Fabrication of Pb-Containing PtAu Nanoflowers via Galvanic Replacement Method for Electrocatalytical Oxidation of Methanol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication and Characterization of Pb-Containing PtAu Nanoparticles
2.2. Electrochemical Study of the Mechanism of Pb Co-Deposition at the Cathode During the GRR Process in the DCGC Device
2.3. Electrocatalytical Oxidation of Methanol on Pb-Containing PtAu Nanoparticles in Alkaline Solution
3. Materials and Methods
3.1. Instrumentation and Reagents
3.2. Deposition of Pb-Containing PtAu Nanoparticles on MWCNTs/GCE in the DCGC Device
3.3. CV Experiment to Study the Electrochemical Deposition Behavior of Pb on Pt and Au Surfaces
3.4. Electrochemical Characterization of the Modified Electrodes and Electrocatalytic Oxidation of Methanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berghian-Grosan, C.; Radu, T.; Biris, A.R.; Dan, M.; Voica, C.; Watanabe, F.; Biris, A.S.; Vulcu, A. Platinum nanoparticles coated by graphene layers: A low-metal loading catalyst for methanol oxidation in alkaline media. J. Energy Chem. 2020, 40, 81–88. [Google Scholar] [CrossRef]
- Cao, L.; Scheiba, F.; Roth, C.; Schweiger, F.; Cremers, C.; Stimming, U.; Fuess, H.; Chen, L.; Zhu, W.; Qiu, X. Novel nanocomposite Pt/RuO2·xH2O/Carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem. Int. Ed. 2006, 45, 5315–5319. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, S.; Jang, J.; Park, H.U.; Matin, M.A.; Kim, Y.T.; Kwon, Y.U. Effects of particle proximity and composition of Pt-M (M = Mn, Fe, Co) nanoparticles on electrocatalysis in methanol oxidation reaction. J. Power Sources 2015, 294, 75–81. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, S.; Wu, F.; Zhu, L.; Li, G.; Chen, M.; Pei, A.; Feng, Y. Efficient and stable PtFe alloy catalyst for electrocatalytic methanol oxidation with high resistance to CO. J. Energy Chem. 2024, 90, 327–336. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Chen, X.; Wang, A.; Han, D.; Wang, Z.; Feng, J. Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. J. Colloid. Interf. Sci. 2019, 536, 556–562. [Google Scholar] [CrossRef]
- Li, Z.; Ke, S.; Zheng, X.; Huang, Y.; Fu, W.; Wang, Y.; Nie, Y. Modulating d-orbital electronic configuration of PtRu via charge donation from Co-enriched core boosts methanol electrooxidation. Chem. Eng. J. 2024, 493, 152544–152552. [Google Scholar] [CrossRef]
- Li, X.; Lei, H.; Yang, C.; Zhang, Q. Electrochemical fabrication of ultra-low loading Pt decorated porous nickel frameworks as efficient catalysts for methanol electrooxidation in alkaline medium. J. Power Sources 2018, 396, 64–72. [Google Scholar] [CrossRef]
- Chen, R.; Gao, J.; Yang, J.; Zhang, F.; Wang, Q. Enhanced methanol electrooxidation catalysis via dual modulation of PtCu alloy and oxygen vacancies. Fuel 2024, 371, 131994–132002. [Google Scholar] [CrossRef]
- Hanifah, M.F.R.; Jaafar, J.; Othman, M.; Ismail, A.F.; Rahman, M.A.; Yusof, N.; Aziz, F. One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell. J. Alloys Compd. 2019, 793, 232–246. [Google Scholar] [CrossRef]
- Eid, K. Rapid one-step aqueous synthesis of porous PtAg wavy nanochains for methanol electrooxidation with a high CO-tolerance. J. Electroanal. Chem. 2024, 961, 118207–118216. [Google Scholar] [CrossRef]
- Morante-Catacora, T.Y.; Ishikawa, Y.; Cabrera, C.R. Sequential electrodeposition of Mo at Pt and PtRu methanol oxidation catalyst particles on HOPG surfaces. J. Electroanal. Chem. 2008, 621, 103–112. [Google Scholar] [CrossRef]
- Ren, Y.; Askarov, S.; Zhang, Y.; Shi, D.; Wu, Q.; Chen, K.; Li, H. Nanoarchitectonics for modulation on the electronic structure of ultrafine PtRuFe nanowires as robust methanol electrooxidation catalysts. J. Alloys Compd. 2024, 978, 173442–173450. [Google Scholar] [CrossRef]
- Baruch-Soto, M.; Magallón-Cacho, L.; Ramírez-Aparicio, J.; Ortega-Guzmán, J.; Borja-Arco, E. Methanol oxidation reaction in alkaline media using gold nanoparticles recovered from electronic waste. Materials 2024, 17, 1267. [Google Scholar] [CrossRef] [PubMed]
- Karuppasamy, L.; Chen, C.Y.; Anandan, S.; Wu, J.J. Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium. Catal. Today 2018, 307, 308–317. [Google Scholar] [CrossRef]
- Reddy, G.V.; Sekhar, Y.C.; Raghavendra, P.; Reddy, M.N.; Chandana, P.S.; Sarma, L.S. Controlled synthesis of reduced graphene oxide-supported bimetallic Pt-Au nanoparticles for enhanced electrooxidation of methanol. Solid State Sci. 2024, 149, 107469. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wang, X. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 2011, 3, 1663–1674. [Google Scholar] [CrossRef]
- Luo, J.; Njoki, P.N.; Lin, Y.; Mott, D.; Wang; Zhong, C. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 2006, 22, 2892–2898. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Reggiano, G.; Wang, X.; Chen, S.; Reggiano, G.; Thota, S.; Wang, Y.; Kerns, P.; Suib, S.L.; et al. Au-Cu-M (M = Pt, Pd, Ag) nanorods with enhanced catalytic efficiency by galvanic replacement reaction. Chem. Commun. 2019, 55, 1249–1252. [Google Scholar] [CrossRef]
- Yoshii, T.; Nakatsuka, K.; Kuwahara, Y.; Mori, K.; Yamashita, H. Synthesis of carbon-supported Pd-Co bimetallic catalysts templated by Co nanoparticles using the galvanic replacement method for selective hydrogenation. RSC Adv. 2017, 7, 22294–22300. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Kuang, Q.; Xie, S.; Jiang, Z.; Xie, Z.; Zheng, L. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117. [Google Scholar] [CrossRef]
- Grgur, B.; Marković, N.; Ross, P. Underpotential deposition of lead on Pt(111) in perchloric acid solution: RPDPt(111)E measurements. Langmuir 1997, 13, 6370–6374. [Google Scholar] [CrossRef]
- Stafford, G.; Bertocci, U. In situ stress and nanogravimetric measurements during underpotential deposition of Pb on (111)-textured Au. J. Phys. Chem. C 2007, 111, 17580–17586. [Google Scholar] [CrossRef]
- Guo, S.; Dong, S.; Wang, E. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307–1310. [Google Scholar] [CrossRef]
- Tian, N.; Zhou, Z.; Sun, S.; Ding, Y.; Wang, Z. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Jiang, L.; Qi, J.; Sun, G. Experimental and density functional theory studies on PtPb/C bimetallic electrocatalysts for methanol electrooxidation reaction in alkaline media. Electrochim. Acta 2011, 56, 6431–6440. [Google Scholar] [CrossRef]
- Burda, C.; Chen, X.; Narayanan, R.; Ei-Sayed, M. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef]
- Du, B.; Tong, Y. A coverage-dependent study of Pt spontaneously deposited on to Au and Ru surfaces: Direct experimental evidence of the ensemble effect for methanol electro-oxidation on Pt. J. Phys. Chem. B 2005, 109, 17775–17780. [Google Scholar] [CrossRef]
- Neurock, M.; Janik, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 2009, 140, 363–378. [Google Scholar] [CrossRef]
- Tan, Y.; Xie, Q.; Huang, J.; Duan, W.; Ma, M.; Yao, S. Study on glucose biofuel cells using an electrochemical noise device. Electroanalysis 2008, 20, 1599–1606. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, Z.; Chao, L. Double-cabin galvanic cell-synthesizing nanoporous, flower-like, Pb-containing Pd-Au nanoparticles for nonenzymatic formaldehyde sensor. Molecules 2024, 29, 2772. [Google Scholar] [CrossRef]
Abbreviation of Modified Electrodes | The Metal Salt Composition of Catholyte |
---|---|
Pb-Pt/MWCNTs/GCE | 3.0 mM H2PtCl6 + 5.0 mM Pb(ClO4)2 + 0.1 M HClO4 |
Pb-Pt3Au0.5/MWCNTs/GCE | 5.0 mM Pb(ClO4)2 + 3.0 mM H2PtCl6 + 0.5 mM HAuCl4 + 0.1 M HClO4 |
Pb-Pt3Au1/MWCNTs/GCE | 5.0 mM Pb(ClO4)2 + 3.0 mM H2PtCl6 + 1.0 mM HAuCl4 + 0.1 M HClO4 |
Pb-Pt3Au3/MWCNTs/GCE | 5.0 mM Pb(ClO4)2 + 3.0 mM H2PtCl6 + 3.0 mM HAuCl4 + 0.1 M HClO4 |
Pb-Pt3Au5/MWCNTs/GCE | 5.0 mM Pb(ClO4)2 + 3.0 mM H2PtCl6 + 5.0 mM HAuCl4 + 0.1 M HClO4 |
Pt3Au1/MWCNTs/GCE | 3.0 mM H2PtCl6 + 1.0 mM HAuCl4 + 0.1 M HClO4 |
Pb-Au/MWCNTs/GCE | 3.0 mM HAuCl4 + 5.0 mM Pb(ClO4)2 + 0.1 M HClO4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Zhang, Z.; Chao, L.; Jia, X. Fabrication of Pb-Containing PtAu Nanoflowers via Galvanic Replacement Method for Electrocatalytical Oxidation of Methanol. Molecules 2024, 29, 5492. https://doi.org/10.3390/molecules29235492
Huang Z, Zhang Z, Chao L, Jia X. Fabrication of Pb-Containing PtAu Nanoflowers via Galvanic Replacement Method for Electrocatalytical Oxidation of Methanol. Molecules. 2024; 29(23):5492. https://doi.org/10.3390/molecules29235492
Chicago/Turabian StyleHuang, Zhao, Zhirou Zhang, Long Chao, and Xueen Jia. 2024. "Fabrication of Pb-Containing PtAu Nanoflowers via Galvanic Replacement Method for Electrocatalytical Oxidation of Methanol" Molecules 29, no. 23: 5492. https://doi.org/10.3390/molecules29235492
APA StyleHuang, Z., Zhang, Z., Chao, L., & Jia, X. (2024). Fabrication of Pb-Containing PtAu Nanoflowers via Galvanic Replacement Method for Electrocatalytical Oxidation of Methanol. Molecules, 29(23), 5492. https://doi.org/10.3390/molecules29235492