CrossRef]
- Sekimoto, K.; Takayama, M. Influence of Needle Voltage on the Formation of Negative Core Ions Using Atmospheric Pressure Corona Discharge in Air. Int. J. Mass Spectrom. 2007, 261, 38–44. [Google Scholar] [CrossRef]
- Sabo, M.; Matejčík, Š. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds. Anal. Chem. 2012, 84, 5327–5334. [Google Scholar] [CrossRef]
- Sabo, M.; Matejčík, Š. A corona discharge atmospheric pressure chemical ionization source with selective NO+ formation and its application for monoaromatic VOC detection. Analyst 2013, 138, 6907–6912. [Google Scholar] [CrossRef]
- Ewing, R.G.; Waltman, M.J. Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge. Int. J. Ion Mobil. Spectrom. 2009, 12, 65–72. [Google Scholar] [CrossRef]
- Sabo, M.; Matúška, J.; Matejčík, Š. Specific O2-generation in corona discharge for ion mobility spectrometry. Talanta 2011, 85, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Asbury, G.R.; Klasmeier, J.R.; Hill, H.H. Analysis of Explosives Using Electrospray Ionization/Ion Mobility Spectrometry (ESI/IMS). Talanta 2000, 50, 1291–1298. [Google Scholar] [CrossRef]
- Buryakov, I.A. Express analysis of explosives, chemical warfare agents and drugs with multicapillary column gas chromatography and ion mobility increment spectrometry. J. Chromatogr. B 2004, 800, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Babis, J.S.; Sperline, R.P.; Knight, A.K.; Jones, D.A.; Gresham, C.A.; Denton, M.B. Performance evaluation of a miniature ion mobility spectrometer drift cell for application in hand-held explosives detection ion mobility spectrometers. Anal. Bioanal. Chem. 2009, 395, 411–419. [Google Scholar] [CrossRef]
- Popov, I.A.; Chen, H.; Kharybin, O.N.; Nikolaev, E.N.; Cooks, R.G. Detection of explosives on solid surfaces by thermal desorption and ambient ion/molecule reactions. Chem. Commun. 2005, 15, 1953–1955. [Google Scholar] [CrossRef]
- Chouyyok, W.; Bays, J.T.; Gerasimenko, A.A.; Cinson, A.D.; Ewing, R.G.; Atkinson, D.A.; Addleman, R.S. Improved explosive collection and detection with rationally assembled surface sampling materials. RSC Adv. 2016, 6, 94476–94485. [Google Scholar] [CrossRef]
- Puton, J.; Nousiainen, M.; Sillanpää, M. Ion mobility spectrometers with doped gases. Talanta 2008, 76, 978–987. [Google Scholar] [CrossRef]
- Munson, C.A.; Gottfried, J.L.; De Lucia, F.C.; Mcnesby, K.L.; Miziolek, A.W. Laser-Based Detection Methods of Explosives; Elsevier: Amsterdam, The Netherlands, 2007; pp. 279–321. [Google Scholar] [CrossRef]
- Kozole, J.; Levine, L.A.; Tomlinson-Phillips, J.; Stairs, J.R. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry. Talanta 2015, 140, 10–19. [Google Scholar] [CrossRef]
- Akmalov, A.E.; Chistyakov, A.A.; Dubkova, O.I.; Kotkovskii, G.E.; Spitsyn, E.M.; Buzinov, N.M. Laser desorption of explosives traces at ambient conditions. In Optics and Photonics for Counterterrorism, Crime Fighting, and Defence XII; Burgess, D., Owen, G., Bouma, H., Carlysle-Davies, F., Stokes, R.J., Yitzhaky, Y., Eds.; SPIE: Paris, France, 2016; p. 16. [Google Scholar] [CrossRef]
Sample | Alu | SS | Ceramic | PVC | Glass | Drywall | Paper | Wood | Cotton | Denim |
---|---|---|---|---|---|---|---|---|---|---|
TNT | 7 | 7 | 7 | 7 | 7 | 15 | nd | nd | nd | nd |
RDX | 15 | 15 | 15 | 15 | 15 | 30 | nd * | nd | nd | nd |
PETN | 15 | 15 | 15 | 15 | 15 | 30 | nd * | nd | nd | nd |
C-4 | 15 | 15 | 15 | 15 | 15 | 30 | nd * | nd | nd | nd |
Semtex | 15 | 15 | 15 | 15 | 15 | 30 | nd * | nd | nd | nd |
2,4-DNT | 50 | 50 | 50 | 50 | 50 | 80 | nd | nd | nd | nd |
3,4-DNT | 80 | 80 | 80 | 80 | 80 | 200 | nd | nd | nd | nd |
2,6-DNT | 80 | 80 | 80 | 80 | 80 | 200 | nd | nd | nd | nd |
Explosives | CAS Number |
---|---|
TNT | 118-96-7 |
RDX | 121-82-4 |
PETN | 78-11-5 |
C-4 | |
Semtex | |
2,4-DNT | 121-14-2 |
3,4-DNT | 610-39-9 |
2,6-DNT | 606-20-2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maťaš, E.; Petrík, M.; Sabo, M.; Matejčík, Š. Laser Desorption of Explosives from the Surface of Different Real-World Materials Studied Using C2Cl6-Dopant-Assisted Ion Mobility Spectrometry. Molecules 2024, 29, 4482. https://doi.org/10.3390/molecules29184482
Maťaš E, Petrík M, Sabo M, Matejčík Š. Laser Desorption of Explosives from the Surface of Different Real-World Materials Studied Using C2Cl6-Dopant-Assisted Ion Mobility Spectrometry. Molecules. 2024; 29(18):4482. https://doi.org/10.3390/molecules29184482
Chicago/Turabian StyleMaťaš, Emanuel, Matej Petrík, Martin Sabo, and Štefan Matejčík. 2024. "Laser Desorption of Explosives from the Surface of Different Real-World Materials Studied Using C2Cl6-Dopant-Assisted Ion Mobility Spectrometry" Molecules 29, no. 18: 4482. https://doi.org/10.3390/molecules29184482
APA StyleMaťaš, E., Petrík, M., Sabo, M., & Matejčík, Š. (2024). Laser Desorption of Explosives from the Surface of Different Real-World Materials Studied Using C2Cl6-Dopant-Assisted Ion Mobility Spectrometry. Molecules, 29(18), 4482. https://doi.org/10.3390/molecules29184482