Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation
Abstract
:1. Introduction
2. Sarcoptes Scabiei and Oxidative Stress
Region | Prevalence Rate (%) | Risk Factor | Trends | Ref. | |
---|---|---|---|---|---|
Africa | Schoolchildren | 10.81 | Limited access to clean water and poor hygiene practices, including infrequent washing of clothing and linens, increase scabies transmission risk. | Persistent in resource-poor settings with limited water access and hygiene education. Increasing risk in overcrowded institutions. | [28,29,30] |
Institutional Settings (Median) | 22.5 | Higher prevalence in institutions due to close contact and delayed outbreak response. | |||
Sub-Saharan Africa | Up to 33 | High-density living conditions and low socioeconomic status increase close personal contact. | |||
Specific Sub-Saharan Regions | Up to 65 | Seasonal factors, particularly rainy seasons, and events like floods or droughts contribute to transmission. | |||
Americas | Schoolchildren | 0.2 to 20 | Common in communities with high-density housing, promoting spread of mites through close contact. | Increasing in crowded urban low-income areas. | [30,31,32,33] |
Schools | Up to 30 | Infrequent washing and lack of sanitation in schools contribute to outbreaks. | |||
Indigenous Populations | Higher prevalence | Poverty and limited access to healthcare increase prevalence, especially in rural and indigenous communities. | |||
Immigrant and Refugee Populations | Higher prevalence | Frequent movement and crowded conditions in temporary housing for immigrants and refugees increase scabies risk. | |||
Asia | Rohingya Refugee Camps (Bangladesh) | 66.42 | Overcrowding and environmental factors (e.g., dust, pet exposure, winter season). | Rising in crowded refugee camps, with urgent need for public health interventions. | [34,35,36] |
Southeast Asia (Fiji, Solomon Islands, Timor-Leste) | Up to 33.8 | Tropical climate and limited hygiene resources increase risk, especially in young children. | |||
Japan (RCFs, Hospitals) | Up to 2.1% in RCFs | Close living in care facilities and hospitals drives outbreaks; high contact within aging populations. | |||
Europe | Healthcare Workers | 1–5 | High prevalence among healthcare professionals and institutionalized groups due to occupational exposure. | Rising incidence in urban centers, with peaks noted during colder seasons; increased incidence in healthcare settings and institutions like nursing homes due to higher exposure and poor hygiene practices. | [37,38] |
General Population | Up to 0.5 | Increased scabies among refugee populations, and those with high contact rates and limited sanitation access. | |||
Oceania | General Population | 36.4 in Fiji; 16-30 in Vanuatu | Overcrowding, tropical climate, and limited healthcare access contribute to high prevalence rates. | Increasing, especially among children and in high-density villages. | [30,39] |
3. Plants and Sarcoptes Scabiei Var. Hominis
Commonly Known as | Botanical Name | Therapeutic Action | Form of Application | Ref. |
---|---|---|---|---|
Neem | Azadirachta indica | Shows antiscabies activity, effective with extended use. | 5% neem oil cream, applied topically. | [69,90] |
Tea tree | Melaleuca alternifolia | Terpinen-4-ol damages mite cell membranes, causing rapid immobilization. | 5% essential oil solution, applied topically. | [78] |
Turmeric | Curcuma longa | Curcumin has anti-inflammatory and anti-parasitic properties, inhibiting mite growth and reproduction. | Turmeric extract, applied topically. | [12,64] |
Rosemary | Rosmarinus officinalis | Camphor and 1,8-cineole demonstrate strong anti-mite activity, reducing survival rates on treated areas. | Essential oil, applied topically. | [91] |
Crofton weed | Eupatorium adenophorum | Euptox A exhibits potent acaricidal properties, effectively reducing mite survival. | Purified extract, applied topically. | [63] |
Pepper | Capsicum annuum | Capsaicin reduces itching and soothes skin irritation. | Cream or ointment with capsaicin, applied topically. | [92] |
4. Antioxidant Properties of Medicinal Plants
Family | Genus | Species | Major Identified Antioxidant Compounds | Health-Promoting Properties of Plants for Humans | Ref. |
---|---|---|---|---|---|
Acanthaceae | Justicia | adhatoda | Alkaloids—vasicine, vasicinone, vasicoline. Flavone C-glycosides—vicenin-2. Vitamins—α-tocopherol, γ-tocopherol. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [118,119,120,121,122] |
Acoracee | Acorus | calamus | Phenylpropanoids—α-asarone, β-asarone. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Wound-healing effects. Low antibacterial activity. * Antifungal activity. | [123,124,125,126,127] |
Amaranthaceae | Alternanthera | sessilis | Carotenoids—astaxanthin Fatty acids—palmitic acid. Flavone C-glycosides—vicenin-2. Tannins. Terpenoids—azadirachtin. Vitamins—ascorbic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [128,129,130,131] |
Achyranthes | aspera | Flavanols—catechin, epicatechin. Flavonols—quercetin. Hydroxybenzoic acids—gallic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. Antifungal activity. | [103,132,133,134,135,136,137,138] | |
Anacardiaceae | Mangifera | indica | Carotenoids. Flavanols—catechin, epicatechin. Flavonols—quercetin. Hydroxybenzoic acids—gallic acid, protocatechuic acid, benzoic acid. Phenolic esters—methyl gallate, propyl gallate, propyl benzoate. Vitamins—ascorbic acid. Xanthonoids—mangiferin. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [139,140,141,142,143,144] |
Annonaceae | Cananga | odorata | Phenylpropenes—eugenol. Sesquiterpenes—β-caryophyllene, germacrene D, α-farnesene. Terpene alcohols—linalool. | Antioxidant activity. Anti-inflammatory potential. Antibacterial activities. * Antifungal activity. | [145,146] |
Apocynaceae | Carissa | carandas | Anthocyanins—cyanidin-3-galactoside, delphinidin-3-rutinoside. Terpenoids—carandinol, ursolic acid, betulinic acid. Vitamins—ascorbic acid. | Antioxidant activity. Anti-inflammatory potential. Antibacterial activities. * | [147,148] |
Calotropis | procera | Hydroxycinnamic acids—caffeic acid, p-coumaric acid. Flavones—luteolin. Flavonol glycosides—rutin. Flavanols—catechin. Flavonols—kaempferol. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Antibacterial activities. | [103,149,150,151] | |
Asteraceae (Compositae) | Artemisia | vulgaris | Flavones—chrysosplenol D, casticin. Flavonols—quercetin. Phenolic compounds—caffeoylquinic acids. Sterols—β-sitosterol. Sesquiterpenes—artemisinin. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Analgesic. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [12,93,152,153,154,155,156,157] |
annua | |||||
Ageratum | conyzoides | Flavonols—quercetin. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Analgesic. Antibacterial activities. * | [7,158,159,160,161] | |
Blumea | lacera | Diterpenes—phytol. Hydroxycinnamic acids—rosmarinic acid. Fatty acids—linolenic acid, oleic acid. Flavonol glycosides—rutin. Flavonols—quercetin, kaempferol. Flavanols—catechin, epicatechin. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Antibacterial activities. * | [162,163] | |
Inula | viscosa | Caffeoylquinic acid. Flavanonols—taxifolin. Flavonols—quercetin. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [10,81,164,165] | |
Tanacetum | cinerariifolium | Sesquiterpenes | Antioxidant activity. Wound-healing effects. | [166] | |
Begoniaceae | Begonia | picta | Alkaloids Flavone C-glycosides—vitexin, isovitexin, orientin, isoorientin. Phenolics. Saponins. Tannins. | Antioxidant activity. Antibacterial activities. * Antifungal activity. | [62,167,168] |
Berberidaceae | Berberis | asiatica | Hydroxycinnamic acids—caffeic acid, p-coumaric acid, chlorogenic acid. Flavonol glycosides—rutin. Hydroxybenzoic acid—vanillic acid | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Antibacterial activities. * | [130,169,170,171,172] |
Bignoniaceae | Tecomella | undulate | Flavonoids. Phenols. | Antioxidant activity. Anti-inflammatory potential. Antibacterial activities. Antifungal activity. | [173,174,175,176,177] |
Boraginaceae | Heliotropium | indicum | Diterpene alcohols—phytol. Monoterpenes—β-linalool Sterols—β-sitosterol, stigmasterol. Triterpenes—lupeol, β-amyrin. | Antioxidant activity. .Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [169,178] |
Cannabinaceae | Cannabis | sativa | Cannabinoids—cannabidiol, cannabinol, tetrahydrocannabinol. Flavonoids. Terpenoids. | Antioxidant activity. Anti-inflammatory potential. Antibacterial activities. * Antifungal activity. | [83,176,179,180] |
Caprifoliaceae | Scabiosa | columbaria | Hydroxybenzoic acids—gallic acid, benzoic acid. Hydroxycinnamic acids—chlorogenic acid, caffeic acid. Flavanols—catechin. | Antioxidant activity. Wound-healing effects. No antibacterial activities. * | [181,182,183] |
Cupressaceae | Cryptomeria | japonica | Monoterpenes—terpinen-4-ol. Sesquiterpenes—nezukol, elemol, eudesmol. | Antioxidant activity. Anti-inflammatory potential. Antibacterial activities. * | [184,185] |
Ericaceae | Lyonia | ovalifolia | Flavonoids. Phenolics. Tannins. Terpenoids. | Antioxidant activity. Anti-inflammatory potential. Antibacterial activities. | [186] |
Euphorbiaceae | Emblica | officinalis | Flavonol glycosides—rutin. Flavonols—quercetin. Hydroxybenzoic acids—gallic acid, ellagic acid. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Analgesic. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [187,188,189,190] |
Euphorbia | neriifolia | Flavonoids. Phenolics. Tannins. Triterpenes—sapogenin, euphol, cycloartenol. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Analgesic. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [84,191] | |
Jatropha | curcas | Carotenoids. Flavone C-glycosides—vicenin-2, stellarin-2, vitexin, isovitexin. Flavone O-glycosides –isorhoifolin, rhoifolin. Phenolics. Vitamins—ascorbic acid. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Immunomodulatory effects. Analgesic. Antibacterial activities. * Antifungal activity. | [83,192,193,194,195,196,197] | |
Acalypha | indica | Hydroxybenzoic acids—gallic acid. Flavonol glycosides—rutin. Flavonoids and related compounds—swietenine, retusoquinone. Porphyrins—coproporphyrin II. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Analgesic. Antibacterial activities. * | [169,198,199,200] | |
Fabaceae | Pongamia | pinnata | Flavonoids. Furano flavonoids—karanjin, pongapin. Phenolic acids. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [201,202,203] |
Clitoria | ternatea | Anthocyanins—ternatin. Flavonol glycosides—rutin. Flavanols—epicatechin. Flavonols—quercetin, kaempferol. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Wound-healing effects. Antibacterial activities.* Antifungal activity. | [204,205,206,207,208] | |
Albizia | lebbeck | Flavonol glycosides—rutin. Flavones—luteolin. Hydroxybenzoic acids—vanillic acid. | Antioxidant activity (low). Anti-inflammatory potential. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [55,209,210] | |
Cassia | tora | Anthraquinones—chrysophanol, physcion, aurantio-obtusin, chryso-obtusin. Flavonols—quercetin, kaempferol. Glycosides. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Antibacterial activities * (except for S. aureus). Antifungal activity. | [211,212,213,214,215] | |
Saraca | asoca | Flavonols—quercetin. Hydroxybenzoic acids—gallic acid, ellagic acid. | Antioxidant activity. Wound-healing effects. Antibacterial activities. * | [216,217] | |
Fumariaceae | Fumaria | indica | Alkaloids—paprafumine, paprarine, papraline, cryptopine, raddeanine, oxocoptisine. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. * | [218,219,220,221] |
Juglandaceae | Juglans | regia | Hydroxybenzoic acids—gallic acid, ellagic acid, protocatechuic acid. Hydroxycinnamic acids—p-coumaric acid, ferulic acid. Flavonols—quercetin. Naphthoquinones—juglone. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [222,223,224] |
Lamiaceae | Lavandula | officinalis | Hydroxycinnamic acids—rosmarinic acid. Flavones—luteolin, apigenin. Flavonols—quercetin. Flavanones—naringenin. Monoterpenes—linalool, linalyl acetate. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [83,225,226,227] |
Mentha | piperita | Hydroxycinnamic acids—rosmarinic acid. Flavones—luteolin. Flavanones—naringenin, eriocitrin. Terpenoids—menthofuran, pulegone menthol, menthone. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [83,228,229,230,231,232,233,234,235] | |
Rosmarinus | officinalis | Diterpenes—carnosol, carnosic acid, romano, epirosmanol, 7-metylepirosmanol. Hydroxycinnamic acids—rosmarinic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [229,236,237,238,239,240,241] | |
Leucas | aspera | Flavanols—epicatechin, procyanidin. Phytosterols—β-sitosterol. | Antioxidant activity. Anti-inflammatory potential. Antibacterial activities. * Antifungal activity. | [242,243,244,245] | |
Lythreaceae | Lawsonia | inermis | Flavone glycosides—apigenin 5-glucoside, apigenin 7-glucoside. Hydroxybenzoic acids—gallic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [246,247,248] |
Meliaceae | Azadirachta | indica | Flavonols—quercetin, isoquercetin, avicularin. Ellagitannins—castalagin. Hydroxybenzoic acids—gallic acid, ellagic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [169,249,250,251,252] |
Menispermaceae | Tinospora | cordifolia | Diterpenes—giloin. Heteropolysaccharides—arabinogalactan. Flavonols—quercetin. Hydroxybenzoic acids—gallic acid, ellagic acid. Phenylpropanoid glycosides—syringin. Triterpenes—arjungenin, tinosporaside. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [104,131,253,254,255] |
Moraceae | Ficus | carica recemosa bengaalensis | Flavonoid glycosides. Flavonols—quercetin, kaempferol. Flavonol glycosides—rutin. Hydroxybenzoic acids—gallic acid, ellagic acid, protocatechuic acid. Triterpenes—lupeol, ursolic acid, oleanolic acid. Vitamins—ascorbic acid, α-tocopherol. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Antibacterial activities. * Moderate antifungal activity. | [256,257,258,259,260,261] |
Myrtaceae | Melaleuca | alternifolia | Monoterpenes—terpinen-4-ol. Phenylpropenes—eugenol. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [83,238,262,263,264,265,266] |
Syzygium | aromaticum | Flavonols—quercetin, kaempferol, rhamnetin. Tannins. Hydroxybenzoic acids—gallic acid, ellagic acid. Phenylpropenes—eugenol. | Antioxidant activity (low). Wound-healing effects. Analgesic. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [83,103,267,268,269] | |
Eucalyptus | globulus | Flavonol glycosides—2’’-O-galloylhyperin. Flavonols—quercetin, isoquercitrin. Flavanols—epicatechin. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Analgesic. Antibacterial activities. * Antifungal activity. | [83,270,271,272] | |
Leptospermum | scoparium | Flavones—chrysin. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [67,273,274,275,276] | |
Myristicaceae | Myristica | fragrans | Monoterpenes—sabinene, β-pinene, α-pinene, carvacrol. Phenylpropenes—eugenol, myristicin, isoeugenol. Sesquiterpenes—β-caryophyllen. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Immunomodulatory effects. Antibacterial activities.* | [109,277,278,279,280] |
Poaceae | Cymbopogon | martini | Flavone C-glycosides—isoorientin. Hydroxybenzoic acids—gallic acid. Terpenoids—cymbopogonol. | Antioxidant activity. Wound-healing effects. Antibacterial activities. Antifungal activity. | [281,282,283] |
Phyllanthaceae | Briedelia | scandens | No data. | Antioxidant activity. Antibacterial activities. * Antifungal activity. | [284,285] |
Pinaceae | Cedrus | deodara | Lignans—(-)-matairesinol, (-)-nortrachelogenin, dibenzylbutyrolactone lignan. Monoterpenes—linalool, α-terpineol, limonene. Phenylpropenes—eugenol, anethole. Sesquiterpenes—caryophyllene. | Antioxidant activity. Anti-inflammatory potential. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [286,287,288,289,290] |
Rutaceae | Aegle | marmelos | Flavonoid glycosides. Flavonols—quercetin. Flavonol glycosides—rutin. Hydroxycinnamic acids—coumaric acid, caffeic acid, p-coumaric acid, chlorogenic acid. Hydroxybenzoic acids—vanillic acid. Vitamins—ascorbic acid, α-tocopherol. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [105,130,291,292,293,294] |
Citrus | limon | Carotenoids—β-carotene, zeaxanthin, lutein, lycopene. Flavanones—naringenin, hesperidin. Flavones—tangeritin. Flavonols—quercetin. Flavonol glycosides—rutin. Vitamins—ascorbic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Wound-healing effects. Antibacterial activities * (except for S. aureus). No antifungal activity. | [295,296,297,298] | |
Nyctaginaceae | Boerhaavia | diffusa | Flavonols—quercetin, kaempferol. Phenolic compounds—punarnavoside. Rotenoids—boeravinone G. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [299,300,301,302,303,304] |
Salvadoraceae | Salvadora | persica | Flavonoids. Hydroxybenzoic acids—gallic acid. Hydroxycinnamic acids—caffeic acid. Sterols—β-sitosterol. Tannins. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [305,306,307] |
Sapindaceae | Schleichera | oleosa | Flavanols—catechin, epicatechin. Flavonols—kaempferol. Hydroxybenzoic acids—gallic acid, ellagic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. | [94,308,309,310,311] |
Simaroubaceae | Ailanthus | altissima | Hydroxycinnamic acids—ferulic acid. Flavanols—catechin. Flavonols—quercetin. Flavonol glycosides—rutin. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. * | [312,313,314,315] |
Solanaceae | Solanum | nigrum | Flavanones—naringenin. Flavonols—quercetin, isoquercitrin. Flavonol glycosides—rutin. Hydroxybenzoic acids—gallic acid, protocatechuic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Antibacterial activities. * Antifungal activity. | [316,317,318,319,320] |
Datura | stramonium | Coumarins—scopoletin. Flavonols—quercetin. Hydroxybenzoic acids—gallic acid. Steroidal lactones—daturametelin B, daturamalakoside B. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. | [321,322,323] | |
Capsicum | annuum | Flavones—luteolin. Flavanols—catechin, epicatechin. Flavonol glycosides—rutin. Hydroxybenzoic acids—gallic acid. Stilbenes—resveratrol. Vitamins—ascorbic acid. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Antibacterial activities. * | [324,325,326,327,328] | |
Umbelaceae | Pimpinella | anisum | Esters of gallic acid—methyl gallate. Flavanones—naringenin, hesperetin. Flavanols—catechin. Flavonols—quercetin. Flavonol glycosides—rutin. Hydroxybenzoic acids—gallic acid. Hydroxycinnamic acids—cinnamic acid, caffeic acid. Isoflavones—daidzein. Phenylpropenes—eugenol, anethole, estragole. | Antioxidant activity. Anti-inflammatory potential. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [329,330,331,332] |
Verbanaceae | Lippia | multiflora | Phenylethanoid glycosides—verbascoside, isoverbascoside, nuomioside A, isonuomioside A. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Antibacterial activities. * | [333,334,335] |
Lamiaceae | Vitex | negundo | Hydroxycinnamic acids—chlorogenic acid. Flavone C-glycosides—isoorientin. Flavones—cynaroside, scutellarin, vitexin. Phenolic compounds—vitedoin A, vitexnegheteroins. p-hydroxybenzoic acid derivatives—agnuside. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Immunomodulatory effects. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [336,337,338,339,340] |
Clerodendrum | infortunatum | Diterpene alcohols—phytol. Fatty acids—hexadecanoic acid. Hydroxybenzoic acids—gallic acid. Phytosterols—stigmasterol. Terpenoids—oleanolic acid, clerodinin A. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. Antifungal activity. | [341,342,343,344] | |
Zingiberaceae | Curcuma | longa | Curcuminoids—curcumin, demethoxycurcumin, bisdemethoxycurcumin. Hydroxycinnamic acids—caffeic acid. Flavonols—quercetin, isorhamnetin. | Antioxidant activity. Anti-inflammatory potential. Analgesic. Wound-healing effects. Antibacterial activities. * Antifungal activity. | [83,345,346,347,348] |
5. Antioxidant Properties of Medicinal Plants in Treating Scabies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Dabbagh, J.; Younis, R.; Ismail, N. The Currently Available Diagnostic Tools and Treatments of Scabies and Scabies Variants: An Updated Narrative Review. Medicine 2023, 102, e33805. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Carson, C.F.; Peterson, G.M.; Walton, S.F.; Hammer, K.A.; Naunton, M.; Davey, R.C.; Spelman, T.; Dettwiller, P.; Kyle, G.; et al. Therapeutic Potential of Tea Tree Oil for Scabies. Am. J. Trop. Med. Hyg. 2016, 94, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.J.; Fuller, L.C. A Review of Scabies: An Infestation More than Skin Deep. Dermatology 2019, 235, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Tariq, S.; Iqbal, M.; Ismaeel, H.; Mashhood, A.; Raza, M.H.; Hamid, M.A. Study Comparing Topical Ivermectin Versus Topical Permethrin in the Treatment of Scabies. Cureus 2023, 15. [Google Scholar] [CrossRef]
- Bernigaud, C.; Fischer, K.; Chosidow, O. The Management of Scabies in the 21st Century: Past, Advances and Potentials. Acta Derm. Venereol. 2020, 100, adv00112-234. [Google Scholar] [CrossRef]
- Bernigaud, C.; Zakrzewski, M.; Taylor, S.; Swe, P.M.; Papenfuss, A.T.; Sriprakash, K.S.; Holt, D.; Chosidow, O.; Currie, B.J.; Fischer, K. First Description of the Composition and the Functional Capabilities of the Skin Microbial Community Accompanying Severe Scabies Infestation in Humans. Microorganisms 2021, 9, 907. [Google Scholar] [CrossRef]
- Gang, R.; Okello, D.; Kang, Y. Medicinal Plants Used for Cutaneous Wound Healing in Uganda; Ethnomedicinal Reports and Pharmacological Evidences. Heliyon 2024, 10, e29717. [Google Scholar] [CrossRef]
- Lee, C.L.; Wang, C.M.; Hu, H.C.; Yen, H.R.; Song, Y.C.; Yu, S.J.; Chen, C.J.; Li, W.C.; Wu, Y.C. Indole Alkaloids Indigodoles A–C from Aerial Parts of Strobilanthes Cusia in the Traditional Chinese medicine Qing Dai Have Anti-IL-17 Properties. Phytochemistry 2019, 162, 39–46. [Google Scholar] [CrossRef]
- Seo, S.G.; Ahn, Y.J.; Jin, M.H.; Kang, N.G.; Cho, H.S. Curcuma Longa Enhances IFN-γ Secretion by Natural Killer Cells through Cytokines Secreted from Macrophages. J. Food Sci. 2021, 86, 3492–3504. [Google Scholar] [CrossRef]
- Ouari, S.; Benzidane, N. Chemical Composition, Biological Activities, and Molecular Mechanism of Inula Viscosa (L.) Bioactive Compounds: A Review. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 397, 3857–3865. [Google Scholar] [CrossRef]
- Fahimi, S.; Abdollahi, M.; Mortazavi, S.A.; Hajimehdipoor, H.; Abdolghaffari, A.H.; Rezvanfar, M.A. Wound Healing Activity of a Traditionally Used Poly Herbal Product in a Burn Wound Model in Rats. Iran. Red Crescent Med. J. 2015, 17. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Riaz, M.; Noreen, S.; Shariati, M.A.; Shaheen, G.; Akhter, N.; Parveen, F.; Akhtar, N.; Zafar, S.; Owais Ghauri, A.; et al. Therapeutic Potential of Medicinal Plants for the Management of Scabies. Dermatol. Ther. 2020, 33, 1–8. [Google Scholar] [CrossRef]
- Behera, S.K.; Dimri, U.; Singh, S.K.; Mohanta, R.K. The Curative and Antioxidative Efficiency of Ivermectin and Ivermectin + Vitamin E-selenium Treatment on Canine Sarcoptes Scabiei Infestation. Vet. Res. Commun. 2011, 35, 237–244. [Google Scholar] [CrossRef] [PubMed]
- De, U.K.; Dey, S. Evaluation of Organ Function and Oxidant/Antioxidant Status in Goats with Sarcoptic Mange. Trop. Anim. Health Prod. 2010, 42, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Meinke, M.C.; Busch, L.; Lohan, S.B. Wavelength, Dose, Skin Type and Skin Model Related Radical Formation in Skin. Biophys. Rev. 2021, 13, 1091–1100. [Google Scholar] [CrossRef]
- Skalska, M.; Kleniewska, P.; Pawliczak, R. Participation of reactive oxygen species in the pathogenesis of atopic dermatitis, allergic rhinitis and asthma. Alergol. Pol.—Polish J. Allergol. 2023, 10, 26–31. [Google Scholar] [CrossRef]
- Khan, A.Q.; Agha, M.V.; Sheikhan, K.S.A.M.; Younis, S.M.; Al Tamimi, M.; Alam, M.; Ahmad, A.; Uddin, S.; Buddenkotte, J.; Steinhoff, M. Targeting Deregulated Oxidative Stress in Skin Inflammatory Diseases: An update on Clinical Importance. Biomed. Pharmacother. 2022, 154, 113601. [Google Scholar] [CrossRef]
- Nakai, K.; Tsuruta, D. What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases? Int. J. Mol. Sci. 2021, 22, 10799. [Google Scholar] [CrossRef]
- Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Matei, C.; Popa, G.L.; Erel, O.; Tampa, M. Thiol-Disulfide Homeostasis in Skin Diseases. J. Clin. Med. 2022, 11, 1507. [Google Scholar] [CrossRef]
- Dimri, U.; Bandyopadhyay, S.; Singh, S.K.; Ranjan, R.; Mukherjee, R.; Yatoo, M.I.; Patra, P.H.; De, U.K.; Dar, A.A. Assay of Alterations in Oxidative Stress Markers in Pigs Naturally Infested With Sarcoptes Scabiei Var. Suis. Vet. Parasitol. 2014, 205, 295–299. [Google Scholar] [CrossRef]
- Saleh, M.A.; Mahran, O.M.; Bassam Al-Salahy, M. Circulating Oxidative Stress Status in Dromedary Camels Infested with Sarcoptic Mange. Vet. Res. Commun. 2011, 35, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, M.; Mila-Kierzenkowska, C.; Szczegielniak, J.; Woźniak, A. Oxidative Stress in Parasitic Diseases—Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants 2023, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.S. Scabies: Immunopathogenesis and Pathological Changes. Parasitol. Res. 2024, 123, 149. [Google Scholar] [CrossRef] [PubMed]
- De, A.K.; Sawhney, S.; Mondal, S.; Ponraj, P.; Ravi, S.K.; Sarkar, G.; Banik, S.; Malakar, D.; Muniswamy, K.; Kumar, A.; et al. Host-Parasite Interaction in Sarcoptes Scabiei Infestation in Porcine Model with a Preliminary Note on Its Genetic Lineage from India. Animals 2020, 10, 2312. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Langendorf, C.G.; Irving, J.A.; Reynolds, S.; Willis, C.; Beckham, S.; Law, R.H.P.; Yang, S.; Bashtannyk-Puhalovich, T.A.; McGowan, S.; et al. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues. J. Mol. Biol. 2009, 390, 635–645. [Google Scholar] [CrossRef]
- Absil, G.; Lebas, E.; Libon, F.; el Hayderi, L.; Dezfoulian, B.; Nikkels, A.F. Scabies and Therapeutic Resistance: Current Knowledge and Future Perspectives. JEADV Clin. Pract. 2022, 1, 157–164. [Google Scholar] [CrossRef]
- Sharaf, M.S.; Othman, A.A.; Abdel-Ghaffar, A.E.; Ali, D.M.; Eid, M.M. Crusted Scabies in a Rabbit Model: A Severe Skin Disease or More? Parasit. Vectors 2023, 16, 413. [Google Scholar] [CrossRef]
- Girma, A.; Abdu, I.; Teshome, K. Prevalence and Determinants of Scabies Among Schoolchildren in Africa: A Systematic Review and Meta-Analysis. SAGE Open Med. 2024, 12. [Google Scholar] [CrossRef]
- Akinde, C.B. Systematic Review of Institutional Scabies Outbreaks in Sub Saharan Africa. Epidemiol. Int. J. 2023, 7, 1–10. [Google Scholar] [CrossRef]
- Schneider, S.; Wu, J.; Tizek, L.; Ziehfreund, S.; Zink, A. Prevalence of Scabies Worldwide—An Updated Systematic Literature Review in 2022. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1749–1757. [Google Scholar] [CrossRef]
- Delaš Aždajić, M.; Bešlić, I.; Gašić, A.; Ferara, N.; Pedić, L.; Lugović-Mihić, L. Increased Scabies Incidence at the Beginning of the 21st Century: What Do Reports from Europe and the World Show? Life 2022, 12, 1598. [Google Scholar] [CrossRef] [PubMed]
- Sunderkötter, C.; Wohlrab, J.; Hamm, H. Scabies: Epidemiology, Diagnosis, and Treatment. Dtsch. Arztebl. Int. 2021, 118, 695–704. [Google Scholar] [CrossRef] [PubMed]
- El-Moamly, A.A. Scabies as a Part of the World Health Organization Roadmap for Neglected Tropical Diseases 2021–2030: What We Know and What We Need to Do for Global Control. Trop. Med. Health 2021, 49, 64. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Hasan, A.B.M.N.; Jahan, I.; Sharif, A. Bin Prevalence of Scabies and Its Associated Environmental Risk Factors among the Forcibly Displaced Myanmar Nationals living in the Cox’s Bazar District of Bangladesh. J. Migr. Health 2024, 9, 100220. [Google Scholar] [CrossRef]
- Tsoi, S.K.; Lake, S.J.; Thean, L.J.; Matthews, A.; Sokana, O.; Kama, M.; Amaral, S.; Romani, L.; Whitfeld, M.; Francis, J.R.; et al. Estimation of Scabies Prevalence Using Simplified Criteria and Mapping Procedures in Three Pacific and Southeast Asian Countries. BMC Public Health 2021, 21, 2060. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Murata, F.; Maeda, M.; Fukuda, H. Investigating the Epidemiology and Outbreaks of Scabies in Japanese Households, Residential Care Facilities, and Hospitals Using Claims Data: The Longevity Improvement & Fair Evidence (LIFE) Study. IJID Reg. 2024, 11, 100353. [Google Scholar] [CrossRef]
- van Deursen, B.; Hooiveld, M.; Marks, S.; Snijdewind, I.; van den Kerkhof, H.; Wintermans, B.; Bom, B.; Schimmer, B.; Fanoy, E. Increasing Incidence of Reported Scabies Infestations in the Netherlands, 2011–2021. PLoS ONE 2022, 17, e0268865. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, K.; Kulbaka, E.; Buczek, W.; Ciura, D.; Raszewska-Famielec, M.; Tytuła, A.; Buczek, A. Pediculosis Capitis and Scabies in Nurses from Eastern Poland—Occupational Risk and Environmental Determinants. Ann. Agric. Environ. Med. 2023, 30, 244–251. [Google Scholar] [CrossRef]
- Romani, L.; Koroivueta, J.; Steer, A.C.; Kama, M.; Kaldor, J.M.; Wand, H.; Hamid, M.; Whitfeld, M.J. Scabies and Impetigo Prevalence and Risk Factors in Fiji: A National Survey. PLoS Negl. Trop. Dis. 2015, 9, e0003452. [Google Scholar] [CrossRef]
- Tabassum, N.; Hamdani, M. Plants Used to Treat Skin Diseases. Pharmacogn. Rev. 2014, 8, 52. [Google Scholar] [CrossRef]
- Qureshi, S.J.; Khan, M.A.; Ahmad, M. A Survey of Useful Medicinal Plants of Abbottabad in Northern Pakistan. Trakia J. Sci. 2008, 6, 39–51. [Google Scholar]
- Zhao, Y.; Zhu, L.; Yang, L.; Chen, M.; Sun, P.; Ma, Y.; Zhang, D.; Zhao, Y.; Jia, H. In Vitro and in Vivo Anti-Eczema Effect of Artemisia Annua Aqueous Extract and Its Component Profiling. J. Ethnopharmacol. 2024, 318, 117065. [Google Scholar] [CrossRef] [PubMed]
- Subba, B.; Srivastav, C.; Kandel, R.C. Scientific Validation of Medicinal Plants Used by Yakkha Community of Chanuwa VDC, Dhankuta, Nepal. Springerplus 2016, 5, 155. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Satyal, P.; Setzer, W. Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities. Medicines 2016, 3, 6. [Google Scholar] [CrossRef]
- Mcpartland, J.M.; Sheikh, Z. A review of Cannabis Sativa-Based Insecticides, Miticides, and Repellents. J. Entomol. Zool. Stud. 2018, 6, 1288–1299. [Google Scholar]
- Saha, R.; Ahmed, A. Phytochemical Constituents and Pharmacological Activities of Acalypha Indica Linn: A Review. Int. J. Pharm. Sci. Res. 2011, 2, 1900–1904. [Google Scholar]
- Jeeva, G.M.; Jeeva, S.; Kingston, C. Traditional Treatment of Skin Diseases in South Travancore, Southern Peninsular India. Indian J. Tradit. Knowl. 2007, 6, 498–501. [Google Scholar]
- Prasad, A.G.D.; Shyma, T.B. Medicinal plants used by the tribes of Vythiri taluk, Wayanad District (Kerala state) for the Treatment of Human and Domestic Animal Ailments. J. Med. Plants Res. 2013, 7, 1439–1451. [Google Scholar] [CrossRef]
- Mahbub, N.; Mazumder, S.H.; Morshed, M.Z.; Mozammel Haq, W.; Jahan, R.; Shahadat Hossan, M.; Rahmatullah, M. Folk Medicinal Use of Plants to Treat Skin Disorders in Chandpur District, Bangladesh. Am. J. Ethnomed. 2017, 4, 19. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional Uses, Phytochemistry and Pharmacology of Ficus carica: A review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef]
- Topno, S.C.; Sinha, M.R. Study of Medicinal Plants Used to Heal Skin Diseases by Tribes of West Singhbhum District of. J. Pharmacogn. Phytochem. 2018, 7, 371–376. [Google Scholar]
- Korpenwar, A.N. Ethnomedicinal Plants Used To Cure Skin Diseases In Ambabarwa Wild Life Sanctuary Area of Buldhana District ( M. S.), India. Int. J. Recent Trends Sci. Technol. 2012, 2, 36–39. [Google Scholar]
- Singh, A.G.; Hamal, J.P. Traditional Phytotherapy of Some Medicinal Plants Used by Tharu and Magar Communities of Western Nepal, Against Dermatological Disorders. Sci. World 2013, 11, 81–89. [Google Scholar] [CrossRef]
- Asmilia, N.; Fahrimal, Y.; Abrar, M.; Rinidar, R. Chemical Compounds of Malacca Leaf (Phyllanthus emblica) after Triple Extraction with N-Hexane, Ethyl Acetate, and Ethanol. Sci. World J. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Kokila, K.; Priyadharshini, S.D.; Sujatha, V. Phytopharmacological Properties of Albizia species: A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 70–73. [Google Scholar]
- Warrier, R.R.; Joshi, G.; Arunkumar, A. DNA Fingerprinting in Industrially Important Medicinal Trees. Ann. Phytomedicine An Int. J. 2019, 8, 19–35. [Google Scholar] [CrossRef]
- Alam, F. Anti-Ulcer Plants from North-East India—A Review. Der Pharm. Lett. 2019, 11, 73–96. [Google Scholar]
- Vimala, G.; Gricilda Shoba, F. A Review on Antiulcer Activity of Few Indian Medicinal Plants. Int. J. Microbiol. 2014, 2014, 519590. [Google Scholar] [CrossRef]
- Mali, P.Y.; Panchal, S.S. Euphorbia neriifolia L.: Review on Botany, Ethnomedicinal Uses, Phytochemistry and Biological Activities. Asian Pac. J. Trop. Med. 2017, 10, 430–438. [Google Scholar] [CrossRef]
- Orchard, A.; van Vuuren, S. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. Evidence-Based Complement. Altern. Med. 2017, 2017, 1–92. [Google Scholar] [CrossRef]
- Pal, R.; Abrol, G.; Singh, A.K.; Punetha, S.; Sharma, P.; Pandey, A.K. Nutritional and Medicinal Value of Underutilized Fruits. Acta Sci. Agric. 2019, 3, 16–22. [Google Scholar]
- Shrestha, N.; Itani, R.; Khanal, D.P. Pharmacognostic, Phytochemical, Antioxidant and Antibacterial Activity Studies on Begonia picta. World J. Pharm. Res. 2015, 5, 979–997. [Google Scholar]
- Liao, F.; Hu, Y.; Tan, H.; Wu, L.; Wang, Y.; Huang, Y.; Mo, Q.; Wei, Y. Acaricidal Activity of 9-oxo-10,11-Dehydroageraphorone extracted from Eupatorium Adenophorum in Vitro. Exp. Parasitol. 2014, 140, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Shiven, A.; Alam, A.; Kapoor, D.N. Natural And synthetic Agents for the Treatment of Sarcoptes Scabiei: A review. Ann. Parasitol. 2020, 66, 467–480. [Google Scholar] [CrossRef]
- Siva Saravanan, K.S.; Velpandian, V.; Musthafa, M.D.; Anbu, N.; Kadher, A.A. Clinical Evaluation of Thelkodukku Chooranam (Heliotropium Indicum) in the Treatment of Scabies. Int. J. Health Sci. Res. 2014, 4, 140–148. [Google Scholar]
- Ali, S.; Alam, M.; Jamal, A. Clinical Evaluation of the Efficacy of Polyherbal Unani Formulations in scabies. Indian J. Tradit. Knowl. 2006, 05, 220–223. [Google Scholar]
- Mathew, C.; Tesfaye, W.; Rasmussen, P.; Peterson, G.M.; Bartholomaeus, A.; Sharma, M.; Thomas, J. Mānuka Oil—A Review of Antimicrobial and Other Medicinal Properties. Pharmaceuticals 2020, 13, 343. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.L.; Osi, M.O.; Ramos, J.D.A.; De Francia, J.L.; Dujunco, M.U.; Quilala, P.F. Efficacy and Safety of Tinospora Cordifolia Lotion in Sarcoptes Scabiei Var Hominis-Infected Pediatric Patients: A single Blind, Randomized Controlled Trial. J. Pharmacol. Pharmacother. 2013, 4, 39–46. [Google Scholar] [CrossRef]
- Fang, F.; Candy, K.; Melloul, E.; Bernigaud, C.; Chai, L.; Darmon, C.; Durand, R.; Botterel, F.; Chosidow, O.; Izri, A.; et al. In Vitro Activity of Ten Essential Oils Against Sarcoptes Scabiei. Parasites Vectors 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Morsy, T.A.; Rahem, M.A.; El-Sharkawy, E.M.A.; Shatat, M.A. Eucalyptus Globulus (camphor oil) Against the Zoonotic Scabies, Sarcoptes Scabiei. J. Egypt. Soc. Parasitol. 2003, 33, 47–53. [Google Scholar]
- Oladimeji, F.A.; Orafidiya, O.O.; Ogunniyi, T.A.B.; Adewunmi, T.A. Pediculocidal and Scabicidal Properties of Lippia Multiflora Essential Oil. J. Ethnopharmacol. 2000, 72, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Oladimeji, F.A.; Orafidiya, L.O.; Ogunniyi, T.A.B.; Adewunmi, T.A.; Onayemi, O. A Comparative Study of the Scabicidal Activities of Formulations of Essential oil of Lippia Multiflora Moldenke and Benzyl Benzoate Emulsion BP. Int. J. Aromather. 2005, 15, 87–93. [Google Scholar] [CrossRef]
- Rai, S.K. Medicinal Plants Used by Meche People of Jhapa District, Eastern Nepal. Our Nat. 2004, 2, 27–32. [Google Scholar] [CrossRef]
- Imo, C.; Arowora, K.A.; Ezeonu, C.S.; Yakubu, O.E.; Nwokwu, C.D.; Azubuike, N.C.; Sallah, Y.G. Effects of Ethanolic Extracts of Leaf, Seed and Fruit of Datura Metel L. on Kidney Function of Male Albino Rats. J. Tradit. Complement. Med. 2019, 9, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Mall, T.P. Kusum—A Multipurpose Plant from Katarniaghat Wildlife Sanctury of Bahraich(up) India-A Review. World J. Pharm. Res. 2017, 463–477. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef]
- Pazyar, N.; Yaghoobi, R.; Bagherani, N.; Kazerouni, A. A Review of Applications of Tea Tree Oil in Dermatology. Int. J. Dermatol. 2013, 52, 784–790. [Google Scholar] [CrossRef]
- Walton, S.F.; Mckinnon, M.; Pizzutto, S.; Dougall, A.; Williams, E.; Currie, B.J. Acaricidal Activity of Melaleuca Alternifolia (Tea Tree) Oil: In Vitro Sensitivity of Sarcoptes Scabiei Var Hominis to Terpinen-4-ol. Arch. Dermatol. 2004, 140, 563–566. [Google Scholar] [CrossRef]
- Liuwan, C.C.; Listiawan, M.Y.; Murtiastutik, D.; Ervianti, E.; Sawitri, S.; Prakoeswa, C.R.S.; Astari, L.; Ningrat, F.S.; Kurniati, K.; Fitriani, E.W.; et al. The Effectiveness of 5% Tea Tree Oil cream, 10% Tea Tree Oil cream, and 5% Permethrin Cream for Scabies Treatment in Pediatric Patients. Period. Dermatol. Venerol. 2020, 32, 200–205. [Google Scholar] [CrossRef]
- Zulkarnain, I.; Agusni, R.I.; Hidayati, A.N. Comparison of Tea Tree oil 5% Cream, Tea Tree Oil 5% + Permethrin 5% Cream, and Permethrine 5% Cream in Child Scabies. Int. J. Clin. Exp. Med. Sci. 2018, 4, 87–93. [Google Scholar] [CrossRef]
- Danino, O.; Gottlieb, H.E.; Grossman, S.; Bergman, M. Antioxidant activity of 1,3-dicaffeoylquinic acid isolated from Inula viscosa. Food Res. Int. 2009, 42, 1273–1280. [Google Scholar] [CrossRef]
- Gopinath, H.; Aishwarya, M.; Karthikeyan, K. Tackling scabies: Novel agents for a neglected disease. Int. J. Dermatol. 2018, 57, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef]
- Chaudhary, P.; Singh, D.; Swapnil, P.; Meena, M.; Janmeda, P. Euphorbia neriifolia (Indian Spurge Tree): A Plant of Multiple Biological and Pharmacological Activities. Sustainability 2023, 15, 1225. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Koriem, K.M.M. Review on pharmacological and toxicologyical effects of oleum azadirachti oil. Asian Pac. J. Trop. Biomed. 2013, 3, 834–840. [Google Scholar] [CrossRef]
- Alzohairy, M.A. Therapeutics role of azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evidence-Based Complement. Altern. Med. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Godlewska-Żyłkiewicz, B.; Świsłocka, R.; Kalinowska, M.; Golonko, A.; Świderski, G.; Arciszewska, Ż.; Nalewajko-Sieliwoniuk, E.; Naumowicz, M.; Lewandowski, W. Biologically active compounds of plants: Structure-related antioxidant, microbiological and cytotoxic activity of selected carboxylic acids. Materials 2020, 13, 4454. [Google Scholar] [CrossRef]
- Husni, P.; Dewi, M.K.; Putriana, N.A.; Hendriani, R. In-Vivo Effectiveness of 5% Azadirachta indica Oil Cream as Anti-Scabies. Pharmacol. Clin. Pharm. Res. 2019, 4, 10. [Google Scholar] [CrossRef]
- Abd-elhady, H.K. Composition and Acaricidal Activities of Rosmarinus Officinalis Essential Oil against Tetranychus urticae and Its Predatory Mite Phytoseuilus persimilis. Alexandria Sci. Exch. J. Int. Q. J. Sci. Agric. Environ. 2011, 32, 337–345. [Google Scholar] [CrossRef]
- Bae, S.; Yu, J.; Jeong, H.; Oh, T. Anti-pruritic effect of topical capsaicin against histamine-induced pruritus on canine skin. Pol. J. Vet. Sci. 2018, 21, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Minda, D.; Ghiulai, R.; Banciu, C.D.; Pavel, I.Z.; Danciu, C.; Racoviceanu, R.; Soica, C.; Budu, O.D.; Muntean, D.; Diaconeasa, Z.; et al. Phytochemical Profile, Antioxidant and Wound Healing Potential of Three Artemisia Species: In Vitro and In Ovo Evaluation. Appl. Sci. 2022, 12, 1359. [Google Scholar] [CrossRef]
- Bhatia, H.; Kaur, J.; Nandi, S.; Gurnani, V.; Chowdhury, A.; Reddy, P.H.; Vashishtha, A.; Rathi, B. A review on Schleichera oleosa: Pharmacological and environmental aspects. J. Pharm. Res. 2013, 6, 224–229. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef]
- Webster, R.D. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E. Molecules 2022, 27, 6194. [Google Scholar] [CrossRef]
- Razika, L.; Thanina, A.C.; Nadjiba, C.-M.; Narimen, B.; Mahdi, D.M.; Karim, A. Antioxidant and wound healing potential of saponins extracted from the leaves of Algerian Urtica dioica L. Pak. J. Pharm. Sci. 2017, 30, 1023–1029. [Google Scholar]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Reports 2019, 24, e00370. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic Compounds and Plant Phenolic Extracts as Natural Antioxidants in Prevention of Lipid Oxidation in Seafood: A Detailed Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Ligor, M.; Trziszka, T.; Buszewski, B. Study of Antioxidant Activity of Biologically Active Compounds Isolated from Green Vegetables by Coupled Analytical Techniques. Food Anal. Methods 2013, 6, 630–636. [Google Scholar] [CrossRef]
- Nigussie, G.; Siyadatpanah, A.; Norouzi, R.; Debebe, E.; Alemayehu, M.; Dekebo, A. Antioxidant Potential of Ethiopian Medicinal Plants and Their Phytochemicals: A Review of Pharmacological Evaluation. Evidence-Based Complement. Altern. Med. 2023, 2023, 1–17. [Google Scholar] [CrossRef]
- Polu, P.R.; Nayanbhirama, U.; Khan, S.; Maheswari, R. Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd). BMC Complement. Altern. Med. 2017, 17, 457. [Google Scholar] [CrossRef]
- Mujeeb, F.; Khan, A.F.K.; Bajpai, P.; Pathak, N. Phytochemical study of Aegle marmelos: Chromatographic elucidation of polyphenolics and assessment of antioxidant and cytotoxic potential. Pharmacogn. Mag. 2017, 13, S791–S800. [Google Scholar] [CrossRef]
- Janciauskiene, S. The Beneficial Effects of Antioxidants in Health and Diseases. Chronic Obstr. Pulm. Dis. J. COPD Found. 2020, 7, 182–202. [Google Scholar] [CrossRef]
- de Melo, L.F.M.; de Queiroz Aquino-Martins, V.G.; da Silva, A.P.; Oliveira Rocha, H.A.; Scortecci, K.C. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem. 2023, 414, 135645. [Google Scholar] [CrossRef]
- Martignago, C.C.S.; Soares-Silva, B.; Parisi, J.R.; Silva, L.C.S.e.; Granito, R.N.; Ribeiro, A.M.; Renno, A.C.M.; de Sousa, L.R.F.; Aguiar, A.C.C. Terpenes extracted from marine sponges with antioxidant activity: A systematic review. Nat. Products Bioprospect. 2023, 13, 23. [Google Scholar] [CrossRef]
- Gupta, A.D.; Bansal, V.K.; Babu, V.; Maithil, N. Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J. Genet. Eng. Biotechnol. 2013, 11, 25–31. [Google Scholar] [CrossRef]
- Ismail, M.; Jamal, S.; Noor-Ul-Haq; Hussain, S.; Hussain, S. Comparative phytochemical profile of some medicinal plants from Gilgit-Baltistan. Prog. Nutr. 2020, 22, 449–455. [Google Scholar] [CrossRef]
- Rajendran, M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis Photodyn. Ther. 2016, 13, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Viana, S.d.M.; Maria, A.D.F.; Priscila, V.G.; Glauce, S.B.V.; Maria, J.T. In vitro and in vivo evaluation of quinones from Auxemma oncocalyx Taub. on Leishmania braziliensis. J. Med. Plants Res. 2015, 9, 132–139. [Google Scholar] [CrossRef]
- Sirin, S.; Nigdelioglu Dolanbay, S.; Aslim, B. Role of plant derived alkaloids as antioxidant agents for neurodegenerative diseases. Health Sci. Rev. 2023, 6, 100071. [Google Scholar] [CrossRef]
- Chen, I.C.; Chen, M.T.; Chung, T.W. Analysis of antioxidant property of the extract of saponin by experiment design methodology. IOP Conf. Ser. Earth Environ. Sci. 2020, 594, 012002. [Google Scholar] [CrossRef]
- Saeidy, S.; Petera, B.; Pierre, G.; Fenoradosoa, T.A.; Djomdi, D.; Michaud, P.; Delattre, C. Plants arabinogalactans: From structures to physico-chemical and biological properties. Biotechnol. Adv. 2021, 53, 107771. [Google Scholar] [CrossRef]
- Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem. 2002, 50, 2231–22234. [Google Scholar] [CrossRef]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef]
- Basit, A.; Shutian, T.; Khan, A.; Khan, S.M.; Shahzad, R.; Khan, A.; Khan, S.; Khan, M. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomed. Pharmacother. 2022, 153, 113322. [Google Scholar] [CrossRef]
- Khan, I.; Ahmad, B.; Azam, S.; Hassan, F.; Nazish; Aziz, A.; Rehman, N.; Ullah, F.; Liaqat, Z. Pharmacological activities of Justicia adhatoda. Pak. J. Pharm. Sci. 2018, 31, 371–377. [Google Scholar]
- Shahwar, D.; Raza, M.A.; Tariq, S.; Riasat, M.; Ajaib, M. Enzyme inhibition, antioxidant and antibacterial potential of vasicine isolated from Adhatoda vasica Nees. Pak. J. Pharm. Sci. 2012, 25, 651–656. [Google Scholar]
- Pandey, A.; Jaiswal, D.; Agrawal, S.B. Ultraviolet-B mediated biochemical and metabolic responses of a medicinal plant Adhatoda vasica Nees. at different growth stages. J. Photochem. Photobiol. B Biol. 2021, 216, 112142. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Ortiz-Sánchez, E.; Domínguez, F.; Arana-Argáez, V.; del Carmen Juárez-Vázquez, M.; Chávez, M.; Carranza-Álvarez, C.; Gaspar-Ramírez, O.; Espinosa-Reyes, G.; López-Toledo, G.; et al. Antitumor and immunomodulatory effects of Justicia spicigera Schltdl (Acanthaceae). J. Ethnopharmacol. 2012, 141, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Djarkasi, G.S.S.; Lalujan, L.E.; Nurali, E.; Sumual, M.F. Antioxidant activity of karimenga (Acorus calamus). AIP Conf. Proc. 2019, 2155, 020051. [Google Scholar] [CrossRef]
- Koca, H.B.; Köken, T.; Özkurt, M.; Kuş, G.; Kabadere, S.; Erkasap, N.; Koca, O.; Çolak, Ö. Effects of Acorus calamus plant extract on prostate cancer cell culture. Anatol. J. Bot. 2018, 2, 46–51. [Google Scholar] [CrossRef]
- Asha, D.S.; Ganjewala, D. Antimicrobial activity of Acorus calamus (L.) rhizome and leaf extract. Acta Biol. Szeged. 2009, 53, 45–49. [Google Scholar]
- Jain, N.; Jain, R.; Jain, A.; Jain, D.K.; Chandel, H.S. Evaluation of wound-healing activity of Acorus calamus Linn. Nat. Prod. Res. 2010, 24, 534–541. [Google Scholar] [CrossRef]
- Mehrotra, S.; Mishra, K.; Maurya, R.; Srimal, R.; Yadav, V.; Pandey, R.; Singh, V. Anticellular and immunosuppressive properties of ethanolic extract of Acorus calamus rhizome. Int. Immunopharmacol. 2003, 3, 53–61. [Google Scholar] [CrossRef]
- Mohd Razali, N.N.; Teh, S.S.; Mah, S.H.; Yong, Y.K.; Ng, C.T.; Lim, Y.M.; Fong, L.Y. Protective Effects of Alternanthera sessilis Ethanolic Extract against TNF-α or H2O2-Induced Endothelial Activation in Human Aortic Endothelial Cells. Evidence-Based Complement. Altern. Med. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surfaces B Biointerfaces 2013, 102, 288–291. [Google Scholar] [CrossRef]
- Bhandari, D.K.; Nath, G.; Ray, A.B.; Tewari, P.V. Antimicrobial Activity Of Crude Extracts From Berberis Asiatica Stem Bark. Pharm. Biol. 2000, 38, 254–257. [Google Scholar] [CrossRef]
- Borchardt, R.T. Editorial. J. Pharm. Sci. 2008, 97, 2011. [Google Scholar] [CrossRef]
- Venkadassalapathy, S.D.; Ramasamy, M.; Balashanmugam; Victor, D.J.; Subramanian, S.; Praveen, J.A.A.; Akbar, M.A.R. In Vitro Antibacterial, Cytotoxicity and Wound Healing Activities of Methanol and Aqueous Extracts from Achyranthes aspera. J. Pharm. Bioallied Sci. 2023, 15, S764–S770. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.J.; Patel, N. In-Vitro Antioxidant Activity of Various Fractions of Achyranthes Aspera (Asclepiadaceae). Pharmacologyonline 2010, 2, 681–688. [Google Scholar]
- Banso, A.; Dachi, S.; Usman, J.; Ajewole, A.; Etsu-Musa, N. Assessment of bioactive phytochemical and free radical scavenging analysis of leaf extract of Alchornea cordifolia (Schumach & Thonn) Mull. Arg. Pharma Innov. 2024, 13, 20–25. [Google Scholar] [CrossRef]
- Khuda, F.; Iqbal, Z.; Khan, A.; Zakiullah; Shah, W.A.; Shah, Y.; Ahmad, L.; Hassan, M.; Khan, A.; Khan, A. Report: Antibacterial and antifungal activities of leaf extract of Achyranthes aspera (Amaranthaceae) from Pakistan. Pak. J. Pharm. Sci. 2015, 28, 1797–1800. [Google Scholar]
- Shukla, K.; Jain, S.; Patil, N.; Patil, K.; Wagh, K. Analgesic activity of Hydroalcholic extract of Achyranthes aspera leaves on animal model. Asian J. Pharm. Res. 2021, 239–241. [Google Scholar] [CrossRef]
- Sukumaran, V.K.; Sankar, P.; Varatharajan, R. Anti-inflammatory activity of roots of Achyranthes aspera. Pharm. Biol. 2009, 47, 973–975. [Google Scholar] [CrossRef]
- Narayan, C.; Kumar, A. Antineoplastic and immunomodulatory effect of polyphenolic components of Achyranthes aspera (PCA) extract on urethane induced lung cancer in vivo. Mol. Biol. Rep. 2014, 41, 179–191. [Google Scholar] [CrossRef]
- Garrido, G.; Gonzalez, D.; Delporte, C.; Backhouse, N.; Quintero, G.; Nunez-Selles, A.J.; Morales, M.A. Analgesic and anti-inflammatory effects ofMangifera indica L. extract (Vimang). Phyther. Res. 2001, 15, 18–21. [Google Scholar] [CrossRef]
- Hanani, E.I.; Ardiyani, H.D.; Sulistya, H.A.; Melisa, H.; Fawzy, A. The Potential Therapeutic Role of Flavonoids and Mangiferin in Mango Peel for Burn Wound Healing: A Comprehensive Literature Review. Int. J. Med. Sci. Clin. Res. Stud. 2024, 04, 1132–1139. [Google Scholar] [CrossRef]
- Alaiya, M.A.; Odeniyi, M.A. Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: A review. Futur. J. Pharm. Sci. 2023, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Patel, M.; Patel, R.; Parmar, P. Mangifera Indica (Mango). Pharmacogn. Rev. 2010, 4, 42–48. [Google Scholar] [CrossRef]
- Pardo-Andreu, G.L.; Sánchez-Baldoquín, C.; Ávila-González, R.; Yamamoto, E.T.S.; Revilla, A.; Uyemura, S.A.; Naal, Z.; Delgado, R.; Curti, C. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity. Pharmacol. Res. 2006, 54, 389–395. [Google Scholar] [CrossRef]
- Makare, N.; Bodhankar, S.; Rangari, V. Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. J. Ethnopharmacol. 2001, 78, 133–137. [Google Scholar] [CrossRef]
- Tan, L.T.H.; Lee, L.H.; Yin, W.F.; Chan, C.K.; Abdul Kadir, H.; Chan, K.G.; Goh, B.H. Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang). Evidence-Based Complement. Altern. Med. 2015, 2015, 1–30. [Google Scholar] [CrossRef]
- Lebanov, L.; Chung Lam, S.; Tedone, L.; Sostaric, T.; Smith, J.A.; Ghiasvand, A.; Paull, B. Radical scavenging activity and metabolomic profiling study of ylang-ylang essential oils based on high-performance thin-layer chromatography and multivariate statistical analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1179, 122861. [Google Scholar] [CrossRef]
- Khuanekkaphan, M.; Khobjai, W.; Noysang, C.; Wisidsri, N.; Thungmungmee, S. Bioactivities of karanda (Carissa carandas Linn.) fruit extracts for novel cosmeceutical applications. J. Adv. Pharm. Technol. Res. 2021, 12, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Saeed, W.; Ismail, T.; Qamar, M.; Khan, M.Z.; Ahmad, N.; Mubarak, M.S.; Esatbeyoglu, T. Carissa carandas: A multi-faceted approach to health, wellness, and commerce. J. Agric. Food Res. 2024, 18, 101274. [Google Scholar] [CrossRef]
- Kyada, A.; Rahamathulla, M.; Santani, D.; Vadia, N.; Baldaniya, L.; Rana, M.; Muqtader Ahmed, M.; Farhana, S.A.; Pasha, I. Phytochemical Analysis, In Vitro Free Radical Scavenging, and LDL Protective Effects of Different Solvent Fractions of Calotropis procera (R.) Br. Root Bark Extract. J. Food Biochem. 2023, 2023, 1–19. [Google Scholar] [CrossRef]
- Ahmad Nejhad, A.; Alizadeh Behbahani, B.; Hojjati, M.; Vasiee, A.; Mehrnia, M.A. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci. Rep. 2023, 13, 14716. [Google Scholar] [CrossRef]
- Seddek, A.L.S.; Mahmoud, M.E.; Shiina, T.; Hirayama, H.; Iwami, M.; Miyazawa, S.; Nikami, H.; Takewaki, T.; Shimizu, Y. Extract from Calotropis procera latex activates murine macrophages. J. Nat. Med. 2009, 63, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Ekiert, H.; Klimek-Szczykutowicz, M.; Rzepiela, A.; Klin, P.; Szopa, A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022, 27, 6427. [Google Scholar] [CrossRef]
- Ejembi, S.A.; Johnson, T.O.; Dabak, J.D.; Akinsanmi, A.O.; Oche, J.-R.I.; Francis, T. Analysis of the oxidative stress inhibition potentials of Artemisia annua and its bioactive compounds through in vitro and in silico studies. J. Pharm. Bioresour. 2021, 18, 245–259. [Google Scholar] [CrossRef]
- Chebbac, K.; Benziane Ouaritini, Z.; El Moussaoui, A.; Chalkha, M.; Lafraxo, S.; Bin Jardan, Y.A.; Nafidi, H.-A.; Bourhia, M.; Guemmouh, R. Antimicrobial and Antioxidant Properties of Chemically Analyzed Essential Oil of Artemisia annua L. (Asteraceae) Native to Mediterranean Area. Life 2023, 13, 807. [Google Scholar] [CrossRef] [PubMed]
- Pandey, B.P.; Thapa, R.; Upreti, A. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of Artemisia vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pac. J. Trop. Med. 2017, 10, 952–959. [Google Scholar] [CrossRef]
- Abiri, R.; Silva, A.L.M.; de Mesquita, L.S.S.; de Mesquita, J.W.C.; Atabaki, N.; de Almeida, E.B.; Shaharuddin, N.A.; Malik, S. Towards a better understanding of Artemisia vulgaris: Botany, phytochemistry, pharmacological and biotechnological potential. Food Res. Int. 2018, 109, 403–415. [Google Scholar] [CrossRef]
- Ekiert, H.; Świątkowska, J.; Klin, P.; Rzepiela, A.; Szopa, A. Artemisia annua—Importance in Traditional Medicine and Current State of Knowledge on the Chemistry, Biological Activity and Possible Applications. Planta Med. 2021, 87, 584–599. [Google Scholar] [CrossRef]
- Arulprakash, K.; Murugan, R.; Ponrasu, T.; Iyappan, K.; Gayathri, V.S.; Suguna, L. Efficacy of Ageratum conyzoides on tissue repair and collagen formation in rats. Clin. Exp. Dermatol. 2012, 37, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Levita, J.; Alfiana, A.; Bernadette, M.; Fajri Nuwa, R.; Sumiwi, S.A.; Saptarini, N.M.; Amien, S. Potential of Ageratum conyzoides in Inhibiting Nitric Oxide Synthase. Pakistan J. Biol. Sci. 2021, 24, 840–846. [Google Scholar] [CrossRef]
- Patil, A.; Kishore, K.; Arya, M. Shivani Phytochemical screening of Ageratum conyzoides and its antimicrobial activity against staphylococcus aureus and Escherichia coli. Int. J. Res. Anal Rev. 2019, 6, 312–320. [Google Scholar]
- Yadav, N.; Ganie, S.A.; Singh, B.; Chhillar, A.K.; Yadav, S.S. Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phyther. Res. 2019, 33, 2163–2178. [Google Scholar] [CrossRef]
- Ashrafi, S.; Alam, S.; Islam, A.; Emon, N.U.; Islam, Q.S.; Ahsan, M. Chemico-Biological Profiling of Blumea lacera (Burm.f.) DC. (Family: Asteraceae) Provides New Insights as a Potential Source of Antioxidant, Cytotoxic, Antimicrobial, and Antidiarrheal Agents. Evidence-Based Complement. Altern. Med. 2022, 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Swaraz, A.M.; Sultana, F.; Bari, M.W.; Ahmed, K.S.; Hasan, M.; Islam, M.M.; Islam, M.A.; Satter, M.A.; Hossain, M.H.; Islam, M.S.; et al. Phytochemical profiling of Blumea laciniata (Roxb.) DC. and its phytopharmaceutical potential against diabetic, obesity, and Alzheimer’s. Biomed. Pharmacother. 2021, 141, 111859. [Google Scholar] [CrossRef]
- Cafarchia, C.; De Laurentis, N.; Milillo, M.; Losacco, V.; Puccini, V. Antifungal activity of essential oils from leaves and flowers of Inula viscosa (Asteraceae) by Apulian region. Parassitologia 2002, 44, 153–156. [Google Scholar]
- Zeouk, I.; Sifaoui, I.; Ben Jalloul, A.; Bekhti, K.; Bazzocchi, I.L.; Piñero, J.E.; Jiménez, I.A.; Lorenzo-Morales, J. Isolation, identification, and activity evaluation of antioxidant components from Inula viscosa: A bioguided approach. Bioorg. Chem. 2022, 119, 105551. [Google Scholar] [CrossRef] [PubMed]
- Khatib, S.; Sobeh, M.; Faraloni, C.; Bouissane, L. Tanacetum species: Bridging empirical knowledge, phytochemistry, nutritional value, health benefits and clinical evidence. Front. Pharmacol. 2023, 14, 1–46. [Google Scholar] [CrossRef]
- Khairnar, A.S.; Majaz, Q.; Khan, G.J.; Pawar, S.P. Phytochemical analysis and evaluation of antioxidant activity of the leaves of Begonia picta smith. Int. J. Health Sci. (Qassim). 2022, 6, 9462–9482. [Google Scholar] [CrossRef]
- Joshi, K.R.; Devkota, H.P.; Nakamura, T.; Watanabe, T.; Yahara, S. Chemical constituents and their DPPH radical scavenging activity of Nepalese crude drug Begonia picta. Rec. Nat. Prod. 2015, 9, 446–450. [Google Scholar]
- Pawar, R.S.; Toppo, F.A. Plants that heal wounds. A review. Kerba Pol. 2012, 58, 47–65. [Google Scholar]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crisan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, 9, 1–30. [Google Scholar] [CrossRef]
- Belwal, T.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Srivastava, S.; Rawat, A. Antimicrobial activities of Indian Berberis species. Fitoterapia 2007, 78, 574–576. [Google Scholar] [CrossRef]
- Sharma, R.A.; Bhardwaj, R.; Yadav, A. Antioxidant Activity of Total Phenolic Compounds of Tecomella undulata. Int. J. Pharm. nad Pharm. Sci. 2013, 5, 1–5. [Google Scholar]
- Srinivas, A.N.; Suresh, D.; Suvarna, D.; Pathak, P.; Giri, S.; Suman; Satish, S.; Chidambaram, S.B.; Kumar, D.P. Unraveling the Potential Role of Tecomella undulata in Experimental NASH. Int. J. Mol. Sci. 2023, 24, 3244. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.; Vasudeva, N.; Ranga, V. In vivo anti-hyperglycemic and antioxidant potentials of ethanolic extract from Tecomella undulata. Diabetol. Metab. Syndr. 2012, 4, 33. [Google Scholar] [CrossRef]
- Ramkumarm, K.; Sunil, S.; Suresh, K. An overview for various aspects of multifaceted, health care Tecomella undulata seem. plant. Acta Pol. Pharm. 2012, 69, 993–996. [Google Scholar]
- Khosravi, H.; Solouki, M.; Ganjali, S. Investigating Antibacterial Properties of Tecomella undulata and Momordica charantia Plant Extracts on Some Pathogenic Bacteria. Gene Cell Tissue 2019, 7, 1–5. [Google Scholar] [CrossRef]
- Sarkar, C.; Mondal, M.; Khanom, B.; Hossain, M.M.; Hossain, M.S.; Sureda, A.; Islam, M.T.; Martorell, M.; Kumar, M.; Sharifi-Rad, J.; et al. Heliotropium indicum L.: From Farm to a Source of Bioactive Compounds with Therapeutic Activity. Evidence-based Complement. Altern. Med. 2021, 2021. [Google Scholar] [CrossRef]
- Kubiliene, A.; Mickute, K.; Baranauskaite, J.; Marksa, M.; Liekis, A.; Sadauskiene, I. The Effects of Cannabis sativa L. Extract on Oxidative Stress Markers In Vivo. Life 2021, 11, 647. [Google Scholar] [CrossRef]
- Ali, E.M.M.; Almagboul, A.Z.I.; Khogali, S.M.E.; Gergeir, U.M.A. Antimicrobial Activity of Cannabis sativa L. Chin. Med. 2012, 03, 61–64. [Google Scholar] [CrossRef]
- Akar, Z. Chemical compositions by using LC–MS/MS and GC–MS and antioxidant activities of methanolic extracts from leaf and flower parts of Scabiosa columbaria subsp. columbaria var. columbaria L. Saudi J. Biol. Sci. 2021, 28, 6639–6644. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, F.; Cordero-Maldonado, M.L.; Crawford, A.D.; Katerere, D.; Sandasi, M.; Hattingh, A.C.; Koekemoer, T.C.; van de Venter, M.; Viljoen, A.M. Evaluation of the wound healing properties of South African medicinal plants using zebrafish and in vitro bioassays. J. Ethnopharmacol. 2022, 286, 114867. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, S.; Aksoy, A.; Yilmaz, M.A.; Beyzi, E. Investigation of Phytochemical, Antioxidant and Antidiabetic Potentials of Scabiosa L. (Caprifoliaceae) Species with Chemometric Methods. Chem. Biodivers. 2024, 21. [Google Scholar] [CrossRef] [PubMed]
- Arruda, F.; Lima, A.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Rosa, J.S.; Lima, E. Sequential Separation of Essential Oil Components during Hydrodistillation of Fresh Foliage from Azorean Cryptomeria japonica (Cupressaceae): Effects on Antibacterial, Antifungal, and Free Radical Scavenging Activities. Plants 2024, 13, 1729. [Google Scholar] [CrossRef]
- Yoon, W.-J.; Kim, S.-S.; Oh, T.-H.; Lee, N.H.; Hyun, C.-G. Cryptomeria japonica essential oil inhibits the growth of drug-resistant skin pathogens and LPS-induced nitric oxide and pro-inflammatory cytokine production. Polish J. Microbiol. 2009, 58, 61–68. [Google Scholar]
- Lamichhane, G.; Sharma, G.; Sapkota, B.; Adhikari, M.; Ghimire, S.; Poudel, P.; Jung, H.-J. Screening of Antioxidant, Antibacterial, Anti-Adipogenic, and Anti-Inflammatory Activities of Five Selected Medicinal Plants of Nepal. J. Exp. Pharmacol. 2023, 15, 93–106. [Google Scholar] [CrossRef]
- Middha, S.; Goyal, A.; Lokesh, P.; Yardi, V.; Mojamdar, L.; Keni, D.; Babu, D.; Usha, T. Toxicological Evaluation of Emblica officinalis Fruit Extract and its Anti-inflammatory and Free Radical Scavenging Properties. Pharmacogn. Mag. 2015, 11, 427. [Google Scholar] [CrossRef]
- G Singh, P. Antimicrobial, antioxidant and anti-inflammatory activities of seeds from emblica officinalis (Gaertn.). Bioinformation 2022, 18, 683–691. [Google Scholar] [CrossRef]
- Khurana, S.K.; Tiwari, R.; Sharun, K.; Yatoo, M.I.; Gugjoo, M.B.; Dhama, K. Emblica officinalis (Amla) with a Particular Focus on Its Antimicrobial Potentials: A Review. J. Pure Appl. Microbiol. 2019, 13, 1995–2012. [Google Scholar] [CrossRef]
- Sumitra, M.; Manikandan, P.; Gayathri, V.S.; Mahendran, P.; Suguna, L. Emblica officinalis exerts wound healing action through up-regulation of collagen and extracellular signal-regulated kinases (ERK1/2). Wound Repair Regen. 2009, 17, 99–107. [Google Scholar] [CrossRef]
- Sharma, P.V.; Paliwal, R.; Sharma, S. Preliminary phytochemical screening and in vitro antioxidant potential of Euphorbia heterophylla L. Int. J. Pharm. Pharm. Sci. 2011, 3, 124–132. [Google Scholar]
- Igbinosa, O.O.; Igbinosa, I.H.; Chigor, V.N.; Uzunuigbe, O.E.; Oyedemi, S.O.; Odjadjare, E.E.; Okoh, A.I.; Igbinosa, E.O. Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn). Int. J. Mol. Sci. 2011, 12, 2958–2971. [Google Scholar] [CrossRef] [PubMed]
- Rahu, M.I.; Naqvi, S.H.A.; Memon, N.H.; Idrees, M.; Kandhro, F.; Pathan, N.L.; Sarker, M.N.I.; Aqeel Bhutto, M. Determination of antimicrobial and phytochemical compounds of Jatropha curcas plant. Saudi J. Biol. Sci. 2021, 28, 2867–2876. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gangwar, M.; Kumar, D.; Nath, G.; Kumar Sinha, A.S.; Tripathi, Y.B. Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and presscake of Jatropha curcas. Avicenna J. Phytomed. 2016, 6, 366–375. [Google Scholar] [CrossRef]
- Papalia, T.; Barreca, D.; Panuccio, M. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy. Int. J. Mol. Sci. 2017, 18, 660. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, H.I.; Moharram, F.A.; Gaara, A.H.; El-Safty, M.M. Phytoconstituents of Jatropha curcas L. Leaves and their Immunomodulatory Activity on Humoral and Cell-Mediated Immune Response in Chicks. Zeitschrift für Naturforsch. C 2009, 64, 495–501. [Google Scholar] [CrossRef]
- Katagi, A.; Sui, L.; Kamitori, K.; Suzuki, T.; Katayama, T.; Hossain, A.; Noguchi, C.; Dong, Y.; Yamaguchi, F.; Tokuda, M. Inhibitory effect of isoamericanol A from Jatropha curcas seeds on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. Heliyon 2016, 2, e00055. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Bachar, S.C.; Rahmatullah, M. Analgesic and antiinflammatory activity of methanolic extract of Acalypha indica Linn. Pak. J. Pharm. Sci. 2010, 23, 256–258. [Google Scholar]
- Akinduti, P.A.; Emoh-Robinson, V.; Obamoh-Triumphant, H.F.; Obafemi, Y.D.; Banjo, T.T. Antibacterial activities of plant leaf extracts against multi-antibiotic resistant Staphylococcus aureus associated with skin and soft tissue infections. BMC Complement. Med. Ther. 2022, 22, 47. [Google Scholar] [CrossRef]
- Sahukari, R.; Punabaka, J.; Bhasha, S.; Ganjikunta, V.S.; Kondeti Ramudu, S.; Kesireddy, S.R.; Ye, W.; Korivi, M. Phytochemical Profile, Free Radical Scavenging and Anti-Inflammatory Properties of Acalypha Indica Root Extract: Evidence from In Vitro and In Vivo Studies. Molecules 2021, 26, 6251. [Google Scholar] [CrossRef]
- Dwivedi, D.; Dwivedi, M.; Malviya, S.; Singh, V. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J. Tradit. Complement. Med. 2017, 7, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Mitra, A.; Mandal, S.; Das, P.; Dasgupta, S.; Mukhopadhyay, S.; Mukhopadhyay, A.; Banerjee, J.; Kar, M.; Journal, I. Antioxidant and Free Radical Scavenging Properties of Seed Components of Pongamia Pinnata-A Comparative Study. Org. Med. Chem IJ 2018, 7, 1–5. [Google Scholar] [CrossRef]
- Sajid, Z.I.; Anwar, F.; Shabir, G.; Rasul, G.; Alkharfy, K.M.; Gilani, A.-H. Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L.) Pierre. Molecules 2012, 17, 3917–3932. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, E.J.; Lim, Y.Y.; Choo, W.S. Antioxidant, cytotoxic, and antibacterial activities of Clitoria ternatea flower extracts and anthocyanin-rich fraction. Sci. Rep. 2022, 12, 14890. [Google Scholar] [CrossRef]
- Hung, T.N.; Manh, T.D. Biological activity of the Clitoria ternatea flower aqueous extract planted in Binh Duong province, Vietnam. Food Res. 2024, 8, 259–265. [Google Scholar] [CrossRef]
- Nguyen, K.N.T.; Nguyen, G.K.T.; Nguyen, P.Q.T.; Ang, K.H.; Dedon, P.C.; Tam, J.P. Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea (Clitoria ternatea). FEBS J. 2016, 283, 2067–2090. [Google Scholar] [CrossRef]
- Maity, N.; Nema, N.; Sarkar, B.; Mukherjee, P. Standardized Clitoria ternatea leaf extract as hyaluronidase, elastase and matrix-metalloproteinase-1 inhibitor. Indian J. Pharmacol. 2012, 44, 584. [Google Scholar] [CrossRef]
- Ajesh, K.; Sreejith, K. A Novel Antifungal Protein with Lysozyme-Like Activity from Seeds of Clitoria ternatea. Appl. Biochem. Biotechnol. 2014, 173, 682–693. [Google Scholar] [CrossRef]
- Balkrishna, A.; Sakshi; Chauhan, M.; Dabas, A.; Arya, V. A Comprehensive Insight into the Phytochemical, Pharmacological Potential, and Traditional Medicinal Uses of Albizia lebbeck (L.) Benth. Evidence-based Complement. Altern. Med. 2022, 2022. [Google Scholar] [CrossRef]
- El-Sayed Abd El-Ghany, A.; Dora, G.; Abdallah, R.H.; B Hassan, W.H.; Abd El-Salam, E. Phytochemical and biological study of Albizia lebbeck stem bark. J. Chem. Pharm. Res. 2015, 7, 29–43. [Google Scholar]
- Kwon, J.; Hwang, H.; Selvaraj, B.; Lee, J.H.; Park, W.; Ryu, S.M.; Lee, D.; Park, J.S.; Kim, H.S.; Lee, J.W.; et al. Phenolic constituents isolated from Senna tora sprouts and their neuroprotective effects against glutamate-induced oxidative stress in HT22 and R28 cells. Bioorg. Chem. 2021, 114, 105112. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Singh, R.; Mahdi, F.; Mahdi, A.A.; Singh, R.K. Experimental Validation of Antidiabetic and Antioxidant Potential of Cassia tora (L.): An Indigenous Medicinal Plant. Indian J. Clin. Biochem. 2017, 32, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Antonisamy, P.; Dhanasekaran, M.; Kim, H.R.; Jo, S.G.; Agastian, P.; Kwon, K.B. Anti-inflammatory and analgesic activity of ononitol monohydrate isolated from Cassia tora L. in animal models. Saudi J. Biol. Sci. 2017, 24, 1933–1938. [Google Scholar] [CrossRef]
- Sahu, J.; Koley, K.M.; Sahu, B.D. Attribution of antibacterial and antioxidant activity of Cassia tora extract toward its growth promoting effect in broiler birds. Vet. World 2017, 10, 221–226. [Google Scholar] [CrossRef]
- Pandya, M.; Sameja, K.; Patel, D.; Bhatt, K. Antimicrobial Activity and Phytochemical Analysis of Medicinal Plant Cassia tora. Int. J. Pharm. Chem. 2017, 3, 56. [Google Scholar] [CrossRef]
- Cibin, T.R.; Devi, D.G.; Abraham, A. Chemoprevention of Two-Stage Skin Cancer In vivo by Saraca asoca. Integr. Cancer Ther. 2012, 11, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Dabur, R.; Gupta, A.; Mandal, T.; Singh, D.; Bajpai, V.; Gurav, A.; Lavekar, G. Antimicrobial Activity Of Some Indian Medicinal Plants. African J. Tradit. Complement. Altern. Med. 2008, 4, 313. [Google Scholar] [CrossRef]
- Shakya, A.; Singh, G.; Chatterjee, S.; Kumar, V. Role of fumaric acid in anti-inflammatory and analgesic activities of a Fumaria indica extracts. J. Intercult. Ethnopharmacol. 2014, 3, 173. [Google Scholar] [CrossRef]
- Ali, S.; Bansal, S.; Mishra, R.P. Fumaria indica (L), a Famous Medicinal Herb of Tribal Regions of Jabalpur, Madhya Pradesh: Broad Spectrum Antibacterial and Phytochemical Profilng Against Some Pathogenic Microorganisms. Pharmacogn. J. 2020, 12, 619–623. [Google Scholar] [CrossRef]
- Brice Landry, K.; Tariq, S.; Malik, A.; Sufyan, M.; Ashfaq, U.A.; Ijaz, B.; Shahid, A.A. Berberis lyceum and Fumaria indica: In vitro cytotoxicity, antioxidant activity, and in silico screening of their selected phytochemicals as novel hepatitis C virus nonstructural protein 5A inhibitors. J. Biomol. Struct. Dyn. 2022, 40, 7829–7851. [Google Scholar] [CrossRef]
- Atta-Ur-Rahman; Ahmad, S.; Bhatti, K.; Choudhary, M. Alkaloidal constituents of Fumaria indica. Phytochemistry 1995, 40, 593–596. [Google Scholar] [CrossRef]
- Bhat, A.A.; Shakeel, A.; Rafiq, S.; Farooq, I.; Malik, A.Q.; Alghuthami, M.E.; Alharthi, S.; Qanash, H.; Alharthy, S.A. Juglans regia Linn.: A Natural Repository of Vital Phytochemical and Pharmacological Compounds. Life 2023, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Taheri, A.; Mirghazanfari, S.M.; Dadpay, M. Wound healing effects of Persian walnut (Juglans regia L.) green husk on the incision wound model in rats. Eur. J. Transl. Myol. 2020, 30, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Mobashar, A.; Shabbir, A.; Shahzad, M.; Gobe, G. Preclinical Rodent Models of Arthritis and Acute Inflammation Indicate Immunomodulatory and Anti-Inflammatory Properties of Juglans regia Extracts. Evidence-Based Complement. Altern. Med. 2022, 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Villastrigo López, W.Y.; Cabello Alvarado, C.J.; Dávila Medina, M.D.; Castañeda Facio, A.O.; Galindo, A.S. Evaluation of antibacterial and antioxidant properties of Lavandula officinalis extracts obtained by ultrasound. Int. J. Mol. Biol. Open Access 2024, 7, 15–19. [Google Scholar] [CrossRef]
- Dobros, N.; Zawada, K.D.; Paradowska, K. Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules 2022, 28, 256. [Google Scholar] [CrossRef]
- Slighoua, M.; Chebaibi, M.; Mahdi, I.; Amrati, F.E.; Conte, R.; Cordero, M.A.W.; Alotaibi, A.; Saghrouchni, H.; Agour, A.; Zair, T.; et al. The LC-MS/MS Identification and Analgesic and Wound Healing Activities of Lavandula officinalis Chaix: In Vivo and In Silico Approaches. Plants 2022, 11, 3222. [Google Scholar] [CrossRef]
- Hudz, N.; Kobylinska, L.; Pokajewicz, K.; Horčinová Sedláčková, V.; Fedin, R.; Voloshyn, M.; Myskiv, I.; Brindza, J.; Wieczorek, P.P.; Lipok, J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023, 28, 7444. [Google Scholar] [CrossRef]
- Ciliberti, M.G.; Albenzio, M.; Sevi, A.; Frabboni, L.; Marino, R.; Caroprese, M. Immunomodulatory Role of Rosmarinus officinalis L., Mentha x piperita L., and Lavandula angustifolia L. Essential Oils in Sheep Peripheral Blood Mononuclear Cells. Vet. Sci. 2024, 11, 157. [Google Scholar] [CrossRef]
- Taher, Y.A. Antinociceptive activity of Mentha piperita leaf aqueous extract in mice. Libyan J. Med. 2012, 7, 16205. [Google Scholar] [CrossRef]
- Modarresi, M.; Farahpour, M.-R.; Baradaran, B. Topical application of Mentha piperita essential oil accelerates wound healing in infected mice model. Inflammopharmacology 2019, 27, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Kong, S.; Jayaraman, V.; Selvaraj, D.; Soundararajan, P.; Manivannan, A. Mentha arvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits. Horticulturae 2023, 9, 224. [Google Scholar] [CrossRef]
- Rosmalena; Putri, N.A.; Yazid, F.; Ambarwati, N.S.S.; Omar, H.; Ahmad, I. Phytochemical, in vitro radical scavenging and in vivo oxidative stress analysis of peppermint (Mentha piperita L.) leaves extract. J. Adv. Pharm. Technol. Res. 2022, 13, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
- Mahendran, G.; Rahman, L. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint ( Mentha × piperita L.)—A review. Phyther. Res. 2020, 34, 2088–2139. [Google Scholar] [CrossRef]
- Al Jaafreh, A.M. Evaluation of Antioxidant Activities of Rosemary (Rosmarinus officinalis L.) Essential Oil and Different Types of Solvent Extractions. Biomed. Pharmacol. J. 2024, 17, 323–339. [Google Scholar] [CrossRef]
- Francolino, R.; Martino, M.; Caputo, L.; Amato, G.; Chianese, G.; Gargiulo, E.; Formisano, C.; Romano, B.; Ercolano, G.; Ianaro, A.; et al. Phytochemical Constituents and Biological Activity of Wild and Cultivated Rosmarinus officinalis Hydroalcoholic Extracts. Antioxidants 2023, 12, 1633. [Google Scholar] [CrossRef]
- Labib, R.M.; Ayoub, I.M.; Michel, H.E.; Mehanny, M.; Kamil, V.; Hany, M.; Magdy, M.; Moataz, A.; Maged, B.; Mohamed, A. Appraisal on the wound healing potential of Melaleuca alternifolia and Rosmarinus officinalis L. essential oil-loaded chitosan topical preparations. PLoS ONE 2019, 14, e0219561. [Google Scholar] [CrossRef]
- Lucarini, R.; Bernardes, W.A.; Ferreira, D.S.; Tozatti, M.G.; Furtado, R.; Bastos, J.K.; Pauletti, P.M.; Januário, A.H.; Silva, M.L.A.e; Cunha, W.R. In vivo analgesic and anti-inflammatory activities of Rosmarinus officinalis aqueous extracts, rosmarinic acid and its acetyl ester derivative. Pharm. Biol. 2013, 51, 1087–1090. [Google Scholar] [CrossRef]
- Zaaba, N.A.A.B.; Gayathri, R.; Vishnu Priya, V. In vitro free radical scavenging activity of tea tree oil and clove oil. Asian J. Pharm. Clin. Res. 2016, 9, 179–183. [Google Scholar]
- Manilal, A.; Sabu, K.R.; Shewangizaw, M.; Aklilu, A.; Seid, M.; Merdekios, B.; Tsegaye, B. In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: Efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon 2020, 6, e03303. [Google Scholar] [CrossRef] [PubMed]
- Chew, A.L.; Jessica, J.J.A.; Sasidharan, S. Antioxidant and antibacterial activity of different parts of Leucas aspera. Asian Pac. J. Trop. Biomed. 2012, 2, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Meghashri, S.; Vijay Kumar, H.; Gopal, S. Antioxidant properties of a novel flavonoid from leaves of Leucas aspera. Food Chem. 2010, 122, 105–110. [Google Scholar] [CrossRef]
- Kripa, K.G.; Chamundeeswari, D.; Thanka, J.; Uma Maheswara Reddy, C. Modulation of inflammatory markers by the ethanolic extract of Leucas aspera in adjuvant arthritis. J. Ethnopharmacol. 2011, 134, 1024–1027. [Google Scholar] [CrossRef]
- Shah, M.; Prajapati, M.; Patel, J.; Modi, K. Leucas aspera: A review. Pharmacogn. Rev. 2010, 4, 85. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Al-Mana, F.A.; Al-Yafrsi, M.A. Antioxidant and biological activities of acacia saligna and lawsonia inermis natural populations. Plants 2020, 9, 908. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Teibo, J.O.; Shaheen, H.M.; Babalola, B.A.; Teibo, T.K.A.; Al-kuraishy, H.M.; Al-Garbeeb, A.I.; Alexiou, A.; Papadakis, M. Therapeutic potential of Lawsonia inermis Linn: A comprehensive overview. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 397, 3525–3540. [Google Scholar] [CrossRef]
- Mikhaeil, B.R.; Badria, F.A.; Maatooq, G.T.; Amer, M.M.A. Antioxidant and Immunomodulatory Constituents of Henna Leaves. Zeitschrift für Naturforsch. C 2004, 59, 468–476. [Google Scholar] [CrossRef]
- Bin Emran, T. Phytochemical, Antimicrobial, Cytotoxic, Analgesic and Anti-Inflammatory Properties of Azadirachta Indica: A Therapeutic Study. J. Bioanal. Biomed. 2015, 01. [Google Scholar] [CrossRef]
- Sarkar, S.; Singh, R.P.; Bhattacharya, G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: An update on molecular approach. 3 Biotech 2021, 11, 178. [Google Scholar] [CrossRef]
- Zihadi, M.; Rahman, M.; Talukder, S.; Hasan, M.; Nahar, S.; Sikder, M. Antibacterial efficacy of ethanolic extract of Camellia sinensis and Azadirachta indica leaves on methicillin-resistant Staphylococcus aureus and shiga-toxigenic Escherichia coli. J. Adv. Vet. Anim. Res. 2019, 6, 247. [Google Scholar] [CrossRef] [PubMed]
- Neglo, D.; Adzaho, F.; Agbo, I.A.; Arthur, R.; Sedohia, D.; Tettey, C.O.; Waikhom, S.D. Antibiofilm Activity of Azadirachta indica and Catharanthus roseus and Their Synergistic Effects in Combination with Antimicrobial Agents against Fluconazole-Resistant Candida albicans Strains and MRSA. Evidence-Based Complement. Altern. Med. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Shrestha, T.; Lamichhane, J. Assessment of phytochemicals, antimicrobial, antioxidant and cytotoxicity activity of methanolic extract of Tinospora cordifolia (Gurjo). Nepal J. Biotechnol. 2021, 9, 18–23. [Google Scholar] [CrossRef]
- Philip, S.; Tom, G.; Vasumathi, A. V Evaluation of the anti-inflammatory activity of Tinospora cordifolia (Willd.) Miers chloroform extract—A preclinical study. J. Pharm. Pharmacol. 2018, 70, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dwivedee, B.P.; Bisht, D.; Dash, A.K.; Kumar, D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 2019, 5, e02437. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D. The Natural Ficus carica L. (fig) Extract as an Effective Prophylactic Antibacterial Agent for Inflammation-Related Infections. Life 2023, 13, 2356. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Biomed. 2016, 6, 239–245. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Aldebasi, Y.H. Ficus carica and its constituents role in management of diseases. Asian J. Pharm. Clin. Res. 2017, 10, 49. [Google Scholar] [CrossRef]
- Sirisha, N.; Sreenivasulu, M.; Sangeeta, K.; Madhusudhana Chetty, C. Antioxidant properties of Ficus Species—A review. Int. J. PharmTech Res. 2010, 2, 2174–2182. [Google Scholar]
- Fazel, M.F.; Abu, I.F.; Mohamad, M.H.N.; Mat Daud, N.A.; Hasan, A.N.; Aboo Bakkar, Z.; Md Khir, M.A.N.; Juliana, N.; Das, S.; Mohd Razali, M.R.; et al. Physicochemistry, Nutritional, and Therapeutic Potential of Ficus carica—A Promising Nutraceutical. Drug Des. Devel. Ther. 2024, 18, 1947–1968. [Google Scholar] [CrossRef]
- Salehi, B.; Prakash Mishra, A.; Nigam, M.; Karazhan, N.; Shukla, I.; Kiełtyka-Dadasiewicz, A.; Sawicka, B.; Głowacka, A.; Abu-Darwish, M.S.; Hussein Tarawneh, A.; et al. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phyther. Res. 2021, 35, 1187–1217. [Google Scholar] [CrossRef] [PubMed]
- Borotová, P.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Tvrdá, E.; Kačániová, M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants 2022, 11, 558. [Google Scholar] [CrossRef]
- Koh, K.J.; Pearce, A.L.; Marshman, G.; Finlay-Jones, J.J.; Hart, P.H. Tea tree oil reduces histamine-induced skin inflammation. Br. J. Dermatol. 2002, 147, 1212–1217. [Google Scholar] [CrossRef]
- Low, P.; Clark, A.M.; Chou, T.-C.; Chang, T.-C.; Reynolds, M.; Ralph, S.J. Immunomodulatory activity of Melaleuca alternifolia concentrate (MAC): Inhibition of LPS-induced NF-κB activation and cytokine production in myeloid cell lines. Int. Immunopharmacol. 2015, 26, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, Y.; Guo, L.; Jiang, H.; Ji, Q. In Vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia Essential Oil. Biomed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Roana, J.; Mandras, N.; Scalas, D.; Campagna, P.; Tullio, V. Antifungal Activity of Melaleuca alternifolia Essential Oil (TTO) and Its Synergy with Itraconazole or Ketoconazole against Trichophyton rubrum. Molecules 2021, 26, 461. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, S.A.J.; Riaz, A.; Akhter, N.; Khan, R.A. Evaluation of wound healing effects of Syzygium cumini and laser treatment in diabetic rats. Pak. J. Pharm. Sci. 2020, 33, 779–786. [Google Scholar]
- Xue, Q.; Xiang, Z.; Wang, S.; Cong, Z.; Gao, P.; Liu, X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front. Nutr. 2022, 9, 1–25. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Ben Kahla-Nakbi, A.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata ( Syzigium aromaticum L. Myrtaceae): A short review. Phyther. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, J.Y.; Son, Y.G.; Kang, S.D.; Lee, S.W.; Kim, K.D.; Kim, J.Y. Characterization of Chemical Composition and Antioxidant Activity of Eucalyptus globulus Leaves under Different Extraction Conditions. Appl. Sci. 2023, 13, 9984. [Google Scholar] [CrossRef]
- Lee, G.; Park, J.; Kim, M.S.; Seol, G.H.; Min, S.S. Analgesic effects of eucalyptus essential oil in mice. Korean J. Pain 2019, 32, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, E.S.; Morgan, L.V.; Ferrarini, S.; Zilli, G.A.L.; Rosina, A.; Almeida, M.O.P.; Hackbart, H.C.S.; Rezende, R.S.; Albeny-Simões, D.; Oliveira, J.V.; et al. Anti-Inflammatory and Antimicrobial Effects of Eucalyptus spp. Essential Oils: A Potential Valuable Use for an Industry Byproduct. Evidence-Based Complement. Altern. Med. 2023, 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Niaz, K.; Maqbool, F.; Bahadar, H.; Abdollahi, M. Health Benefits of Manuka Honey as an Essential Constituent for Tissue Regeneration. Curr. Drug Metab. 2018, 18. [Google Scholar] [CrossRef]
- Kaźmierczak-Barańska, J.; Karwowski, B.T. The Antioxidant Potential of Commercial Manuka Honey from New Zealand—Biochemical and Cellular Studies. Curr. Issues Mol. Biol. 2024, 46, 6366–6376. [Google Scholar] [CrossRef]
- Noites, A.; Araújo, B.; Machado, J.; Pinto, E. Antifungal Potential of Some Herb Decoctions and Essential Oils on Candida Species. Healthcare 2022, 10, 1820. [Google Scholar] [CrossRef]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef]
- Checker, R.; Chatterjee, S.; Sharma, D.; Gupta, S.; Variyar, P.; Sharma, A.; Poduval, T.B. Immunomodulatory and radioprotective effects of lignans derived from fresh nutmeg mace (Myristica fragrans) in mammalian splenocytes. Int. Immunopharmacol. 2008, 8, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.K.; Tao, S.-S.; Li, T.-T.; Li, Y.-S.; Li, X.-J.; Tang, H.-B.; Cong, R.-H.; Ma, F.-L.; Wan, C.-J. Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutr. Res. 2016, 60, 30849. [Google Scholar] [CrossRef]
- Youshi, M.; Farahpour, M.R.; Tabatabaei, Z.G. Facile fabrication of carboxymethylcellulose/ZnO/g-C3N4 containing nutmeg extract with photocatalytic performance for infected wound healing. Sci. Rep. 2023, 13, 18704. [Google Scholar] [CrossRef]
- Angilia, C.; Sary, N.L.; Indah, R.; Suryawati, S.; Farsa, B.S.; Zeir, H.A.; Fajri, F.; Husna, F. Wound healing effect of nutmeg (Myristica fragrans) cream on second-degree burn in animal model. Narra J 2024, 4, e621. [Google Scholar] [CrossRef]
- Otify, A.M.; Serag, A.; Porzel, A.; Wessjohann, L.A.; Farag, M.A. NMR Metabolome-Based Classification of Cymbopogon Species: A Prospect for Phyto-equivalency of its Different Accessions Using Chemometric Tools. Food Anal. Methods 2022, 15, 2095–2106. [Google Scholar] [CrossRef]
- Dangol, S.; Poudel, D.K.; Ojha, P.K.; Maharjan, S.; Poudel, A.; Satyal, R.; Rokaya, A.; Timsina, S.; Dosoky, N.S.; Satyal, P.; et al. Essential Oil Composition Analysis of Cymbopogon Species from Eastern Nepal by GC-MS and Chiral GC-MS, and Antimicrobial Activity of Some Major Compounds. Molecules 2023, 28, 543. [Google Scholar] [CrossRef] [PubMed]
- Prasad, C.S.; Shukla, R.; Kumar, A.; Dubey, N.K. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses 2010, 53, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Preetham, J.; Kiran, S.; Sharath, R.; Sundari, P.S.; Ganapathy, P.S.; HM, K. Development of pharmacognostic parameters for the leaf of Bridelia scandens (Roxb.) Willd. J. Phytopharm. 2021, 10, 230–235. [Google Scholar] [CrossRef]
- Adeeba, A.; Mohammad, R.; Mohammad, S.R.; Choudhury, M.H.; Md. Ekramul, H.; Mohammad, A.R. In vitro antibacterial, antifungal and cytotoxic activity of three Bangladeshi Bridelia species. Int. Res. Pharm. Pharmacol. 2011, 1, 149–154. [Google Scholar]
- Jain, S.; Kumar, D.; Malviya, N.; Jain, A.; Jain, S.; Jain, V. Estimation of total phenolic, tannins, and flavonoid contents and antioxidant activity of Cedrus deodara heart wood extracts. Egypt. Pharm. J. 2015, 14, 10. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Srinivas, P.V.; Kumar, S.P.; Rao, J.M. Free Radical Scavenging Active Components from Cedrus deodara. J. Agric. Food Chem. 2001, 49, 4642–4645. [Google Scholar] [CrossRef]
- Rastegari, A.; Manayi, A.; Akbarzadeh, T.; Hojjatifard, R.; Samadi, N.; Khanavi, M.; Niknam, S.; Saeedi, M. Cedrus deodara: In Vivo Investigation of Burn Wound Healing Properties. Evidence-Based Complement. Altern. Med. 2023, 2023, 1–8. [Google Scholar] [CrossRef]
- Narayan, S.; Thakur, C.; Bahadur, S.; Thakur, M.; Pandey, S.; Thakur, A.; Mitra, D.; Mukherjee, P. Cedrus deodara: In vitro antileishmanial efficacy & immumomodulatory activity. Indian J. Med. Res. 2017, 146, 780. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, Z.; Gao, H.; Jia, L.; He, Q. Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oil from Pine Needle (Cedrus deodara ). J. Food Sci. 2012, 77. [Google Scholar] [CrossRef]
- Asdaq, S.M.B.; Govinda, H. Immunomodulatory potential of methanol extract of Aegle marmelos in animals. Indian J. Pharm. Sci. 2011, 73, 235. [Google Scholar] [CrossRef] [PubMed]
- Arul, V.; Miyazaki, S.; Dhananjayan, R. Studies on the anti-inflammatory, antipyretic and analgesic properties of the leaves of Aegle marmelos Corr. J. Ethnopharmacol. 2005, 96, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Karumaran, S.; Nethaji, S.; Rajakumar, R. Antimicrobial and antioxidant activity of leaf extracts of Aegle marmelos. Pelagia Res. Libr. Adv. Appl. Sci. Res. 2016, 7, 205–208. [Google Scholar]
- Ahmad, W.; Amir, M.; Ahmad, A.; Ali, A.; Ali, A.; Wahab, S.; Barkat, H.A.; Ansari, M.A.; Sarafroz, M.; Ahmad, A.; et al. Aegle marmelos Leaf Extract Phytochemical Analysis, Cytotoxicity, In Vitro Antioxidant and Antidiabetic Activities. Plants 2021, 10, 2573. [Google Scholar] [CrossRef] [PubMed]
- Makni, M.; Jemai, R.; Kriaa, W.; Chtourou, Y.; Fetoui, H. Citrus limon from Tunisia: Phytochemical and Physicochemical Properties and Biological Activities. Biomed Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Dahima, R.; Mishra, S.; Rathore, D. In-vitro antioxidant and reducing potential activity of extracts of Citrus Limon and Solanum Lycopersicum. Der Pharm. Lett. 2016, 8, 258–269. [Google Scholar]
- Manchope, M.F.; Casagrande, R.; Verri, W.A. Naringenin: An analgesic and anti-inflammatory citrus flavanone. Oncotarget 2017, 8, 3766–3767. [Google Scholar] [CrossRef]
- Merheb, R.; Abdel-Massih, R.M.; Karam, M.C. Immunomodulatory effect of natural and modified Citrus pectin on cytokine levels in the spleen of BALB/c mice. Int. J. Biol. Macromol. 2019, 121, 1–5. [Google Scholar] [CrossRef]
- Apu, A.S.; Liza, M.S.; Jamaluddin, A.T.M.; Howlader, M.A.; Saha, R.K.; Rizwan, F.; Nasrin, N. Phytochemical screening and in vitro bioactivities of the extracts of aerial part of Boerhavia diffusa Linn. Asian Pac. J. Trop. Biomed. 2012, 2, 673–678. [Google Scholar] [CrossRef]
- Bairwa, K.; Singh, I.N.; Roy, S.K.; Grover, J.; Srivastava, A.; Jachak, S.M. Rotenoids from Boerhaavia diffusa as Potential Anti-inflammatory Agents. J. Nat. Prod. 2013, 76, 1393–1398. [Google Scholar] [CrossRef]
- Hiruma-Lima, C.A.; Gracioso, J.S.; Bighetti, E.J.B.; Germonsén Robineou, L.; Souza Brito, A.R.M. The juice of fresh leaves of Boerhaavia diffusa L. (Nyctaginaceae) markedly reduces pain in mice. J. Ethnopharmacol. 2000, 71, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, E.S.; Cordier, W.; Steenkamp, P.A.; Steenkamp, V. Attenuation of oxidative stress and artificial wound closure in C2C12 myoblasts induced by sequential extracts of Boerhavia diffusa. J. Pharm. Pharmacol. 2017, 70, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Ganeshpurkar, A.; Shrotriya, S.; Sawant, P.; Mulgund, S. Small size silver nanoparticles loaded with glycoside rich portion of Boerhavia Diffusa Linn. promotes wound healing: In-silico and in-vivo studies. Colloids Surfaces B Biointerfaces 2023, 230, 113483. [Google Scholar] [CrossRef]
- Das, S.; Singh, P.K.; Ameeruddin, S.; Kumar Bindhani, B.; Obaidullah, W.J.; Obaidullah, A.J.; Mishra, S.; Mohapatra, R.K. Ethnomedicinal values of Boerhaavia diffusa L. as a panacea against multiple human ailments: A state of art review. Front. Chem. 2023, 11, 1–17. [Google Scholar] [CrossRef]
- Shahid, A.; Arif, D.A.; Ali, R.; Aziz, D.A.; Sarwar, M.S.; Naeem, M.; Nawaz, A.; Ali, S.R. Therapeutic effects of Salvadora persica extracts against Sarcoptes scabiei var. hominis and their secondary infections. J. Popul. Ther. Clin. Pharmacol. 2024, 31, 1806–1821. [Google Scholar] [CrossRef]
- Ahmad, H.; Ahamed, N.; Dar, J.M.; Mohammad, U.J. Ethnobotany, Pharmacology and Chemistry of Salvadora persica L. A Review. Res. Plant Biol. 2012, 2, 22–31. [Google Scholar]
- Farag, M.; Abdel-Mageed, W.M.; El Gamal, A.A.; Basudan, O.A. Salvadora persica L.: Toothbrush tree with health benefits and industrial applications—An updated evidence-based review. Saudi Pharm. J. 2021, 29, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Meshram, N.; Ojha, M.; Singh, A.; Alexander, A.; Ajazuddin; Sharma, M. Significance and Traditional Medicinal Properties of Schleichera oleosa. Asian J. Pharm. Res. 2015, 5, 61. [Google Scholar] [CrossRef]
- Prakulanon, J.; Duangsrisai, S.; Vajrodaya, S.; Thongchin, T. Evaluation of phytochemical profile, and antioxidant, antidiabetic activities of indigenous Thai fruits. PeerJ 2024, 12, e17681. [Google Scholar] [CrossRef]
- Jose, S.; Sinha, M.P.; Gupta, B.K.; Sharma, A.K.; Jaggi, Y. Antioxidant activity of Schleichera oleosa. An Int. Q. J. Environ. Sci. 2016, 9, 769–774. [Google Scholar] [CrossRef]
- Khan, M.J.; Saraf, S.; Saraf, S. Anti-inflammatory and associated analgesic activities of HPLC standardized alcoholic extract of known ayurvedic plant Schleichera oleosa. J. Ethnopharmacol. 2017, 197, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Park, Y.; Li, M.; Kim, Y.K.; Lee, S.; Son, S.Y.; Lee, S.; Lee, J.S.; Lee, C.H.; Park, H.H.; et al. Anti-inflammatory effect of Ailanthus altissima (Mill.) Swingle leaves in lipopolysaccharide-stimulated astrocytes. J. Ethnopharmacol. 2022, 286, 114258. [Google Scholar] [CrossRef] [PubMed]
- Boukhibar, H.; Laouani, A.; Touzout, S.N.; Alenazy, R.; Alqasmi, M.; Bokhari, Y.; Saguem, K.; Ben-Attia, M.; El-Bok, S.; Merghni, A. Chemical Composition of Ailanthus altissima (Mill.) Swingle Methanolic Leaf Extracts and Assessment of Their Antibacterial Activity through Oxidative Stress Induction. Antibiotics 2023, 12, 1253. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Gil, N.; Amaral, M.E.; Domingues, F.; Duarte, A.P.C. Ailanthus altissima (miller) swingle: A source of bioactive compounds with antioxidant activity. BioResources 2012, 7, 2105–2120. [Google Scholar] [CrossRef]
- Andonova, T.; Muhovski, Y.; Slavov, I.; Vrancheva, R.; Georgiev, V.; Apostolova, E.; Naimov, S.; Mladenov, R.; Pavlov, A.; Dimitrova-Dyulgerova, I. Phenolic Profile, Antioxidant and DNA-Protective Capacity, and Microscopic Characters of Ailanthus altissima Aerial Substances. Plants 2023, 12, 920. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Akter, I. A Comprehensive Overview on Pharmacological and Therapeutic Insights of Solanum nigrum Linn. Qeios 2024. [Google Scholar] [CrossRef]
- Jan, S.; Iram, S.; Bashir, O.; Shah, S.N.; Kamal, M.A.; Rahman, S.; Kim, J.; Jan, A.T. Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases. Plants 2024, 13, 724. [Google Scholar] [CrossRef]
- Mohyuddin, A.; Kurniawan, T.A.; Khan, Z.; Nadeem, S.; Javed, M.; Dera, A.A.; Iqbal, S.; Awwad, N.S.; Ibrahium, H.A.; Abourehab, M.A.S.; et al. Comparative Insights into the Antimicrobial, Antioxidant, and Nutritional Potential of the Solanum nigrum Complex. Processes 2022, 10, 1455. [Google Scholar] [CrossRef]
- Mohamed Saleem, T.S.; Madhusudhana Chetty, C.; Ramkanth, S.; Alagusundaram, M.; Gnanaprakash, K.; Thiruvengada Rajan, V.S.; Angalaparameswari, S. Solanum nigrum Linn.—A review. Pharmacogn. Rev. 2009, 3, 342–345. [Google Scholar]
- Abbas, K.; Niaz, U.; Hussain, T.; Saeed, M.A.; Javaid, Z.; Idrees, A.; Rasool, S. Antimicrobial activity of fruits of Solanum nigrum and Solanum xanthocarpum. Acta Pol. Pharm. 2014, 71, 415–421. [Google Scholar]
- Bhardwaj, K.; Kumar, S.; Ojha, S. Antioxidant activity and ft-ir analysis of Datura innoxia and Datura metel leaf and seed meth-anolic extracts. African J. Tradit. Complement. Altern. Med. 2016, 13, 7–16. [Google Scholar] [CrossRef]
- Damergi, B.; Essid, R.; Fares, N.; Khadraoui, N.; Ageitos, L.; Ben Alaya, A.; Gharbi, D.; Abid, I.; Rashed Alothman, M.; Limam, F.; et al. Datura stramonium Flowers as a Potential Natural Resource of Bioactive Molecules: Identification of Anti-Inflammatory Agents and Molecular Docking Analysis. Molecules 2023, 28, 5195. [Google Scholar] [CrossRef] [PubMed]
- Joshua, P.E.; Yahaya, J.; Ekpo, D.E.; Ogidigo, J.O.; Odiba, A.S.; Asomadu, R.O.; Oka, S.A.; Adeniyi, O.S. Modulation of immunological responses by aqueous extract of Datura stramonium L. seeds on cyclophosphamide-induced immunosuppression in Wistar rats. BMC Immunol. 2022, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- Medina-Juárez, L.Á.; Molina-Quijada, D.M.A.; Del Toro-Sánchez, C.L.; González-Aguilar, G.A.; Gámez-Meza, N. Antioxidant activity of peppers (Capsicum annuum L.) extracts and characterization of their phenolic constituents. Interciencia 2012, 37, 588–593. [Google Scholar]
- Jang, H.; Choi, M.; Jang, K.-S. Comprehensive phytochemical profiles and antioxidant activity of Korean local cultivars of red chili pepper (Capsicum annuum L.). Front. Plant Sci. 2024, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-H.; Kim, M.-H.; Han, Y.-S. Physicochemical properties and antioxidant activity of colored peppers (Capsicum annuum L.). Food Sci. Biotechnol. 2023, 32, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, N.; Baig, S.G.; Ahmed, S.; Ul Hasan, M.M.; Palla, A.; Ishrat, G. Analgesic and anti-inflammatory potential of four varieties of bell pepper (Capsicum annum L.) in rodents. Pak. J. Pharm. Sci. 2021, 34, 1369–1376. [Google Scholar]
- Oyedemi, B.O.; Kotsia, E.M.; Stapleton, P.D.; Gibbons, S. Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer. J. Ethnopharmacol. 2019, 245, 111871. [Google Scholar] [CrossRef]
- Gülçın, İ.; Oktay, M.; Kıreçcı, E.; Küfrevıoǧlu, Ö.İ. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Salim, M.M.A.; Aali, N.M. El Antioxidant Activity and HPLC Screening of Pimpinella Anisum. J. Pharm. Appl. Chem. 2021, 7, 1–5. [Google Scholar]
- Hashemnia, M.; Nikousefat, Z.; Mohammadalipour, A.; Zangeneh, M.-M.; Zangeneh, A. Wound healing activity of Pimpinella anisum methanolic extract in streptozotocin-induced diabetic rats. J. Wound Care 2019, 28, S26–S36. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cao, Z.; ul Hassan, S.S.; Zhang, H.; Ishaq, M.; Yu, X.; Yan, S.; Xiao, X.; Jin, H.-Z. Emerging Biopharmaceuticals from Pimpinella Genus. Molecules 2023, 28, 1571. [Google Scholar] [CrossRef] [PubMed]
- Abena, A.A.; Diatewa, M.; Gakosso, G.; Gbeassor, M.; Hondi-Assah, T.; Ouamba, J.M. Analgesic, antipyretic and anti-inflammatory effects of essential oil of Lippia multiflora. Fitoterapia 2003, 74, 231–236. [Google Scholar] [CrossRef]
- Samba, N.; Aitfella-Lahlou, R.; Nelo, M.; Silva, L.; Coca, R.; Rocha, P.; López Rodilla, J.M. Chemical Composition and Antibacterial Activity of Lippia multiflora Moldenke Essential Oil from Different Regions of Angola. Molecules 2020, 26, 155. [Google Scholar] [CrossRef]
- Hanson, A.; Joubert, E.; De Beer, D.; Malherbe, C.J.; Witthuhn, R.C. Phenylethanoid glycosides as major antioxidants in Lippia multiflora herbal infusion and their stability during steam pasteurisation of plant material. Food Chem. 2011, 127, 581–588. [Google Scholar] [CrossRef]
- Kulkarni, R.R.; Virkar, A.D.; Dmello, P. Antioxidant and antiinflammatory activity of Vitex negundo. Indian J. Pharm. Sci. 2008, 70, 838–840. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, J.; Yu, Y.; Li, Z.; Li, Y.; Hu, C.; Zhou, Y.; Chen, R. Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS. Molecules 2024, 29, 3133. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.W.C.; Wong, S.K.; Chan, H.T. Casticin from Vitex species: A short review on its anticancer and anti-inflammatory properties. J. Integr. Med. 2018, 16, 147–152. [Google Scholar] [CrossRef]
- Sharma, D.; Radha; Kumar, M.; Andrade-Cetto, A.; Puri, S.; Kumar, A.; Thakur, M.; Chandran, D.; Pundir, A.; Prakash, S.; et al. Chemical Diversity and Medicinal Potential of Vitex negundo L.: From Traditional Knowledge to Modern Clinical Trials. Chem. Biodivers. 2023, 20. [Google Scholar] [CrossRef]
- Zareshahrabadi, Z.; Saharkhiz, M.J.; Izadpanah, M.; Iraji, A.; Emaminia, M.; Motealeh, M.; Khodadadi, H.; Zomorodian, K. Chemical Composition and Antifungal and Antibiofilm Effects of Vitex pseudo-negundo Essential Oil against Pathogenic Fungal Strains. Evidence-Based Complement. Altern. Med. 2023, 2023, 1–9. [Google Scholar] [CrossRef]
- Kokate, A.; Limsay, R.; Dubey, S. The phytochemistry and antioxidant activity of methanolic extract of Clerodendrum infortunatum leaves. Pharma Innov. J. 2022, 11, 661–664. [Google Scholar]
- Ranatunge, I.; Soysa, P. Polyphenol Mediated Suppression of Hepatocellular Carcinoma (HepG2) Cell Proliferation by Clerodendrum infortunatum L. Root. Asian Pacific J. Cancer Prev. 2024, 25, 351–363. [Google Scholar] [CrossRef]
- Khatun, M.S.; Mia, N.; Al Bashera, M.; Murad, M.A.; Zahan, R.; Parvin, S.; Akhtar, M.A. Evaluation of anti-inflammatory potential and GC-MS profiling of leaf extracts from Clerodendrum infortunatum L. J. Ethnopharmacol. 2024, 320, 117366. [Google Scholar] [CrossRef]
- Waliullah, T.; Yeasmin, A.; Alam, A.; Islam, W.; Hassan, P. In vitro Antimicrobial Study for Biological Evaluation of Clerodendrum infortunatum Linn. Recent Pat. Antiinfect. Drug Discov. 2015, 10, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, Z.; Zhang, Y.; Gao, B.; Li, Y.; He, X.; Sun, J.; Choe, U.; Chen, P.; Blaustein, R.A.; et al. Chemical Composition of Turmeric (Curcuma longa L.) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities. Foods 2024, 13, 1550. [Google Scholar] [CrossRef]
- Sabir, S.M.; Zeb, A.; Mahmood, M.; Abbas, S.R.; Ahmad, Z.; Iqbal, N. Phytochemical analysis and biological activities of ethanolic extract of Curcuma longa rhizome | Análise fitoquímica e atividades biológicas do extrato etanólico do rizoma de curcuma longa. Brazilian J. Biol. 2021, 81, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Razavi, B.M.; Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phyther. Res. 2021, 35, 6489–6513. [Google Scholar] [CrossRef]
- Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. Biomed Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef]
- Aboelhadid, S.M.; Mahrous, L.N.; Hashem, S.A.; Abdel-Kafy, E.M.; Miller, R.J. In vitro and in vivo effect of Citrus limon essential oil against sarcoptic mange in rabbits. Parasitol. Res. 2016, 115, 3013–3020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewski, M.; Wróblewska, J.; Nuszkiewicz, J.; Mila-Kierzenkowska, C.; Woźniak, A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules 2024, 29, 5310. https://doi.org/10.3390/molecules29225310
Wróblewski M, Wróblewska J, Nuszkiewicz J, Mila-Kierzenkowska C, Woźniak A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules. 2024; 29(22):5310. https://doi.org/10.3390/molecules29225310
Chicago/Turabian StyleWróblewski, Marcin, Joanna Wróblewska, Jarosław Nuszkiewicz, Celestyna Mila-Kierzenkowska, and Alina Woźniak. 2024. "Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation" Molecules 29, no. 22: 5310. https://doi.org/10.3390/molecules29225310
APA StyleWróblewski, M., Wróblewska, J., Nuszkiewicz, J., Mila-Kierzenkowska, C., & Woźniak, A. (2024). Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules, 29(22), 5310. https://doi.org/10.3390/molecules29225310