Acridone Derivatives for Near-UV Radical Polymerization: One-Component Type II vs. Multicomponent Behaviors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Bn-Acr and DPM-Acr
2.2. UV–Visible Absorption Properties
2.3. Free Radical Polymerization (FRP) of Acrylates
2.4. Photochemical Mechanisms
2.4.1. Steady-State Photolysis
2.4.2. Fluorescence Quenching and Cyclic Voltammetry
2.4.3. ESR Experiments
2.5. Direct Laser Write (DLW) Experiments
3. Experimental Part
3.1. Synthesis of the Investigated Acridone-Based PIs
3.2. Other Chemical Compounds
3.3. Irradiation Sources
3.4. UV–Visible Absorption and Photolysis Experiments
3.5. Photopolymerization Kinetics (RT-FTIR)
3.6. Steady-State Fluorescence
3.7. Oxidation and Reduction Potentials
3.8. ESR Spin-Trapping (ESR-ST) Experiments
3.9. Direct Laser Writing Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegmund, M.; Bendig, J. The solvent dependence of the electronic spectra and the change of the dipole properties of N-substituted acridones at electronic excitation. Z. Für Naturforschung A 1980, 35, 1076–1086. [Google Scholar] [CrossRef]
- Rothman, J.H.; Still, W.C. A new generation of fluorescent chemosensors demonstrate improved analyte detection sensitivity and photobleaching resistance. Bioorganic Med. Chem. Lett. 1999, 9, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, A.; Wegner, K.; Łankiewicz, L. Synthesis of N-[(tert-Butoxy) carbonyl]-3-(9, 10-dihydro-9-oxoacridin-2-yl)-L-alanine, a new fluorescent amino acid derivative. Helv. Chim. Acta 2003, 86, 3326–3331. [Google Scholar] [CrossRef]
- Faller, T.; Hutton, K.; Okafo, G.; Gribble, A.; Camilleri, P.; Games, D.E. A novel acridone derivative for the fluorescence tagging and mass spectrometric sequencing of peptides. Chem. Commun. 1997, 16, 1529–1530. [Google Scholar] [CrossRef]
- Reymond, J.L.; Koch, T.; Schröer, J.; Tierney, E. A general assay for antibody catalysis using acridone as a fluorescent tag. Proc. Natl. Acad. Sci. USA 1996, 93, 4251–4256. [Google Scholar] [CrossRef] [PubMed]
- Bahr, N.; Tierney, E.; Reymond, J. Highly photoresistant chemosensors using acridone as fluorescent label. Tetrahedron Lett. 1997, 38, 1489–1492. [Google Scholar] [CrossRef]
- Hagiwara, Y.; Hasegawa, T.; Shoji, A.; Kuwahara, M.; Ozaki, H.; Sawai, H. Acridone-tagged DNA as a new probe for DNA detection by fluorescence resonance energy transfer and for mismatch DNA recognition. Bioorganic Med. Chem. 2008, 16, 7013–7020. [Google Scholar] [CrossRef]
- Lim, C.; Ryan, M.D.; McCarthy, B.G.; Theriot, J.C.; Sartor, S.M.; Damrauer, N.H.; Musgrave, C.B.; Miyake, G.M. Intramolecular charge transfer and ion pairing in N, N-diaryl dihydrophenazine photoredox catalysts for efficient organocatalyzed atom transfer radical polymerization. J. Am. Chem. Soc. 2017, 139, 348–355. [Google Scholar] [CrossRef]
- Lv, M.; Wang, X.; Pan, H.; Chen, J. Direct observation of ultrafast access to a solvent-independent singlet–triplet equilibrium state in acridone solutions. J. Phys. Chem. B 2021, 125, 13291–13297. [Google Scholar] [CrossRef]
- Wei, D.; Li, H.; Yang, C.; Fu, J.; Chen, H.; Bai, L.; Wang, W.; Yang, H.; Yang, L.; Liang, Y. Visible light-driven acridone catalysis for atom transfer radical polymerization. J. Polym. Sci. 2022, 60, 1588–1594. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Rong, D.; Yuan, L.; Xie, Y. Photochemical acridone-mediated direct arylation of (hetero) arenes with aryl diazonium salts. Org. Biomol. Chem. 2023, 21, 8739–8743. [Google Scholar] [CrossRef] [PubMed]
- Tehfe, M.A.; Louradour, F.; Lalevée, J.; Fouassier, J.P. Photopolymerization reactions: On the way to a green and sustainable chemistry. Appl. Sci. 2013, 3, 490–514. [Google Scholar] [CrossRef]
- Corrigan, N.; Yeow, J.; Judzewitsch, P.; Xu, J.; Boyer, C. Seeing the light: Advancing materials chemistry through photopolymerization. Angew. Chem. Int. Ed. 2019, 58, 5170–5189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xiao, P. 3D printing of photopolymers. Polym. Chem. 2018, 9, 1530–1540. [Google Scholar] [CrossRef]
- Lago, M.A.; Rodríguez-Bernaldo de Quirós, A.; Sendón, R.; Bustos, J.; Nieto, M.T.; Paseiro, P. Photoinitiators: A food safety review. Food Addit. Contam. Part A 2015, 32, 779–798. [Google Scholar] [CrossRef]
- Kowalska, A.; Sokolowski, J.; Bociong, K. The photoinitiators used in resin based dental composite—A review and future perspectives. Polymers 2021, 13, 470. [Google Scholar] [CrossRef]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Giannini, M.; Arrais, C.A.G.; Price, R.B.T. Light curing in dentistry and clinical implications: A literature review. Braz. Oral Res. 2017, 31, e61. [Google Scholar] [CrossRef]
- Amato, D.V.; Amato, D.N.; Flynt, A.S.; Patton, D.L. Functional, sub-100 nm polymer nanoparticles via thiol–ene miniemulsion photopolymerization. Polym. Chem. 2015, 6, 5625–5632. [Google Scholar] [CrossRef]
- Shete, A.U.; El-Zaatari, B.M.; French, J.M.; Kloxin, C.J. Blue-light activated rapid polymerization for defect-free bulk Cu (i)-catalyzed azide–alkyne cycloaddition (CuAAC) crosslinked networks. Chem. Commun. 2016, 52, 10574–10577. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on pyrene-based photoinitiators of polymerization. Eur. Polym. J. 2020, 126, 109564. [Google Scholar] [CrossRef]
- Dietlin, C.; Schweizer, S.; Xiao, P.; Zhang, J.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P.; Lalevée, J. Photopolymerization upon LEDs: New Photoinitiating Systems and Strategies. Polym. Chem. 2015, 6, 3895–3912. [Google Scholar] [CrossRef]
- Timpe, H.J.; Kronfeld, K.P.; Lammel, U.; Fouassier, J.P.; Lougnot, D.J. Excited states of ketones as electron donors—Ketone—Iodonium salt systems as photoinitiators for radical polymerization. J. Photochem. Photobiol. A Chem. 1990, 52, 111–122. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Banerjee, A.N. Polymerization of methyl methacrylate using the acridone-chlorine combination as the photoinitiator. J. Macromol. Sci. Chem. 1985, 22, 243–261. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Banerjee, A.N. Polymerization of methyl methacrylate using acridone-bromine combination as the photoinitiator. J. Macromol. Sci. Chem. 1984, 21, 1253–1266. [Google Scholar] [CrossRef]
- Abdallah, M.; Le, H.; Hijazi, A.; Schmitt, M.; Graff, B.; Dumur, F.; Bui, T.T.; Goubard, F.; Fouassier, J.P.; Lalevée, J. Acridone derivatives as high performance visible light photoinitiators for cationic and radical photosensitive resins for 3D printing technology and for low migration photopolymer property. Polymer 2018, 159, 47–58. [Google Scholar] [CrossRef]
- Nishimura, T.; Katoh, T.; Hayashi, T. Rhodium-Catalyzed Aryl Transfer from Trisubstituted Aryl Methanols to α, β-Unsaturated Carbonyl Compounds. Angew. Chem. Int. Ed. 2007, 46, 4937–4939. [Google Scholar] [CrossRef]
- Keaveney, S.T.; White, B.P.; Haines, R.S.; Harper, J.B. The effects of an ionic liquid on unimolecular substitution processes: The importance of the extent of transition state solvation. Org. Biomol. Chem. 2016, 14, 2572–2580. [Google Scholar] [CrossRef]
- Noon, A.; Hammoud, F.; Graff, B.; Hamieh, T.; Toufaily, J.; Morlet-Savary, F.; Schmitt, M.; Bui, T.T.; Rico, A.; Goubard, F.; et al. Photoinitiation Mechanisms of Novel Phenothiazine-Based Oxime and Oxime Esters Acting as Visible Light Sensitive Type I and Multicomponent Photoinitiators. Adv. Mater. Technol. 2023, 8, 2300205. [Google Scholar] [CrossRef]
PIs | max (nm) | εmax (M−1cm−1) | ε405 (M−1 cm−1) |
---|---|---|---|
Bn-Acr | 395 | 920 | 2600 |
376 | 6900 | ||
DPM-Acr | 392 | 8100 | 2000 |
375 | 6300 |
PI Systems | Thin Samples (25 μm) in Laminate @405 nm |
---|---|
Bn-Acr | 69% |
DPM-Acr | 68% |
Bn-Acr/Iod | 77% |
DPM-Acr/Iod | 81% |
Bn-Acr/EDB | 70% |
DPM-Acr/EDB | 60% |
Iod | 26% |
EDB | 19% |
ES1 (eV) | Eox (V) | ΔGS1(PI/Iod) (eV) a | Ered (V) | ΔGS1(PI/EDB) (eV) b | Ksv (Iod) (M−1) c | Φet (PI/Iod)d | Ksv (EDB) (M−1) c | Φet (PI/EDB) d | |
---|---|---|---|---|---|---|---|---|---|
Bn-Acr | 3.05 | 1.4 | −0.95 | −1.2 | −0.85 | 56 | 0.76 | 40 | 0.8 |
DPM-Acr | 3.08 | 1.46 | −0.92 | Not present | 35 | 0.68 | 30 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noon, A.; Calogero, F.; Gualandi, A.; Hammoud, H.; Hamieh, T.; Toufaily, J.; Morlet-Savary, F.; Schmitt, M.; Cozzi, P.G.; Lalevée, J. Acridone Derivatives for Near-UV Radical Polymerization: One-Component Type II vs. Multicomponent Behaviors. Molecules 2024, 29, 4715. https://doi.org/10.3390/molecules29194715
Noon A, Calogero F, Gualandi A, Hammoud H, Hamieh T, Toufaily J, Morlet-Savary F, Schmitt M, Cozzi PG, Lalevée J. Acridone Derivatives for Near-UV Radical Polymerization: One-Component Type II vs. Multicomponent Behaviors. Molecules. 2024; 29(19):4715. https://doi.org/10.3390/molecules29194715
Chicago/Turabian StyleNoon, Adel, Francesco Calogero, Andrea Gualandi, Hiba Hammoud, Tayssir Hamieh, Joumana Toufaily, Fabrice Morlet-Savary, Michael Schmitt, Pier Giorgio Cozzi, and Jacques Lalevée. 2024. "Acridone Derivatives for Near-UV Radical Polymerization: One-Component Type II vs. Multicomponent Behaviors" Molecules 29, no. 19: 4715. https://doi.org/10.3390/molecules29194715