Epimesatines P–S: Four Undescribed Flavonoids from Epimedium sagittatum Maxim. and Their Cytotoxicity Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. In Vitro Cytotoxicity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. ECD Calculations
3.5. Preparation of the Mo2(OAc)4 Complex of Compound 2
3.6. Preparation of the Rh2(OCOCF3)4 Complex of Compound 3
3.7. In Vitro Cytotoxicity Assays
3.7.1. Cell Culture
3.7.2. MTT Assay
3.7.3. Cellular Immunofluorescence
3.7.4. Real-Time Cellular Analysis (RTCA)
3.7.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.-J.; Tang, Z.-H.; Li, X.-W.; Xie, C.-X.; Lu, J.-J.; Wang, Y.-T. Chemical constituents, quality control, and bioactivity of Epimedii folium (Yinyanghuo). Am. J. Chin. Med. 2015, 43, 783–834. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, Y.; Li, J.; Liang, H.; Zhang, J.; Chen, X.; Li, Q.; Pang, X.; Ding, Q.; Song, J.; et al. Bioactive metabolites reveal the therapeutic consistency of Epimedii folium from multi-plant sources for the treatment of kidney-yang deficiency. J. Ethnopharmacol. 2024, 319, 117215. [Google Scholar] [CrossRef]
- Zheng, X.; Li, S.; Wang, K.; Wang, Z.; Li, J.; Yang, Q.; Wu, Y.; Chen, Q.; Dou, Y.; Yao, S.; et al. Comparing the pharmacological effects of the prepared folium of Epimedium brevicornu Maxim. and Epimedium sagittatum Maxim. on kidney-Yang deficiency syndrome and liver injury complications. Fitoterapia 2024, 176, 106006. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lei, S.; Xiong, X.; Wang, X.; Zhao, L.; Wang, N.; Wan, N.; Li, B. Unveiling the therapeutic potential of Herba Epimedii: Enhancing bone healing through cytoskeletal regulation of RhoA/Rock1 pathway. Chem. Biodivers. 2024, 21, e202301383. [Google Scholar] [CrossRef]
- Akai, S. Constituents of Epimedium macranthum Morr and Decne I. Chemical constitution of a new glucoside of Epimedium macranthum Morr and Decne I. J. Pharm. Soc. Jpn. 1935, 55, 537–599. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Wang, J.; Wang, M.; Wang, X.; Shen, T.; Wang, S.; Ren, D. Flavonoids from the leaves of Epimedium Koreanum Nakai and their potential cytotoxic activities. Nat. Prod. Res. 2020, 34, 1256–1263. [Google Scholar] [CrossRef]
- Chen, X.-L.; Li, S.-X.; Ge, T.; Zhang, D.-D.; Wang, H.-F.; Wang, W.; Li, Y.; Song, X.-M. Epimedium Linn: A comprehensive review of phytochemistry, pharmacology, clinical applications and quality control. Chem. Biodivers. 2024, 21, e202400846. [Google Scholar] [CrossRef] [PubMed]
- Su, X.D.; Li, W.; Ma, J.Y.; Kim, Y.H. Chemical constituents from Epimedium koreanum Nakai and their chemotaxonomic significance. Nat. Prod. Res. 2018, 32, 2347–2351. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Liu, C.M.; Yeh, H.C.; Li, W.J.; Li, H.T.; Cheng, M.J. A new β-Ionone from Epimedium sagittatum. Chem. Nat. Comp. 2022, 58, 830–832. [Google Scholar] [CrossRef]
- Zhang, X.; Oh, M.; Kim, S.; Kim, J.; Kim, H.; Kim, S.; Houghton, P.J.; Whang, W. Epimediphine, a novel alkaloid from Epimedium koreanum inhibits acetylcholinesterase. Nat. Prod. Res. 2013, 27, 1067–1074. [Google Scholar] [CrossRef]
- The Pharmacopoeia Commission of PRC. The Pharmacopoeia of the People’s Republic of China (Part 1); China Medical Science and Technology Press: Beijing, China, 2020; p. 340. [Google Scholar]
- Li, J.; He, Y.; Zheng, X.; Li, S.; Wu, Y.; Shi, W.; Pan, K.; Sun, J.; Wang, Z.; Xu, J.; et al. Flavonoids and prenylhydroquinones from the prepared folium of Epimedium sagittatum maxim. and their inhibition against phosphodiesterase5A. Fitoterapia 2023, 168, 105465. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; He, X.; Yang, Y.; Li, M.; Hao, D.; Jia, Z. The genus Epimedium: An ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2011, 134, 519–541. [Google Scholar] [CrossRef] [PubMed]
- Šmejkal, K. Cytotoxic potential of C-prenylated flavonoids. Phytochem. Rev. 2014, 13, 245–275. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Xiong, J.; Zhao, J.; Guo, M.; Chen, J.; Zhao, X.; Chen, C.; He, Z.; Zhou, Y.; et al. Icariin as an emerging candidate drug for anticancer treatment: Current status and perspective. Biomed. Pharmacother. 2023, 157, 113991. [Google Scholar] [CrossRef]
- Hou, M.; Li, H.; He, T.; Hui, S.; Dai, W.; Hou, X.; Zhao, J.; Zhao, J.; Wen, J.; Kan, W.; et al. Icariside I reduces breast cancer proliferation, apoptosis, invasion, and metastasis probably through inhibiting IL-6/STAT3 signaling pathway. J. Pharm. Pharmacol. 2024, 76, 499–513. [Google Scholar] [CrossRef]
- Xie, S.; Zeng, M.; Zhang, J.; Liu, J.; Wei, J.; Wang, R.; Li, M.; Hao, Z.; Ji, B.; Zheng, X.; et al. Epimesatines A–I, nine undescribed prenylated flavonoids with Sphk1 inhibitory activities from Epimedium sagittatum maxim. Phytochemistry 2022, 202, 113314. [Google Scholar] [CrossRef] [PubMed]
- Huong, N.T.; Son, N.T. Icaritin: A phytomolecule with enormous pharmacological values. Phytochemistry 2023, 213, 113772. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.-J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Product. Bioprosp. 2021, 11, 5–13. [Google Scholar] [CrossRef]
- Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immun. 2022, 71, 507–526. [Google Scholar] [CrossRef]
- Singla, R.K.; Wang, X.; Gundamaraju, R.; Joon, S.; Tsagkaris, C.; Behzad, S.; Khan, J.; Gautam, R.; Goyal, R.; Rakmai, J.; et al. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: A comprehensive review of preclinical and clinical studies. Crit. Rev. Food Sci. 2023, 63, 11880–11924. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Emwas, A.-H.; Khan, R.A. Salt-tolerant plants, halophytes, as renewable natural resources for cancer prevention and treatment: Roles of phenolics and flavonoids in immunomodulation and suppression of oxidative stress towards cancer management. Int. J. Mol. Sci. 2023, 24, 5171. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.J.J.; Adiwidjaja, J.; Mclachlan, A.J.; Boddy, A.V.; Harnett, J.E. Interactions between natural products and cancer treatments: Underlying mechanisms and clinical importance. Cancer Chemoth. Pharm. 2023, 91, 103–119. [Google Scholar] [CrossRef]
- Dong, S.; Guo, X.; Han, F.; He, Z.; Wang, Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm. Sin. B 2022, 12, 1163–1185. [Google Scholar] [CrossRef]
- Zheng, X.; Li, W.; Ren, L.; Liu, J.; Pang, X.; Chen, X.; Kang, D.; Wang, J.; Du, G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol. Ther. 2018, 195, 85–99. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Yang, Y.-F.; Chen, X.-Q.; Li, R.-T.; Zhang, Z.-J. Flavonoids from the aerial parts of Sophora tonkinensis and their potential anti-inflammatory activities. Chem. Biodivers. 2024, 21, e202400399. [Google Scholar] [CrossRef]
- Nur, E.A.M.; Yousaf, M.; Parveen, I.; Hafizur, R.M.; Ghani, U.; Ahmed, S.; Hameed, A.; Threadgill, M.D.; Al-Rehaily, A.J. New flavonoids from the Saudi Arabian plant Retama raetam which stimulates secretion of insulin and inhibits α-glucosidase. Org. Biomol. Chem. 2019, 17, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Miyashita, H.; Yoshimitsu, H.; Fujiwara, Y.; Nagai, R.; Ikeda, T. Two new prenylflavonoids from Epimedii Herba and their inhibitory effects on advanced glycation end-products. J. Nat. Med. 2016, 70, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Sakr, M.A.S.; El-Daly, S.A.; Ebeid, E.Z.M.; Al-Hazmy, S.M.; Hassan, M. Quinoline-based materials: Spectroscopic investigations as well as DFT and TD-DFT calculations. J. Chem. 2022, 2022, 1. [Google Scholar] [CrossRef]
- Ren, F.-C.; Wang, L.-X.; Lv, Y.-F.; Hu, J.-M.; Zhou, J. Structure revision of four classes of prenylated aromatic natural products based on a rule for diagnostic 13C NMR chemical shifts. J. Org. Chem. 2020, 86, 10982–10990. [Google Scholar] [CrossRef]
- Bari, L.D.; Pescitelli, G.; Pratelli, C.; Pini, D.; Salvadori, P. Determination of absolute configuration of acyclic 1,2-diols with Mo2(OAc)4. 1. Snatzke’s method revisited. J. Org. Chem. 2001, 66, 4819–4825. [Google Scholar] [CrossRef]
- Górecki, M.; Jabłońska, E.; Kruszewska, A.; Suszczyńska, A.; Urbańczyk-Lipkowska, Z.; Gerards, M.; Morzycki, J.W.; Szczepek, W.J.; Frelek, J. Practical method for the absolute configuration assignment of tert/tert 1,2-diols using their complexes with Mo2(OAc)4. J. Org. Chem. 2007, 72, 2906–2916. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Jie, W.M.; Jin, Z.; Jun, Z.S.; Shan, S.J. Studies on chemical constituents of Epimedium brevicornum. Chin. Pharm. J. 2006, 41, 1060–1062. [Google Scholar]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gao, M.; Nian, X.; Zhang, L.; Li, J.; Cui, D.; Zhang, C.; Zhao, C. Design, synthesis, biological evaluation and silico prediction of novel sinomenine derivatives. Molecules 2021, 26, 3466. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hou, F.-Y.; Zeng, M.-N.; Zhang, B.-B.; Zhang, Q.-Q.; Xie, S.-S.; Feng, W.-S.; Zheng, X.-K. Aqueous extract of Epimedium sagittatum mitigates pulmonary fibrosis in mice. Zhongguo Zhong Yao Za Zhi 2023, 48, 5612–5622. [Google Scholar] [CrossRef]
- Yan, G.; Du, Q.; Wei, X.; Miozzi, J.; Kang, C.; Wang, J.; Han, X.; Pan, J.; Xie, H.; Chen, J.; et al. Application of real-time cell electronic analysis system in modern pharmaceutical evaluation and analysis. Molecules 2018, 23, 3280. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | δH | δC | |
2 | 165.4 | 165.1 | 165.4 | 164.9 | ||||
3 | 6.60, s | 104.2 | 6.57, s | 104.2 | 6.61, s | 104.2 | 6.65, s | 104.2 |
4 | 182.9 | 182.8 | 182.9 | 183.3 | ||||
5 | 163.1 | 163.0 | 163.1 | 160.7 | ||||
6 | 6.25, d (2.0) | 99.7 | 6.24, s | 99.9 | 6.24, s | 99.6 | 6.34, s | 99.2 |
7 | 165.1 | 165.7 | 165.0 | 162.1 | ||||
8 | 6.54, d (2.0) | 94.8 | 6.54, s | 95.0 | 6.53, s | 94.8 | 107.4 | |
9 | 158.8 | 158.9 | 158.9 | 156.0 | ||||
10 | 105.2 | 104.9 | 105.3 | 105.4 | ||||
1′ | 124.1 | 123.1 | 123.0 | 124.3 | ||||
2′ | 7.74 a | 122.1 | 7.64, d (2.1) | 127.3 | 7.65, d (2.2) | 127.3 | 7.87, d (2.3) | 128.1 |
3′ | 128.9 | 120.8 | 121.6 | 131.6 | ||||
4′ | 162.6 | 155.5 | 155.3 | 161.4 | ||||
5′ | 122.5 | 130.1 | 130.1 | 7.16, d (8.7) | 111.7 | |||
6′ | 7.75 a | 129.7 | 7.71, d (2.1) | 128.5 | 7.73, d (2.2) | 128.4 | 7.93, dd (8.7, 2.3) | 126.9 |
1′‘ | 3.33, m | 31.1 | 3.15, dd (16.8, 5.0) | 27.8 | 3.12, dd (16.5, 5.3) | 32.2 | 3.57, d (7.2) | 22.4 |
2.91, dd (16.8, 6.4) | 2.84, dd (16.5, 7.9) | |||||||
2′‘ | 5.10, dd (9.8, 7.7) | 87.4 | 3.90 a | 71.6 | 3.88 a | 69.3 | 5.32, m | 123.4 |
3′‘ | 83.0 | 78.4 | 79.1 | 132.1 | ||||
4′‘ | 1.36, s | 21.5 | 1.38, s | 26.4 | 1.43, s | 26.3 | 1.66, s | 25.9 |
5′‘ | 1.19, s | 19.6 | 1.32, s | 22.6 | 1.33, s | 21.1 | 1.82, s | 18.2 |
1′‘‘ | 2.97, dd (13.7, 4.9) | 37.2 | 3.11, d (13.5) | 33.9 | 2.94, dd (13.5, 1.8) | 33.5 | 3.39, d (7.5) | 29.1 |
2.74, dd (13.7, 8.2) | 2.45, dd (13.5, 10.1) | 2.38, dd (13.5, 10.0) | ||||||
2′‘‘ | 4.42, dd (8.2, 4.9) | 75.2 | 3.62, d (10.1) | 78.3 | 4.03, dd (10.0, 1.8) | 72.9 | 5.36, m | 122.7 |
3′‘‘ | 149.0 | 72.9 | 86.0 | 133.7 | ||||
4′‘‘ | 4.90, s; 4.75, s | 110.6 | 1.26, s | 26.1 | 1.38, s | 22.3 | 1.75, s | 25.9 |
5′‘‘ | 1.83, s | 18.1 | 1.24, s | 24.8 | 1.13, s | 18.5 | 1.75, s | 17.9 |
1′‘‘‘ | 5.38, d (4.5) | 101.2 | 5.53, dd (6.2, 2.4) | 106.4 | ||||
2′‘‘‘ | 1.88 a | 33.1 | 2.06 a | 29.7 | ||||
1.79 a | 1.72, m | |||||||
3′‘‘‘ | 1.98 a | 24.1 | 1.91, m | 24.7 | ||||
1.85 a | 1.80, m | |||||||
4′‘‘‘ | 3.86 a | 67.5 | 3.79 a | 68.3 | ||||
3.76 a | ||||||||
OCH3 | 3.97, s | 56.2 |
Group | 1 | 2 | 3 | 4 | Docetaxel # |
---|---|---|---|---|---|
IC50 (μM) | 50.3 | 1.27 | 4.59 | 6.05 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.-S.; Yu, X.; Zhang, J.-K.; Hao, Z.-Y.; Zheng, X.-K.; Feng, W.-S. Epimesatines P–S: Four Undescribed Flavonoids from Epimedium sagittatum Maxim. and Their Cytotoxicity Activities. Molecules 2024, 29, 4711. https://doi.org/10.3390/molecules29194711
Xie S-S, Yu X, Zhang J-K, Hao Z-Y, Zheng X-K, Feng W-S. Epimesatines P–S: Four Undescribed Flavonoids from Epimedium sagittatum Maxim. and Their Cytotoxicity Activities. Molecules. 2024; 29(19):4711. https://doi.org/10.3390/molecules29194711
Chicago/Turabian StyleXie, Shuang-Shuang, Xiang Yu, Jing-Ke Zhang, Zhi-You Hao, Xiao-Ke Zheng, and Wei-Sheng Feng. 2024. "Epimesatines P–S: Four Undescribed Flavonoids from Epimedium sagittatum Maxim. and Their Cytotoxicity Activities" Molecules 29, no. 19: 4711. https://doi.org/10.3390/molecules29194711
APA StyleXie, S. -S., Yu, X., Zhang, J. -K., Hao, Z. -Y., Zheng, X. -K., & Feng, W. -S. (2024). Epimesatines P–S: Four Undescribed Flavonoids from Epimedium sagittatum Maxim. and Their Cytotoxicity Activities. Molecules, 29(19), 4711. https://doi.org/10.3390/molecules29194711