Diterpenoids with Schistosomula-Killing and Anti-Fibrosis Activities In Vitro from the Leaves of Croton tiglium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of Compound 1
2.2. Effect of Schistosomula Killing
2.3. Anti-Fibrosis Activities of Compounds 2, 4, and 10 In Vitro
2.3.1. Cell Cytotoxicity of Compounds 2, 4, and 10 on LX-2 Cells
2.3.2. Effect of Compounds 2, 4, and 10 on Content of COL-I, COL-III, α-SMA, and TGF-β1 in LX-2 Cells
2.3.3. Inhibitory Effects of Compound 2 on TGF-β1-Induced Liver Fibrosis in LX-2 Cells
The mRNA Expression of COL-I, COL-III, α-SMA, TGF-β1 in LX-2 Cells
The Protein Expression of COL-I, COL-III, α-SMA, and TGF-β1 in LX-2 Cells
The Expression of COL-I, COL-III, α-SMA, and TGF-β1 in LX-2 Cells Were Evaluated Using Immunohistochemistry Staining
2.3.4. Inhibitory Effects of Compound 2 on Liver Fibrosis through the Regulation of the Expression of TGF-β/Smad-Pathway-Related Proteins
The mRNA Expression of TGF-βRI, TGF-βRII, Smad2, and Smad3
The Protein Expression of TGF-βRI, TGF-βRII, Smad2, and Smad3
The Expression of TGF-βRI, TGF-βRII, Smad2, and Smad3 was Evaluated Using Immunohistochemistry Staining
3. Materials and Methods
3.1. Materials and Reagents
3.2. Extraction and Isolation
3.3. Characterization of the Isolates
3.4. ECD Calculation
3.5. Killing of Schistosomula Test In Vitro
3.6. Cell Culture
3.7. Cytotoxicity Testing
3.8. Establishing Cell Models
3.9. The Extraction of Total RNA and Protein of the Cells
3.10. ELISA Detection
3.11. RT-PCR Detection
3.12. Western Blotting Detection
3.13. Immunohistochemical Detection
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, S.Y.; Zhu, B.K.; Luo, F.; Lin, X.Y.; Sun, C.S.; You, Y.M.; Yi, C.; Xu, B.; Wang, J.P.; Lu, Y.; et al. Comparative transcriptome profiles of Schistosoma japonicum larval stages: Implications for parasite biology and host invasion. PLoS Neglect. Trop. D 2022, 16, e0009889. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Bergquist, R.; Cai, P.F.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis-from immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Jiz, M.; Mingala, C.; Fu, Z.Q.; Adriatico, M.; Lu, K.; Jarilla, B.; Sagliba, M.; Moreno, A.; Park, S.; Lin, J.J.; et al. High prevalence of Schistosoma japonicm by perfusion in naturally exposed water buffalo in a region of the Philippines endemic for human schistosomiasis. PLoS Neglect. Trop. D 2021, 15, e0009796. [Google Scholar] [CrossRef]
- Tang, Y.X.; Shen, Y.X.; Hong, Y.; Zhang, Z.H.; Zhai, Q.; Fu, Z.Q.; Li, H.; Lu, K.; Lin, J.J. miR-181a regulates the host immune response against Schistosoma japonicum infection through the TLR4 receptor pathway. Parasit. Vectors 2021, 14, 548. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.B.; Chen, Y.; Jiang, Q.W. History of Human Schistosomiasis (bilharziasis) in China: From Discovery to Elimination. Acta Parasitol. 2021, 66, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Xu, Z.M.; Yang, F.; Dang, H.; Li, Y.L.; Lü, S.; Cao, C.L.; Xu, J.; Li, S.Z.; Zhou, X.N. Endemic status of schistosomiasis in People’s Republic of China in 2020. Chin. J. Schistosomiasis Control 2021, 33, 225–233. [Google Scholar]
- LoVerde, P.T. Schistosomiasis. Adv. Exp. Med. Biol. 2019, 1154, 45–70. [Google Scholar]
- Nation, C.S.; Da’dara, A.A.; Marchant, J.K.; Skelly, P.J. Schistosome migration in the definitive host. PLoS Neglect. Trop. D 2020, 14, e0007951. [Google Scholar] [CrossRef]
- Chen, S.S.; Gao, Y.Q.; Liang, Y.; Hu, L.; Liu, J.; Peng, L.; Feng, A.G.; Xiao, J.H. Imbalance of Th1/Th2 and Th17/Treg promoting schistosome egg granuloma formation. Int. J. Clin. Exp. Med. 2017, 10, 14290–14300. [Google Scholar]
- Dewidar, B.; Meyer, C.; Dooley, S.; Meindl-Beinker, A.N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019, 8, 1419. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Ma, H.H.; Cao, Y.; Zhan, T.Z.; Zhang, T.T.; Wang, X.Y.; Zhang, Y.N.; Xu, J.; Xia, C.M. Activation of primary hepatic stellate cells and liver fibrosis induced by targeting TGF-β1/Smad signaling in schistosomiasis in mice. Parasit. Vectors 2022, 15, 456. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.P.; Robinson, M.W.; Ramm, G.A.; Gobert, G.N. Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Exp. Parasitol. 2022, 236-237, 108255. [Google Scholar] [CrossRef]
- Mnkugwe, R.H.; Minzi, Q.; Kinung’hi, S.; Kamuhabwa, A.; Aklillu, E. Efficacy and safety of praziquantel and dihydroartemisinin piperaquine combination for treatment and control of intestinal schistosomiasis: A randomized, non-inferiority clinical trial. PLoS Neglect. Trop. D 2020, 14, e0008619. [Google Scholar] [CrossRef]
- Joseph, W.W.; Nupur, K.; Sue, B.; Jennifer, D.C.; John, M.D.; Carl, H.C.; Charles, H.K.; Danie, G.C. Environmental predictors of Schistosomiasis persistent hotspots following mass treatment with Praziquantel. Am. J. Trop. Med. Hyg. 2020, 102, 328–338. [Google Scholar]
- Abd Allah, M.H.; Zaalouk, T.K.; Abo-Sheishaa, G.A.; Shalash, I.R.; Bayoumy, A.S. Role of IL-17A in enhancing liver fibrosis induced by TGF-β1 and IL-13 in Schistosoma mansoni infected mice. Egypt J. Immunol. 2022, 29, 174–183. [Google Scholar] [CrossRef]
- Wang, X.Y.; He, J.; Juma, S.; Kabole, F.; Guo, J.G.; Dai, J.R.; Li, W.; Yang, K. Efficacy of China-made praziquantel for treatment of Schistosomiasis haematobium in Africa: A randomized controlled trial. PLoS Neglect. Trop. D 2019, 13, e0007238. [Google Scholar] [CrossRef]
- Raphael, T.A.; Tayo, A.A.; Babatunji, E.O.; Priscilla, M.; Londiwe, S.M.; Ashley, P.; Abidemi, P.K. PZQ therapy: How close are we in the development of effective alternative anti-schistosomal drugs? Infect. Disord.—Drug Targets 2019, 19, 337–349. [Google Scholar]
- McManus, D.P. Recent progress in the development of liver fluke and blood fluke vaccines. Vaccines 2020, 8, 553. [Google Scholar] [CrossRef]
- Deng, L.; Zhong, Y.M.; Zheng, L.Y.; Guo, W.; Fan, X.L. Recent Advance of Anti-schistosomiasis Drugs. J. Gannan Normal Univ. 2021, 43, 53–59. [Google Scholar]
- Wu, Z.L.; He, L. Advances in traditional Chinese medicine treatment of schistosomiasis liver fibrosis. Chin. J. Schistosomiasis Control 2013, 25, 422–424. [Google Scholar]
- El-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T. Anti-HIV-1 phorbol esters from the seeds of Croton tiglium. Phytochemistry 2000, 53, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Zhou, B.; Yu, J.F.; Xu, C.H.; Ding, J.; Zhang, H.; Yue, J.M. Cytotoxic tigliane-type diterpenoids from Croton tiglium. Tetrahedron 2015, 71, 9638–9644. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Peng, S.; He, W.J.; Liu, Y.H.; Wang, J.F.; Zhou, X.J. Antitubercular and cytotoxic tigliane-type diterpenoids from Croton tiglium. Bioorg. Med. Chem. Lett. 2016, 26, 4996–4999. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Yang, S.H.; Liu, Y.Q.; Li, D.X.; He, W.J.; Zhang, X.X.; Liu, Y.H.; Zhou, X.J. Five new phorbol esters with cytotoxic and selective anti-inflflammatory activities from Croton tiglium. Bioorg. Med. Chem. Lett. 2015, 25, 1986–1989. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Qin, L.; Zhao, B.Q.; Cai, L.; Zhong, Z.P.; Liu, Y.H.; Zhou, X.J. Crotonols A and B, two rare tigliane diterpenoid derivatives against K562 cells from Croton tiglium. Orga. Biomol. Chem. 2019, 17, 195–202. [Google Scholar] [CrossRef]
- Li, L.; He, Y.Q.; Wu, Z.H.; Yang, S.H.; Zhou, X.J. A preliminary study of the anti-schistosomiasis activity of ethyl acetate extract from the leaves of Croton tiglium. J. Trad. Chin. Med. Univ. Hunan. 2023, 43, 257–263. [Google Scholar]
- Neeman, M.; Simmons, O.D. Carbon-13 nuclear magnetic resonance spectroscopy of phorbol. Can. J. Chem. 1979, 57, 2071–2072. [Google Scholar] [CrossRef]
- Florent, O.; He, L.P.; Emmanuelle, G.V.; Johan, N.; Christophe, P.; Fanny, R.; Isabelle, G.; Pieter, L.; Marc, L. Antiviral Activity of Flexibilane and Tigliane Diterpenoids from Stillingia lineata. J. Nat. Prod. 2015, 78, 1119–1128. [Google Scholar]
- Zhang, X.L.; Wang, L.; Li, F.; Yu, K.; Wang, M.K. Cytotoxic Phorbol Esters of Croton tiglium. J. Nat. Prod. 2013, 76, 858–864. [Google Scholar] [CrossRef]
- Nothias, L.F.; Boutet-Mercey, S.; Cachet, X.; Torre, E.D.L.; Laboureur, L.; Gallard, J.F.; Retailleau, P.; Brunelle, A.; Dorrestein, P.C.; Costa, J.; et al. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata. J. Nat. Prod. 2017, 80, 2620–2629. [Google Scholar] [CrossRef]
- Ren, F.X.; Ren, F.Z.; Yang, Y.; Yu, N.J.; Zhang, Y.; Zhao, Y.M. Tigliane Diterpene Esters from the Leaves of Croton tiglium. Helv. Chim. Acta 2014, 97, 1014–1019. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wires Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Stephens, P.J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 2010, 22, 229–233l. [Google Scholar] [CrossRef]
Position | δC | δH (J in Hz) |
---|---|---|
1 | 159.4, CH | 7.60, s |
2 | 133.1, C | |
3 | 208.8, C | |
4 | 73.1, C | |
5 | 37.6, CH2 | 2.58, d (18.4) 2.42, d (18.4) |
6 | 136.2, C | |
7 | 132.5, CH | 5.72, dd (5.5, 1.7) |
8 | 39.0, CH | 3.31, t (5.6) |
9 | 78.2, C | |
10 | 56.2, CH | 3.11, t (2.5) |
11 | 44.9, CH | 2.04, m |
12 | 76.2, CH | 3.89, d (9.8) |
13 | 67.5, C | |
14 | 35.2, CH | 1.05, d (5.4) |
15 | 25.8, C | |
16 | 16.0, CH3 | 1.26, s |
17 | 22.9, CH3 | 1.27, s |
18 | 14.1, CH3 | 1.09, d (6.5) |
19 | 8.8, CH3 | 1.77, dd (2.7, 1.2) |
20 | 69.2, CH2 | 4.50, s |
1′ | 171.2, C | |
2′ | 19.4, CH3 | 2.04, s |
1″ | 179.8, C | |
2″ | 41.1, CH | 2.47, m |
3″ | 26.2, CH2 | 1.74, m 1.53, m |
4″ | 10.6, CH3 | 0.98, t (7.4) |
5″ | 15.5, CH3 | 1.20, d (7.0) |
Group | Concentration/(μg/mL) | Number of Schistosoma Cercariae per Hole/Piece | Survival Rate of Schistosomula/% | ||
---|---|---|---|---|---|
24 | 48 | 72 | |||
Blank control group | --- | 40 | 0.92 ± 0.04 | 0.86 ± 0.03 | 0.75 ± 0.04 |
Praziquantel | 30.00 | 40 | 0.43 ± 0.08 * | 0.28 ± 0.05 * | 0 * |
DMSO | --- | 40 | 0.89 ± 0.07 | 0.83 ± 0.04 | 0.70 ± 0.04 |
8.50 | 40 | 0.39 ± 0.03 * | 0.22 ± 0.03 * | 0 * | |
1 | 17.00 | 40 | 0.38 ± 0.07 * | 0.21 ± 0.05 * | 0 * |
34.00 | 40 | 0.22 ± 0.01 *# | 0.14 ± 0.02 *# | 0 * | |
8.50 | 40 | 0.35 ± 0.02 * | 0.23 ± 0.01 * | 0 * | |
2 | 17.00 | 40 | 0.28 ± 0.06 *# | 0.20 ± 0.05 * | 0 * |
34.00 | 40 | 0.20 ± 0.05 *# | 0.12 ± 0.04 *# | 0 * | |
8.50 | 40 | 0.39 ± 0.03 * | 0.23 ± 0.03 * | 0 * | |
3 | 17.00 | 40 | 0.42 ± 0.04 * | 0.22 ± 0.05 * | 0 * |
34.00 | 40 | 0.24 ± 0.01 *# | 0.12 ± 0.02 *# | 0 * | |
8.50 | 40 | 0.34 ± 0.02 * | 0.23 ± 0.01 * | 0 * | |
4 | 17.00 | 40 | 0.29 ± 0.06 *# | 0.20 ± 0.05 * | 0 * |
34.00 | 40 | 0.21 ± 0.05 *# | 0.16 ± 0.04 *# | 0 * | |
8.50 | 40 | 0.36 ± 0.04 * | 0.22 ± 0.03 * | 0 * | |
5 | 17.00 | 40 | 0.43 ± 0.04 * | 0.19 ± 0.04 * | 0 * |
34.00 | 40 | 0.22 ± 0.04 *# | 0.14 ± 0.03 *# | 0 * | |
8.50 | 40 | 0.39 ± 0.01 * | 0.23 ± 0.01 * | 0 * | |
6 | 17.00 | 40 | 0.44 ± 0.09 * | 0.20 ± 0.05 * | 0 * |
34.00 | 40 | 0.22 ± 0.04 *# | 0.16 ± 0.04 *# | 0 * | |
8.50 | 40 | 0.39 ± 0.02 * | 0.22 ± 0.01 * | 0 * | |
7 | 17.00 | 40 | 0.47 ± 0.04 * | 0.22 ± 0.08 * | 0 * |
34.00 | 40 | 0.22 ± 0.03 *# | 0.11 ± 0.03 *# | 0 * | |
8.50 | 40 | 0.39 ± 0.01 * | 0.23 ± 0.01 * | 0 * | |
8 | 17.00 | 40 | 0.38 ± 0.05 * | 0.20 ± 0.05 * | 0 * |
34.00 | 40 | 0.24 ± 0.01 *# | 0.12 ± 0.01 *# | 0 * | |
8.50 | 40 | 0.44 ± 0.03 * | 0.22 ± 0.01 * | 0 * | |
9 | 17.00 | 40 | 0.47 ± 0.09 * | 0.20 ± 0.03 * | 0 * |
34.00 | 40 | 0.21 ± 0.01 *# | 0.13 ± 0.02 *# | 0 * | |
8.50 | 40 | 0.39 ± 0.02 * | 0.23 ± 0.01 * | 0 * | |
10 | 17.00 | 40 | 0.34 ± 0.06 * | 0.23 ± 0.05 * | 0 * |
34.00 | 40 | 0.20 ± 0.05 *# | 0.12 ± 0.04 *# | 0 * |
Compounds | Concentration (μM) | Inhibition Rate (%) | IC50 (μM) | TC0 (μM) |
---|---|---|---|---|
10 | 4.15 ± 4.30 | |||
20 | 9.61 ± 1.91 | |||
Compound 2 | 40 | 21.44 ± 3.98 | 103.89 | 2.14 |
80 | 37.37 ± 5.20 | |||
160 | 47.41 ± 2.00 | |||
20 | 4.96 ± 1.18 | |||
40 | 14.98 ± 1.63 | |||
Compound 4 | 80 | 20.83 ± 2.24 | 123.29 | 5.17 |
160 | 44.47 ± 1.84 | |||
320 | 53.81 ± 1.46 | |||
20 | 9.47 ± 1.88 | |||
40 | 17.82 ± 1.72 | |||
Compound 10 | 80 | 28.90 ± 1.06 | 315.01 | 11.80 |
160 | 46.39 ± 2.92 | |||
320 | 58.32 ± 3.22 |
Reagent | 20 µL Reaction System | Final Concentration |
---|---|---|
dNTP Mix, 2.5 mM Each | 4 µL | 500 µM Each |
Primer Mix | 2 µL | |
RNA Template | 7 µL | 50 pg–5 µg |
5 × RT Buffer | 4 µL | 1× |
DTT, 0.1 M | 2 µL | 10 mM |
HiFiScript, 200 U/µL | 1 µL |
Primer Name | Forward | Revers |
---|---|---|
GAPDH | ACAGCCTCAAGATCATCAGC | GGTCATGAGTCCTTCCACGAT |
TGF-β1 | AGCAACAATTCCTGGCGATACCTC | CAATTTCCCCTCCACGGCTCA |
COLI | GCAAGAACCCCGCCCGCACC | GCTCTCGCCGAACCAGACATGCC |
COLIII | CGCCCTCCTAATGGTCAAGG | TTCTGAGGACCAGTAGGGCA |
α-SMA | CCTGAGCGTTTTGATGCCTT | ACTTCAGCCGATAGTTTGTCT |
TGFβR1 | CCTCGAGATAGGCCGTTTGTA | ATGGTAAACCAGTAGTTGGAAGT |
TGFβR2 | CGTGAAGAACGACCTAACC | CCACCTGCCCACTGTTAG |
SMAD2 | TCCATCTTGCCATTCAC | TTCTTCCTCCCCATTCT |
SMAD3 | GCGTGCGGCTCTACTACAT | CTGGTAGACAGCCTCAAAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhao, B.; Zheng, X.; Liu, Z.; Zou, H.; Qin, L.; Zhou, X. Diterpenoids with Schistosomula-Killing and Anti-Fibrosis Activities In Vitro from the Leaves of Croton tiglium. Molecules 2024, 29, 401. https://doi.org/10.3390/molecules29020401
Li L, Zhao B, Zheng X, Liu Z, Zou H, Qin L, Zhou X. Diterpenoids with Schistosomula-Killing and Anti-Fibrosis Activities In Vitro from the Leaves of Croton tiglium. Molecules. 2024; 29(2):401. https://doi.org/10.3390/molecules29020401
Chicago/Turabian StyleLi, Li, Biqing Zhao, Xiaoxiao Zheng, Zhaohui Liu, Huan Zou, Li Qin, and Xiaojiang Zhou. 2024. "Diterpenoids with Schistosomula-Killing and Anti-Fibrosis Activities In Vitro from the Leaves of Croton tiglium" Molecules 29, no. 2: 401. https://doi.org/10.3390/molecules29020401
APA StyleLi, L., Zhao, B., Zheng, X., Liu, Z., Zou, H., Qin, L., & Zhou, X. (2024). Diterpenoids with Schistosomula-Killing and Anti-Fibrosis Activities In Vitro from the Leaves of Croton tiglium. Molecules, 29(2), 401. https://doi.org/10.3390/molecules29020401