Active Sites on the CuCo Catalyst in Higher Alcohol Synthesis from Syngas: A Review
Abstract
:1. Introduction
2. Summary of Active Sites for HA Synthesis over CuCo Catalysts
2.1. Alloy Particles
2.2. Core–Shell Particles
2.3. Unsaturated Particles
3. Discussion on Fabricating the Stable CuCo Catalysts
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 6861, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Xi, X.; Cao, H.; Pei, Y.; Heeres, H.J.; Palkovits, R. Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide. Appl. Catal. B Environ. 2019, 246, 232–241. [Google Scholar] [CrossRef]
- Ao, M.; Pham, G.H.; Sunarso, J.; Tade, M.O.; Liu, S.M. Active Centers of Catalysts for Higher Alcohol Synthesis from Syngas: A Review. ACS Catal. 2018, 8, 7025–7050. [Google Scholar] [CrossRef]
- Luk, H.T.; Mondelli, C.; Ferre, D.C.; Stewart, J.A.; Perez, R.J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 2017, 46, 1358–1426. [Google Scholar] [CrossRef] [PubMed]
- Henrik, L. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef]
- Zhang, G.J.; Dong, Y.; Feng, M.R.; Zhang, Y.F.; Zhao, W.; Cao, H.C. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst. Chem. Eng. J. 2010, 156, 519–523. [Google Scholar] [CrossRef]
- Alex Mills, G. Status and future opportunities for conversion of synthesis gas to liquid fuels. Fuel 1994, 73, 1243–1279. [Google Scholar] [CrossRef]
- Thomas, V.; Kwong, A. Ethanol as a lead replacement: Phasing out leaded gasoline in Africa. Energy Policy 2001, 29, 1133–1143. [Google Scholar] [CrossRef]
- Berg, C. World fuel ethanol–Analysis and Outlook. In Sugar Trading Manual; Woodhead Publishing: Sawston, UK, 2004; pp. 1–32. [Google Scholar]
- Verkerk, K.A.N.; Jaeger, B.B.; Finkeldei, C.H.; Keim, W. Recent Developments in Isobutanol Synthesis from Synthesis Gas. Appl. Catal. A-Gen. 1999, 186, 407–431. [Google Scholar] [CrossRef]
- Fang, K.; Li, D.; Lin, M.; Xiang, M.; Wei, W.; Sun, Y. A Short Review of Heterogeneous Catalytic Process for Mixed Alcohols Synthesis via Syngas. Catal. Today 2009, 147, 133–138. [Google Scholar] [CrossRef]
- Xu, X.; Doesburg, E.; Scholten, J. Synthesis of higher alcohols from syngas—Recently patented catalysts and tentative ideas on the mechanism. Catal. Today 1987, 2, 125–170. [Google Scholar] [CrossRef]
- Cao, A.; Schumann, J.L.; Wang, T.; Zhang, L.A.; Xiao, J.P.; Bothra, P.; Liu, Y.; Abild-Pedersen, F.; Nørskov, J.K. Mechanistic Insights into the Synthesis of Higher Alcohols from Syngas on CuCo Alloys. ACS. Catal. 2018, 8, 10148–10155. [Google Scholar] [CrossRef]
- Schmidt, S.; Göbel, C.; Nebel, J.; Wiesmann, T.; Hamel, C.; Reinsdorf, A.; Wolf, D.; Gehrmann, S.; Tenhumberg, N.; Muhler, M.; et al. Recent Developments in the Conversion of Synthesis Gas to Short-Chain Alcohols over Cu-Co-Based Catalysts. Chem. Ing. Tech. 2018, 90, 1465–1475. [Google Scholar] [CrossRef]
- Wang, J.J.; Chernavskii, P.A.; Khodakov, A.Y.; Wang, Y. Structure and catalytic performance of alumina-supported copper–cobalt catalysts for carbon monoxide hydrogenation. J. Catal. 2012, 286, 51–61. [Google Scholar] [CrossRef]
- Rocha, A.L.; Solórzano, I.G.; Vander Sande, J.B. Heterogeneous and homogeneous nanoscale precipitation in dilute Cu–Co alloys. Mater. Sci. Eng. C 2007, 27, 1215–1221. [Google Scholar] [CrossRef]
- Prieto, G.; Beijer, S.; Smith, M.L.; He, M.; Au, Y.; Wang, Z.; Bruce, D.A.; de Jong, K.P.; Spivey, J.J.; de Jongh, P.E. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angew. Chem. Int. Ed. Engl. 2014, 53, 6397–6401. [Google Scholar] [CrossRef] [PubMed]
- de La Pena O’Shea, V.A.; Homs, N.; Pereira, E.B.; Nafria, R.; Piscina, P.R.d.L. X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catal. Today 2007, 126, 148–152. [Google Scholar] [CrossRef]
- Potoczna-Petru, D.; Kpiński, L. Reduction study of Co3O4 model catalyst by electron microscopy. Catal. Lett. 2001, 73, 41–46. [Google Scholar] [CrossRef]
- Llorca, J.; Dalmon, J.A.; de La Piscina, P.R.; Homs, N. In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol. Appl. Catal. A-Gen. 2003, 243, 261–269. [Google Scholar] [CrossRef]
- Sun, K.; Song, F.; Huang, W.; Tang, Y.; Zhang, Y.; Zhang, J.; Wang, Y.; Tan, Y.S. CO hydrogenation to ethanol and higher alcohols over ultrathin CuCoAl nanosheets derived from LDH precursor. Fuel 2023, 333, 126308. [Google Scholar] [CrossRef]
- Gao, S.; Liu, N.; Liu, J.; Chen, W.K.; Liang, X.L.; Yuan, Y.Z. Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1−xMnxO3 perovskites: Effect of the partial substitution of Co by Mn. Fuel 2020, 261, 116415. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Barbosa, R.; Kruse, N. Higher Alcohols through CO Hydrogenation over CoCu Catalysts: Influence of Precursor Activation. ACS Catal. 2014, 4, 2792–2800. [Google Scholar] [CrossRef]
- Liu, G.L.; Geng, Y.X.; Pan, D.M.; Zhang, Y.; Niu, T.; Liu, Y. Bi-metal Cu–Co from LaCo1−xCuxO3 perovskite supported on zirconia for the synthesis of higher alcohols. Fuel Process. Technol. 2014, 128, 289–296. [Google Scholar] [CrossRef]
- Li, Z.S.; Zhuang, Z.; Yao, D.W.; Fan, S.Q.; Guo, S.X.; Lv, J.; Huang, S.Y.; Wang, Y.; Ma, X.B. High-performance CoCu catalyst encapsulated in KIT-6 for higher alcohol synthesis from syngas. ACS Sustain. Chem. Eng. 2020, 8, 200–209. [Google Scholar] [CrossRef]
- Khan, W.U.; Baharudin, L.; Choi, J.; Yip, A.C.K. Recent Progress in CO Hydrogenation over Bimetallic Catalysts for Higher Alcohol Synthesis. ChemCatChem 2020, 13, 111–120. [Google Scholar] [CrossRef]
- Xiao, K.; Bao, Z.H.; Qi, X.Z.; Wang, X.X.; Zhong, L.S.; Fang, K.G.; Lin, M.G.; Sun, Y.H. Advances in bifunctional catalysis for higher alcohol synthesis from syngas. Chin. J. Catal. 2013, 34, 116–129. [Google Scholar] [CrossRef]
- Xue, X.; Weng, Y.; Yang, S.; Meng, S.; Sun, Q.; Zhang, Y. Research progress of catalysts for synthesis of low-carbon alcohols from synthesis gas. RSC Adv. 2021, 11, 6163–6172. [Google Scholar] [CrossRef]
- Medford, A.J.; Lausche, A.C.; Abild-Pedersen, F.; Temel, B. Activity and Selectivity Trends in Synthesis Gas Conversion to Higher Alcohols. Top. Catal. 2014, 57, 135–142. [Google Scholar] [CrossRef]
- Subramani, V.; Gangwal, S.K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. Energy Fuels 2008, 22, 117–136. [Google Scholar] [CrossRef]
- Su, J.; Zhang, Z.; Fu, D.; Liu, D.; Xu, X.C.; Shi, B.; Wang, X.; Si, R.; Jiang, Z.; Xu, J.; et al. Higher Alcohols Synthesis from Syngas over CoCu/SiO2 Catalysts: Dynamic Structure and the Role of Cu. J. Catal. 2016, 336, 94–106. [Google Scholar] [CrossRef]
- Liu, J.G.; Ding, M.Y.; Wang, T.J.; Ma, L.L. Promoting Effect of Cobalt Addition on Higher Alcohols Synthesis over Copper-Based Catalysts. Adv. Mater. Res. 2012, 550–553, 270–275. [Google Scholar] [CrossRef]
- Li, Z.S.; Luo, G.Y.; Chen, T.; Zeng, Z.; Guo, S.X.; Lv, J.; Huang, S.Y.; Wang, Y.; Ma, X.B. Bimetallic CoCu catalyst derived from in-situ grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas. Fuel 2020, 278, 118292. [Google Scholar] [CrossRef]
- Yang, Z.D.; Ma, E.J.; Zhang, Q.; Luan, C.H.; Huang, W. Catalytic performance of CuCoCe supported on nitrogen-doped carbon nanotubes for the synthesis of higher alcohols from syngas. J. Fuel Chem. Technol. 2020, 48, 9. [Google Scholar]
- Tien-Thao, N.; Zahedi-Niaki, M.H.; Alamdari, H.; Kaliaguine, S. Effect of alkali additives over nanocrystalline Co–Cu-based perovskites as catalysts for higher-alcohol synthesis. J. Catal. 2007, 245, 348–357. [Google Scholar] [CrossRef]
- Tien-Thao, N.; Zahedi-Niaki, M.H.; Alamdari, H.; Kaliaguine, S. Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors. Appl. Catal. A-Gen. 2007, 326, 152–163. [Google Scholar] [CrossRef]
- Cao, A.; Liu, G.L.; Wang, L.F.; Liu, J.G.; Yue, Y.Z.; Zhang, L.H.; Liu, Y. Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas. J. Mater. Sci. 2016, 51, 5216–5231. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, J.N.; Zhang, Q.L.; Li, Y.; Fang, K.G. Preparation, Structural Characteristics, and Catalytic Performance of Cu–Co Alloy Supported on Mn–Al Oxide for Higher Alcohol Synthesis via Syngas. Ind. Eng. Chem. Res. 2018, 57, 14957–14966. [Google Scholar] [CrossRef]
- Cao, A.; Liu, G.L.; Yue, Y.Z.; Zhang, L.H.; Liu, Y. Nanoparticles of Cu–Co alloy derived from layered double hydroxides and their catalytic performance for higher alcohol synthesis from syngas. RSC Adv. 2015, 5, 58804–58812. [Google Scholar] [CrossRef]
- Niu, T.; Liu, G.L.; Chen, Y.; Yang, J.; Wu, J.; Cao, Y.; Liu, Y. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas. Appl. Surf. Sci. 2016, 364, 388–399. [Google Scholar] [CrossRef]
- Wang, L.; Cao, A.; Liu, G.; Zhang, L.; Liu, Y. Bimetallic CuCo Nanoparticles Derived from Hydrotalcite Supported on Carbon Fibers for Higher Alcohols Synthesis from Syngas. Appl. Surf. Sci. 2016, 360, 77–85. [Google Scholar] [CrossRef]
- Sun, K.; Wu, Y.Q.; Tan, M.H.; Wang, L.Y.; Yang, G.H.; Zhang, M.; Zhang, W.; Tan, Y.S. Ethanol and higher alcohols synthesis from syngas over CuCoM (M=Fe, Cr, Ga and Al) nanoplates derived from hydrotalcite-like precursors. ChemCatChem 2019, 11, 2695–2706. [Google Scholar] [CrossRef]
- Subramanian, N.D.; Kumar, C.S.S.R.; Watanabe, K.; Fischer, P.; Tanaka, R.; Spivey, J.J. A DRIFTS study of CO adsorption and hydrogenation on Cu-based core–shell nanoparticles. Catal. Sci. Technol. 2012, 2, 621. [Google Scholar] [CrossRef]
- Lü, D.; Zhu, Y.; Sun, Y.H. Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO. Chin. J. Catal. 2013, 34, 1998–2003. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, Y.; Chen, H.; Li, Y.; He, S.; Zhang, Y.; Wei, M.; Evans, D.G.; Duan, X. Core-shell Cu@(CuCo-Alloy)/Al2O3 Catalysts for the Synthesis of Higher Alcohols from Syngas. Green Chem. 2015, 17, 1525–1534. [Google Scholar] [CrossRef]
- Subramanian, N.D.; Balaji, G.; Kumar, C.S.S.R.; Spivey, J.J. Development of cobalt–copper nanoparticles as catalysts for higher alcohol synthesis from syngas. Catal. Today 2009, 147, 100–106. [Google Scholar] [CrossRef]
- Ba, R.B.; Zhao, Y.H.; Yu, L.J.; Song, J.J.; Huang, S.S.; Zhong, L.S.; Sun, Y.H.; Zhu, Y. Synthesis of Co-based bimetallic nanocrystals with one-dimensional structure for selective control on syngas conversion. Nanoscale 2015, 7, 12365–12371. [Google Scholar] [CrossRef]
- Ye, T.Q.; Zhang, Z.X.; Xu, Y.; Yan, S.Z.; Zhu, J.F.; Liu, Y.; Li, Q.X. Higher Alcohol Synthesis from Bio·Syngas over Na·Promoted CuCoMn Catalyst. Acta Phys.-Chim. Sin. 2011, 27, 1493–1500. [Google Scholar]
- Sun, K.; Tan, M.H.; Bai, Y.X.; Gao, X.F.; Wang, P.; Gong, N.N.; Zhang, T.; Yang, G.H.; Tan, Y.S. Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols. J. Catal. 2019, 378, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.J.; Deng, X.; Huang, W. Effect of non-metal promoters on higher alcohols synthesis from syngas over Cu-based catalyst. J. Energy Inst. 2018, 91, 1136–1142. [Google Scholar] [CrossRef]
- Yang, Q.L.; Cao, A.; Kang, N.; An, K.; Liu, Z.T.; Liu, Y. A new catalyst of Co/La2O3-doped La4Ga2O9 for direct ethanol synthesis from syngas. Fuel Process. Technol. 2018, 179, 42–52. [Google Scholar] [CrossRef]
- Bin, F.; Wei, X.; Li, B.; Hui, K.S. Self-sustained combustion of carbon monoxide promoted by the Cu-Ce/ZSM-5 catalyst in CO/O2/N2 atmosphere. Appl. Catal. B-Environ. 2015, 162, 282–288. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.L.; Zhao, Y.J.; Lv, J.; Wang, S.P.; Ma, X.B. Insight into the Balancing Effect of Active Cu Species for Hydrogenation of Carbon–Oxygen Bonds. ACS Catal. 2015, 5, 6200–6208. [Google Scholar] [CrossRef]
- Hofstadt, C.E.; Schneider, M.; Bock, O.; Kochloefl, K. Effect of Preparation Methods and Promoters on Activity and Selectivity of Cu−ZnO−Al2O3−K Catalysts in Aliphatic Alcohols Synthesis from CO and H2. Stud. Surf. Sci. Catal. 1983, 16, 709–721. [Google Scholar] [CrossRef]
- Gong, J.L.; Yue, H.R.; Zhao, Y.J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.P.; Ma, X.B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 2012, 134, 13922–13925. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Li, C.; Huang, W. CO Hydrogenation to Higher Alcohols over Cu/Zn/Al Catalysts without Alkalis or Fischer− Tropsch Elements: The Effect of Triethanolamine Content. Catal. Commun. 2016, 76, 29–32. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zuo, Z.J.; Liu, C.B.; Li, C.; Deng, X.; Huang, W. Higher Alcohols Synthesis via CO Hydrogenation on Cu/Zn/Al/Zr Catalysts without Alkalis and F−T Elements. Fuel Process. Technol. 2016, 144, 186–190. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Wang, L.; Liu, Y.J.; Huang, W. The Effect of CuOZnO-Al2O3 Catalyst Structure on the Ethanol Synthesis from Syngas. Catal. Commun. 2013, 34, 69–72. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Wang, L.; Yu, L.M.; Han, P.D.; Huang, W. Experimental and Theoretical Studies of Ethanol Synthesis from Syngas over CuZnAl Catalysts without Other Promoters. J. Phys. Chem. C 2014, 118, 12890–12898. [Google Scholar] [CrossRef]
- Cui, N.; Liu, Y.J.; Jia, P.L.; Luo, P.; Huang, W. Investigation of alkaline complexant on ethanol synthesis from syngas over slurry CuZnAlOOH catalyst. Int. J. Hydrogen Energy 2021, 46, 21889–21900. [Google Scholar] [CrossRef]
- Bai, H.; Ma, M.M.; Bai, B.; Cao, H.J.; Zhang, L.; Gao, Z.H.; Vinokurovc, V.A.; Huang, W. Carbon chain growth by formyl coupling over the Cu/γ-AlOOH(001) surface in syngas conversion. Phys. Chem. Chem. Phys. 2018, 21, 148–159. [Google Scholar] [CrossRef]
- Sun, K.; Gao, X.F.; Bai, Y.X.; Tan, M.H.; Yang, G.H.; Tan, Y.S. Synergetic catalysis of bimetallic copper–cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas. Catal. Sci. Technol. 2018, 8, 3936–3947. [Google Scholar] [CrossRef]
- Blanchard, M.; Derule, H.; Canesson, P. Cobalt Catalysts for the Production of Alcohols in the F.T. Synthesis. Synthesis. Catal. Lett. 1989, 2, 319–322. [Google Scholar] [CrossRef]
- Chen, T.Y.; Su, J.; Zhang, Z.C. Structure Evolution of Co-CoOx Interface for Higher Alcohol Synthesis from Syngas over Co/CeO2 Catalysts. ACS Catal. 2018, 8, 8606–8617. [Google Scholar] [CrossRef]
- An, K.; Zhang, S.R.; Wang, J.M.; Liu, Q.; Zhang, Z.Y.; Liu, Y. A highly selective catalyst of Co/La4Ga2O9 for CO2 hydrogenation to ethanol. J. Energy Chem. 2021, 56, 486–495. [Google Scholar] [CrossRef]
- Gao, S.; Li, X.Y.; Li, Y.Y.; Yu, H.B.; Zhang, F.F.; Sun, Y.M.; Fang, H.H.; Zhang, X.B.; Liang, X.L.; Yuan, Y.Z. Effects of gallium as an additive on activated carbon-supported cobalt catalysts for the synthesis of higher alcohols from syngas. Fuel 2018, 230, 194–201. [Google Scholar] [CrossRef]
- Guo, S.X.; Liu, G.L.; Han, T.; Zhang, Z.Y.; Liu, Y. K-Modulated Co Nanoparticles Trapped in La-Ga-O as Superior Catalysts for Higher Alcohols Synthesis from Syngas. Catalysts 2019, 9, 218. [Google Scholar] [CrossRef]
- Ning, X.; An, Z.; He, J. Remarkably efficient CoGa catalyst with uniformly dispersed and trapped structure for ethanol and higher alcohol synthesis from syngas. J. Catal. 2016, 340, 236–247. [Google Scholar] [CrossRef]
- An, Z.; Ning, X.; He, J. Ga-promoted CO insertion and C-C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas. J. Catal. 2017, 356, 157–164. [Google Scholar] [CrossRef]
- Kang, N.; Yang, Q.; An, K.; Li, S.S.; Zhang, L.H.; Liu, Y. Mixed oxides of La-Ga-O modified Co/ZrO2 for higher alcohols synthesis from syngas. Catal. Today 2019, 330, 46–53. [Google Scholar] [CrossRef]
- Paterson, J.; Partington, R.; Peacock, M.; Sullivan, K.; Wilson, J.; Xu, Z. Elucidating the Role of Bifunctional Cobalt-Manganese Catalyst Interactions for Higher Alcohol Synthesis. Eur. J. Inorg. 2020, 2020, 2312–2324. [Google Scholar] [CrossRef]
- Du, H.; Zhu, H.; Chen, X.; Dong, W.; Lu, W.; Luo, W.; Jiang, M.; Liu, T.; Ding, Y. Study on CaO-Promoted Co/AC Catalysts for Synthesis of Higher Alcohols from Syngas. Fuel 2016, 182, 42–49. [Google Scholar] [CrossRef]
- Wang, P.; Chen, S.; Bai, Y.; Gao, X.; Li, X.; Sun, K.; Xie, H.; Yang, G.; Han, Y.; Tan, Y. Effect of the Promoter and Support on Cobalt-Based Catalysts for Higher Alcohols Synthesis through CO Hydrogenation. Fuel 2017, 195, 69–81. [Google Scholar] [CrossRef]
- Nebel, J.; Schmidt, S.; Pan, Q.; Lotz, K.; Kaluza, S.; Muhler, M. On the role of cobalt carbidization in higher alcohol synthesis over hydrotalcite-based Co-Cu catalysts. Chin. J. Catal. 2019, 40, 1731–1740. [Google Scholar] [CrossRef]
- Li, L.S.; Lin, T.J.; Li, X.; Wang, C.Q.; Qin, T.T.; An, Y.L.; Lu, Y.W.; Zhong, L.S.; Sun, Y.H. Control of Co0/Co2C dual active sites for higher alcohols synthesis from syngas. Appl. Catal. A-Gen. 2020, 602, 117704. [Google Scholar] [CrossRef]
- Fan, S.Q.; Wang, Y.; Li, Z.S.; Zeng, Z.; Yao, D.W.; Huang, S.Y.; Ma, X.B. Graphene oxide-ordered mesoporous silica composite supported Co-based catalysts for CO hydrogenation to higher alcohols. Appl. Catal. A-Gen. 2019, 583, 117123. [Google Scholar] [CrossRef]
- Wang, Z.; Kumar, N.; Spivey, J.J. Preparation and characterization of lanthanum-promoted cobalt–copper catalysts for the conversion of syngas to higher oxygenates: Formation of cobalt carbide. J. Catal. 2016, 339, 1–8. [Google Scholar] [CrossRef]
- Qin, T.T.; Lin, T.J.; Qi, X.Z.; Wang, C.Q.; Li, L.S.; Tang, Z.Y.; Zhong, L.S.; Sun, Y.H. Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. Appl. Catal. B Environ. 2021, 285, 119840. [Google Scholar] [CrossRef]
- Liu, Y.; He, S.; Yang, R.O.; Sun, F.F.; Yang, Y.Q.; Mei, B.B.; Kang, J.C.; Wu, D.S.; Jiang, Z. Tuning the interfaces of Co–Co2C with sodium and its relation to the higher alcohol production in Fischer–Tropsch synthesis. J. Mater. Sci. 2020, 55, 9037–9047. [Google Scholar] [CrossRef]
- Zhao, Z.A.; Lu, W.; Yang, R.O.; Zhu, H.J.; Dong, W.D.; Sun, F.F.; Jiang, Z.; Lyu, Y.; Liu, T.; Du, H.; et al. Insight into the Formation of Co@Co2C Catalysts for Direct Synthesis of Higher Alcohols and Olefins from Syngas. ACS Catal. 2017, 8, 228–241. [Google Scholar] [CrossRef]
- Cui, W.G.; Li, Y.T.; Zhang, H.B.; Wei, Z.C.; Gao, B.H.; Dai, J.J.; Hu, T.L. In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Appl. Catal. B Environ. 2020, 278, 119262. [Google Scholar] [CrossRef]
- Pei, Y.P.; Liu, J.X.; Zhao, Y.H.; Ding, Y.J.; Liu, T.; Dong, W.D.; Zhu, H.J.; Su, H.Y.; Yan, L.; Li, J.L.; et al. High Alcohols Synthesis via Fischer–Tropsch Reaction at Cobalt Metal/Carbide Interface. ACS Catal. 2015, 5, 3620–3624. [Google Scholar] [CrossRef]
- Du, H.; Jiang, M.; Zhao, Z.; Li, Y.H.; Liu, T.; Zhu, H.J.; Zhang, Z.C.; Ding, Y.J. Alcohol Synthesis via Fischer–Tropsch Synthesis over Activated Carbon Supported Alkaline Earth Modified Cobalt Catalyst. Catal. Lett. 2021, 151, 3632–3638. [Google Scholar] [CrossRef]
- Lebarbier, V.M.; Mei, D.; Kim, D.H. Effects of La2O3 on the Mixed Higher Alcohols Synthesis from Syngas over Co Catalysts: A Combined Theoretical and Experimental Study. J. Phys. Chem. C 2011, 115, 17440–17451. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Qi, X.Z.; Wang, X.X.; Lv, D.; Yu, F.; Zhong, L.S.; Wang, H.; Sun, Y.H. Deactivation study of CuCo catalyst for higher alcohol synthesis via syngas. Catal. Today 2016, 270, 101–107. [Google Scholar] [CrossRef]
- Yang, Q.L.; Cao, A.; Kang, N.; Ning, H.Y.; Wang, J.M.; Liu, Z.T.; Liu, Y. Bimetallic Nano Cu–Co Based Catalyst for Direct Ethanol Synthesis from Syngas and Its Structure Variation with Reaction Time in Slurry Reactor. Ind. Eng. Chem. Res. 2017, 56, 2889–2898. [Google Scholar] [CrossRef]
- Göbel, C.; Schmidt, S.; Froese, C.; Fu, Q.; Chen, Y.T.; Pan, Q.S.; Muhler, M. Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure. J. Catal. 2020, 383, 33–41. [Google Scholar] [CrossRef]
- Liu, G.L.; Niu, T.; Cao, A.; Geng, Y.X.; Zhang, Y.; Liu, Y. The deactivation of Cu–Co alloy nanoparticles supported on ZrO2 for higher alcohols synthesis from syngas. Fuel 2016, 176, 1–10. [Google Scholar] [CrossRef]
- Xiong, M.; Gao, Z.; Qin, Y. Spillover in Heterogeneous Catalysis: New Insights and Opportunities. ACS Catal. 2021, 11, 3159–3172. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, Z.W.; Luo, P.; Cui, N.; Wang, K.J.; Huang, W. Size-dependent and sensitivity of copper particle in ternary CuZnAl catalyst for syngas to ethanol. Appl. Catal. B Environ. 2023, 336, 122949. [Google Scholar] [CrossRef]
- Zhang, R.G.; Peng, M.; Duan, T.; Wang, B.J. Insight into size dependence of C2 oxygenate synthesis from syngas on Cu cluster: The effect of cluster size on the selectivity. Appl. Surf. Sci. 2017, 407, 282–296. [Google Scholar] [CrossRef]
Preparation Parameter | Operating Condition | Surface Component | Refs. |
---|---|---|---|
Reduction atmosphere | H2 or Ar | Cu shell and Co core | [23] |
CO or Syngas | Graphitic carbon shell and CuCo core | ||
Reduction method | Heated in N2 to 600 °C and reduced in H2 at 600 °C | Cu shell and Co core | [24] |
Heated from room temperature to 600 °C in H2 | Co shell and Cu core | ||
Cu/Co ratio | Cu1Co1 | CuO (70.2 molar%) CuxCo3−xO4 (29.8 molar%) | [25] |
Cu1Co2 | CuO (54.5 molar%) CuxCo3−xO4 (45.5 molar%) | ||
Cu1Co3 | CuO (38.5 molar%) CuxCo3−xO4 (61.5 molar%) | ||
Cu1Co4 | CuO (45.8 molar%) CuxCo3−xO4 (54.2 molar%) |
Precursor | Catalyst | T (°C) | P (MPa) | H2/CO a | GHSV (mL g−1 h−1) b | XCO (%) c | (%) d | SROH (%) e | C2+OH (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Perovskite | Co–Cu/ZrO2-La2O3 | 310 | 3 | 2 | 3900 | 35.3 | 7.1 | 43.4 | 82.3 f | [24] |
Cu-Co/GE-LFO | 300 | 3 | 2 | 3900 | 49.7 | 7.9 | 56.9 | 47.2 g | [40] | |
CuCo/Al2O3/CFs | 220 | 3 | 2 | 3900 | 38.5 | 1.4 | 47.3 | 96.0 f | [41] | |
CuCoAl | 270 | 2.5 | 2 | 7500 | 36.2 | 0.5 | 40.7 | 54.9 h | [42] | |
MOFs | Co4Cu1-Z | 270 | 3 | 1 | 4800 | 39.7 | 2.0 | 35.6 | 73.0 f | [33] |
Catalyst | T (°C) | P (MPa) | H2/CO a | GHSV (mL g−1 h−1) b | XCO (%) c | (%) d | SROH (%) e | C2+OH (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Cu/Co | 300 | 6 | 2 | 10,000 | 35.6 | 44.4 | 14.1 | 56.2 f | [44] |
Cu@(CuCo-alloy)/Al2O3 | 220 | 2 | 2 | 2000 | 21.5 | 7.2 | 50.6 | 80.8 f | [45] |
Co@Cu-2 | 230 | 2 | 2 | / | / | 30.3 | 33.0 | 29.6 g | [46] |
CoCu0.2 | 260 | 6 | 2 | 3000 | 32.1 | 1.4 | 14.1 | 51.2 f | [47] |
Active sites | Catalyst | T (°C) | P (MPa) | H2/CO a | GHSV (mL g−1 h−1) b | XCO (%) c | (%) d | SROH (%) e | C2+OH (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Cu+-Co0 | CuCoMn | 270 | 2.5 | 2 | 7500 | 29.7 | / | 46.2 | 70.4 f | [49] |
Cu+-Cu0 | CuZnAl | 250 | 4.5 | 2 | / | 12.4 | 49.0 | 30.7 | 48.0 f | [50] |
Co0-Coδ+ | Co3O4-Ga2O3 | 310 | 3 | 2 | 3900 | 10.5 | 4.7 | 45.6 | 87.6 f | [51] |
LaCo0.9Mn0.1O3 | 250 | 3 | 2 | 4000 | 21.5 | 3.1 | 25.8 | 75.7 f | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Liu, J.; Li, L.; Peng, Z.; Wu, L.; Hao, J.; Huang, W. Active Sites on the CuCo Catalyst in Higher Alcohol Synthesis from Syngas: A Review. Molecules 2024, 29, 4855. https://doi.org/10.3390/molecules29204855
Han C, Liu J, Li L, Peng Z, Wu L, Hao J, Huang W. Active Sites on the CuCo Catalyst in Higher Alcohol Synthesis from Syngas: A Review. Molecules. 2024; 29(20):4855. https://doi.org/10.3390/molecules29204855
Chicago/Turabian StyleHan, Chun, Jing Liu, Le Li, Zeyu Peng, Luyao Wu, Jiarong Hao, and Wei Huang. 2024. "Active Sites on the CuCo Catalyst in Higher Alcohol Synthesis from Syngas: A Review" Molecules 29, no. 20: 4855. https://doi.org/10.3390/molecules29204855
APA StyleHan, C., Liu, J., Li, L., Peng, Z., Wu, L., Hao, J., & Huang, W. (2024). Active Sites on the CuCo Catalyst in Higher Alcohol Synthesis from Syngas: A Review. Molecules, 29(20), 4855. https://doi.org/10.3390/molecules29204855