{GdIII7} and {GdIII14} Cluster Formation Based on a Rhodamine 6G Ligand with a Magnetocaloric Effect
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Structure
2.3. Magnetic Measurements
3. Materials and Methods
3.1. Synthesis and Preparations
3.1.1. Synthesis of the Ligand HL
3.1.2. Synthesis of [Gd7(L)6(μ2-CH3O)4(μ3-CH3O)4(μ3-OH)4(NO3)2]NO3·10CH3CN·10CH3OH·2H2O (1)
3.1.3. Synthesis of Gd14(H0.5L)8(μ6-O)(μ4-O)2(μ3-OH)16(NO3)16·9.5CH3CN·2CH3OH·11H2O (2)
3.2. Physical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calvez, G.; Le Natur, F.; Daiguebonne, C.; Bernot, K.; Suffren, Y.; Guillou, O. Lanthanide-based hexa-nuclear complexes and their use as molecular precursors. Coord. Chem. Rev. 2017, 340, 134–153. [Google Scholar] [CrossRef]
- Yang, X.P.; Jones, R.A.; Huang, S.M. Luminescent 4f and d-4f polynuclear complexes and coordination polymers with flexible salen-type ligands. Coord. Chem. Rev. 2014, 273, 63–75. [Google Scholar] [CrossRef]
- Ferrando-Soria, J.; Vallejo, J.; Castellano, M.; Martínez-Lillo, J.; Pardo, E.; Cano, J.; Castro, I.; Lloret, F.; Ruiz-García, R.; Julve, M. Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpoint. Coord. Chem. Rev. 2017, 339, 17–103. [Google Scholar] [CrossRef]
- Georgopoulou, A.N.; Pissas, M.; Psycharis, V.; Sanakis, Y.; Raptopoulou, C.P. Trinuclear NiII-LnIII-NiII Complexes with Schiff Base Ligands: Synthesis, Structure, and Magnetic Properties. Molecules 2020, 25, 2280. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, J.A.; Jena, H.S.; Konar, S. Co3Gd4 Cage as Magnetic Refrigerant and Co3Dy4 Cage Showing Slow Relaxation of Magnetisation. Molecules 2022, 27, 1130. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-P.; Liao, P.-Q.; Yu, Y.; Zheng, Z.; Chen, X.-M.; Zheng, Y.-Z. A mixed-ligand approach for a gigantic and hollow heterometallic cage {Ni64RE96} for gas separation and magnetic cooling applications. Angew. Chem. Int. Ed. 2016, 55, 9375–9379. [Google Scholar] [CrossRef]
- Li, N.F.; Luo, X.M.; Wang, J.; Wang, J.L.; Mei, H.; Song, Y.; Xu, Y. Largest 3d-4f 196-nuclear Gd158Co38 clusters with excellent magnetic cooling. Sci. China Chem. 2022, 65, 1577–1583. [Google Scholar] [CrossRef]
- Miao, L.; Liu, M.J.; Zeng, M.; Kou, H.Z. Chiral Zn3Ln3 Hexanuclear Clusters of an Achiral Flexible Ligand. Inorg. Chem. 2023, 62, 12814–12821. [Google Scholar] [CrossRef]
- Zeng, M.; Hu, K.Q.; Liu, C.M.; Kou, H.Z. Heterotrimetallic Ni2Ln2Fe3 chain complexes based on [Fe(1-CH3im)(CN)5]2-. Dalton Trans. 2021, 50, 6427–6431. [Google Scholar] [CrossRef]
- Jin, Y.S.; Wang, X.; Zhang, N.; Liu, C.M.; Kou, H.Z. Assembly of Hydrazine-Bridged Cyclic FeIII4LnIII4 Octanuclear Complexes. Cryst. Growth Des. 2022, 22, 1263–1269. [Google Scholar] [CrossRef]
- Tian, H.Q.; Bao, S.S.; Zheng, L.M. Cyclic Single-Molecule Magnets: From Even-Numbered Hexanuclear to Odd-Numbered Heptanuclear Dysprosium Clusters. Eur. J. Inorg. Chem. 2016, 19, 3184–3190. [Google Scholar] [CrossRef]
- Tian, H.Q.; Bao, S.S.; Zheng, L.M. Cyclic single-molecule magnets: From the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters. Chem. Commun. 2016, 52, 2314–2317. [Google Scholar] [CrossRef]
- Goura, J.; Walsh, J.P.S.; Tuna, F.; Chandrasekhar, V. Synthesis, structure, and magnetism of non-planar heptanuclear lanthanide(III) complexes. Dalton Trans. 2015, 44, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Mazarakioti, E.C.; Cunha-Silva, L.; Bekiari, V.; Escuer, A.; Stamatatos, T.C. New structural topologies in 4f-metal cluster chemistry from vertex-sharing butterfly units: {LnIII7} complexes exhibiting slow magnetization relaxation and ligand-centred emissions. RSC Adv. 2015, 5, 92526–92530. [Google Scholar] [CrossRef]
- Pantelis, K.N.; Perlepe, P.S.; Grammatikopoulos, S.; Lampropoulos, C.; Tang, J.K.; Stamatatos, T.C. 4f-Metal Clusters Exhibiting Slow Relaxation of Magnetization: A {Dy7} Complex with An Hourglass-like Metal Topology. Molecules 2020, 25, 2191. [Google Scholar] [CrossRef]
- Peng, J.M.; Wang, H.L.; Zhu, Z.H.; Bai, J.; Liang, F.P.; Zou, H.H. Series of the Largest Dish-Shaped Dysprosium Nanoclusters Formed by in situ Reactions. Inorg. Chem. 2022, 61, 6094–6100. [Google Scholar] [CrossRef]
- Lu, T.Q.; Yin, J.J.; Chen, C.; Shi, H.Y.; Zheng, J.; Liu, Z.J.; Fang, X.L.; Zheng, X.Y. Two pairs of chiral lanthanide-oxo clusters Ln14 induced by amino acid derivatives. CrystEngComm 2021, 23, 6923–6929. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Peng, J.M.; Wang, H.L.; Zou, H.H.; Liang, F.P. Assembly Mechanism and Heavy Metal Ion Sensing of Cage-Shaped Lanthanide Nanoclusters. Cell Rep. Phys. Sci. 2020, 1, 100165. [Google Scholar] [CrossRef]
- Zhang, M.-B.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. A 3D Coordination Framework Based on Linkages of Nanosized Hydroxo Lanthanide Clusters and Copper Centers by Isonicotinate Ligands. Angew. Chem. Int. Ed. 2005, 44, 1385–1388. [Google Scholar] [CrossRef]
- Chesman, A.S.R.; Turner, D.R.; Moubaraki, B.; Murray, K.S.; Deacon, G.B.; Batten, S.R. Tetradecanuclear polycarbonatolanthanoid clusters: Diverse coordination modes of carbonate providing access to novel core geometries. Dalton Trans. 2012, 41, 10903–10909. [Google Scholar] [CrossRef]
- Sun, P.-F.; Zhang, X.-N.; Fan, C.-H.; Chen, W.-P.; Zheng, Y.-Z. Tricine-supported polyoxo(alkoxo)lanthanide cluster {Ln15} (Ln = Eu, Gd, Tb) with magnetic refrigerant and fluorescent properties. Polyoxometalates 2023, 2, 9140026. [Google Scholar] [CrossRef]
- Du, M.H.; Chen, L.Q.; Jiang, L.P.; Liu, W.D.; Long, L.S.; Zheng, L.S.; Kong, X.J. Counterintuitive Lanthanide Hydrolysis-Induced Assembly Mechanism. J. Am. Chem. Soc. 2022, 144, 5653–5660. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, Y.T.; Wang, J.L.; Li, J.N.; Li, N.F.; Fan, X.R.; Xu, Y. Two Windmill-Shaped Ln18 Nanoclusters Exhibiting High Magnetocaloric Effect and Luminescence. Inorg. Chem. 2023, 62, 3162–3169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lu, S.H.; Xu, L.X.; Wang, J.L.; Yu, Y.T.; Bai, X.; Mei, H.; Xu, Y. C2O42--templated cage-shaped Ln28(Ln = Gd, Eu) nanoclusters with magnetocaloric effect and luminescence. Inorg. Chem. Front. 2023, 10, 4109–4116. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, H.L.; Zhu, Z.H.; Liang, F.P.; Zou, H.H. Giant Crown-Shaped Dy34 Nanocluster with High Acid–Base Stability Assembled by an out-to-in Growth Mechanism. Inorg. Chem. 2022, 61, 10101–10107. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, F.; Kong, X.; Yuan, D.; Long, L.; Al-Thabaiti, S.A.; Hong, M. Two polymeric 36-metal pure lanthanide nanosize clusters. Chem. Sci. 2013, 4, 3104–3108. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, X.Y.; Cai, J.; Hong, Z.F.; Yan, Z.H.; Kong, X.J.; Ren, Y.P.; Long, L.S.; Zheng, L.S. Three Giant Lanthanide Clusters Ln37 (Ln = Gd, Tb, and Eu) Featuring A Double-Cage Structure. Inorg. Chem. 2017, 56, 2037–2041. [Google Scholar] [CrossRef]
- Guo, F.S.; Chen, Y.C.; Mao, L.L.; Lin, W.Q.; Leng, J.D.; Tarasenko, R.; Orendac, M.; Prokleska, J.; Sechovsky, V.; Tong, M.L. Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel. Chem.—Eur. J. 2013, 19, 14876–14885. [Google Scholar] [CrossRef]
- Luo, X.M.; Hu, Z.B.; Lin, Q.F.; Cheng, W.; Cao, J.P.; Cui, C.H.; Mei, H.; Song, Y.; Xu, Y. Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd60. J. Am. Chem. Soc. 2018, 140, 11219–11222. [Google Scholar] [CrossRef]
- Qin, L.; Yu, Y.-Z.; Liao, P.-Q.; Xue, W.; Zheng, Z.; Chen, X.-M.; Zheng, Y.-Z. A “Molecular Water Pipe”: A Giant Tubular Cluster {Dy72} Exhibits Fast Proton Transport and Slow Magnetic Relaxation. Adv. Mater. 2016, 28, 10772–10779. [Google Scholar] [CrossRef]
- Peng, J.B.; Kong, X.J.; Zhang, Q.C.; Orendac, M.; Prokleska, J.; Ren, Y.P.; Long, L.S.; Zheng, Z.; Zheng, L.S. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms. J. Am. Chem. Soc. 2014, 136, 17938–17941. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-Y.; Jiang, Y.-H.; Zhuang, G.-L.; Liu, D.-P.; Liao, H.-G.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. A gigantic molecular wheel of {Gd140}: A new member of the molecular wheel family. J. Am. Chem. Soc. 2017, 139, 18178–18181. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Li, X.-X.; Qi, Y.-J.; Yu, H.; Jin, L.; Zheng, S.-T. {Nb288O768(OH)48(CO3)12}: A macromolecular polyoxometalate with close to 300 niobium atoms. Angew. Chem. Int. Ed. 2018, 57, 8572–8576. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Sun, R.; Hao, X.; Wang, B.-W. Two Pairs of Homochiral Parallelogram-like Dy4 Cluster Complexes with Strong Magneto-Optical Properties. Inorg. Chem. 2023, 62, 20184–20193. [Google Scholar] [CrossRef]
- Hao, J.; Geng, L.; Zheng, J.Y.; Wei, J.H.; Zhang, L.L.; Feng, R.; Zhao, J.X.; Li, Q.W.; Pang, J.D.; Bu, X.H. Ligand Induced Double-Chair Conformation Ln12 Nanoclusters Showing Multifunctional Magnetic and Proton Conductive Properties. Inorg. Chem. 2022, 61, 3690–3696. [Google Scholar] [CrossRef] [PubMed]
- Gschneidner, K.A.; Pecharsky, V.K. Thirty years of near room temperature magnetic cooling: Where we are today and future prospects. Int. J. Refrig. 2008, 31, 945–961. [Google Scholar] [CrossRef]
- Evangelisti, M.; Brechin, E.K. Recipes for enhanced molecular cooling. Dalton Trans. 2010, 39, 4672–4676. [Google Scholar] [CrossRef]
- Koskelo, E.C.; Liu, C.; Mukherjee, P.; Kelly, N.D.; Dutton, S.E. Free-Spin Dominated Magnetocaloric Effect in Dense Gd3+ Double Perovskites. Chem. Mater. 2022, 34, 3440–3450. [Google Scholar] [CrossRef]
- Lorusso, G.; Sharples, J.W.; Palacios, E.; Roubeau, O.; Brechin, E.K.; Sessoli, R.; Rossin, A.; Tuna, F.; McInnes, E.J.L.; Collison, D.; et al. A Dense Metal-Organic Framework for Enhanced Magnetic Refrigeration. Adv. Mater. 2013, 25, 4653–4656. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q.-C.; Pan, Y.-Y.; Long, L.-S.; Zheng, L.-S. Magnetocaloric effect and thermal conductivity of Gd(OH)3 and Gd2O(OH)4(H2O)2. Chem. Commun. 2015, 51, 7317–7320. [Google Scholar] [CrossRef]
- Palacios, E.; Rodríguez-Velamazán, J.A.; Evangelisti, M.; McIntyre, G.J.; Lorusso, G.; Visser, D.; de Jongh, L.J.; Boatner, L.A. Magnetic structure and magnetocalorics of GdPO4. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 214423. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Qin, L.; Meng, Z.-S.; Yang, D.-F.; Wu, C.; Fu, Z.; Zheng, Y.-Z.; Liu, J.-L.; Tarasenko, R.; Orendáč, M.; et al. Study of a magnetic-cooling material Gd(OH)CO3. J. Mater. Chem. A 2014, 2, 9851–9858. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Prokleška, J.; Xu, W.-J.; Liu, J.-L.; Liu, J.; Zhang, W.-X.; Jia, J.-H.; Sechovský, V.; Tong, M.-L. A brilliant cryogenic magnetic coolant: Magnetic and magnetocaloric study of ferromagnetically coupled GdF3. J. Mater. Chem. C 2015, 3, 12206–12211. [Google Scholar] [CrossRef]
- Xu, Q.F.; Liu, B.L.; Ye, M.Y.; Zhuang, G.L.; Long, L.S.; Zheng, L.S. Gd(OH)F2: A Promising Cryogenic Magnetic Refrigerant. J. Am. Chem. Soc. 2022, 144, 13787–13793. [Google Scholar] [CrossRef]
- Chen, Y.W.; Gong, P.F.; Guo, R.X.; Fan, F.D.; Shen, J.; Zhang, G.C.; Tu, H. Improvement on Magnetocaloric Effect through Structural Evolution in Gadolinium Borate Halides Ba2Gd(BO3)2X (X = F, Cl). Inorg. Chem. 2023, 62, 15584–15592. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-J.; Yuan, J.; Tao, J.; Zhang, Y.-Q.; Liu, C.-M.; Kou, H.-Z. Rhodamine Salicylaldehyde Hydrazone Dy(III) Complexes: Fluorescence and Magnetism. Inorg. Chem. 2018, 57, 4061–4069. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-J.; Wu, S.-Q.; Li, J.-X.; Zhang, Y.-Q.; Sato, O.; Kou, H.-Z. Structural Modulation of Fluorescent Rhodamine-Based Dysprosium(III) Single-Molecule Magnets. Inorg. Chem. 2020, 59, 2308–2315. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-J.; Fu, Z.-Y.; Sun, R.; Yuan, J.; Liu, C.-M.; Zou, B.; Wang, B.-W.; Kou, H.-Z. Mechanochromic and Single-Molecule Magnetic Properties of a Rhodamine 6G Dy(III) Complex. ACS Appl. Electron. Mater. 2021, 3, 1368–1374. [Google Scholar] [CrossRef]
- Miao, L.; Liu, M.J.; Ding, M.M.; Zhang, Y.Q.; Kou, H.Z. A Dy(III) Fluorescent Single-Molecule Magnet Based on a Rhodamine 6G Ligand. Inorganics 2021, 9, 51. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, S.Q.; Liu, M.J.; Sato, O.; Kou, H.Z. Rhodamine 6G-Labeled Pyridyl Aroylhydrazone Fe(II) Complex Exhibiting Synergetic Spin Crossover and Fluorescence. J. Am. Chem. Soc. 2018, 140, 9426–9433. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, M.-J.; Wu, S.-Q.; Zhu, X.; Zhang, N.; Sato, O.; Kou, H.-Z. Substituent effects on the fluorescent spin-crossover Fe(ii) complexes of rhodamine 6G hydrazones. Inorg. Chem. Front. 2019, 6, 1170–1176. [Google Scholar] [CrossRef]
- Huang, W.; Wu, D.; Guo, D.; Zhu, X.; He, C.; Meng, Q.; Duan, C. Efficient near-infrared emission of a Ytterbium(III) compound with a green light rhodamine donor. Dalton Trans. 2009, 12, 2081–2084. [Google Scholar] [CrossRef] [PubMed]
- Sharples, J.W.; Zheng, Y.Z.; Tuna, F.; McInnes, E.J.L.; Collison, D. Lanthanide discs chill well and relax slowly. Chem. Commun. 2011, 47, 7650–7652. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Y.; Wu, Z.L.; Fan, C.J.; Yan, L.L.; Wang, W.M.; Ji, B.M. Synthesis of two lanthanide clusters LnIII4 (Gd4 and Dy4) with [2 x 2] square grid shape: Magnetocaloric effect and slow magnetic relaxation behaviors. J. Rare Earths 2021, 39, 1082–1088. [Google Scholar] [CrossRef]
- Wang, W.M.; Li, X.Z.; Zhang, L.; Chen, J.L.; Wang, J.H.; Wu, Z.L.; Cui, J.Z. A series of [2 × 2] square grid LnIII4 clusters: A large magnetocaloric effect and single-molecule-magnet behavior. New J. Chem. 2019, 43, 7419–7426. [Google Scholar] [CrossRef]
- Baril-Robert, F.; Petit, S.; Pilet, G.; Chastanet, G.; Reber, C.; Luneau, D. Site-Selective Lanthanide Doping in a Nonanuclear Yttrium(III) Cluster Revealed by Crystal Structures and Luminescence Spectra. Inorg. Chem. 2010, 49, 10970–10976. [Google Scholar] [CrossRef]
- Petit, S.; Baril-Robert, F.; Pilet, G.; Reber, C.; Luneau, D. Luminescence spectroscopy of europium(III) and terbium(III) penta-, octa- and nonanuclear clusters with β-diketonate ligands. Dalton Trans. 2009, 34, 6809–6815. [Google Scholar] [CrossRef]
- Wang, R.; Song, D.; Wang, S. Toward constructing nanoscale hydroxo–lanthanide clusters: Syntheses and characterizations of novel tetradecanuclear hydroxo–lanthanide clusters. Chem. Commun. 2002, 4, 368–369. [Google Scholar] [CrossRef]
- Li, X.-L.; He, L.-F.; Feng, X.-L.; Song, Y.; Hu, M.; Han, L.-F.; Zheng, X.-J.; Zhang, Z.-H.; Fang, S.-M. Two chiral tetradecanuclear hydroxo-lanthanide clusters with luminescent and magnetic properties. CrystEngComm 2011, 13, 3643–3645. [Google Scholar] [CrossRef]
- Bürgstein, M.R.; Gamer, M.T.; Roesky, P.W. Nitrophenolate as a building block for lanthanide chains, layers, and clusters. J. Am. Chem. Soc. 2004, 126, 5213–5218. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, L.; Liu, C.-M.; Kou, H.-Z. {GdIII7} and {GdIII14} Cluster Formation Based on a Rhodamine 6G Ligand with a Magnetocaloric Effect. Molecules 2024, 29, 389. https://doi.org/10.3390/molecules29020389
Miao L, Liu C-M, Kou H-Z. {GdIII7} and {GdIII14} Cluster Formation Based on a Rhodamine 6G Ligand with a Magnetocaloric Effect. Molecules. 2024; 29(2):389. https://doi.org/10.3390/molecules29020389
Chicago/Turabian StyleMiao, Lin, Cai-Ming Liu, and Hui-Zhong Kou. 2024. "{GdIII7} and {GdIII14} Cluster Formation Based on a Rhodamine 6G Ligand with a Magnetocaloric Effect" Molecules 29, no. 2: 389. https://doi.org/10.3390/molecules29020389
APA StyleMiao, L., Liu, C. -M., & Kou, H. -Z. (2024). {GdIII7} and {GdIII14} Cluster Formation Based on a Rhodamine 6G Ligand with a Magnetocaloric Effect. Molecules, 29(2), 389. https://doi.org/10.3390/molecules29020389