Aqueous-Phase Reforming of Biogas Slurry over MOF-Derived α-MoO3 Catalyst for Producing Renewable Hydrogen: Effect of Fermenting Time
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.1.1. Phase and vdW Heterostructures Analysis
2.1.2. Surface Property Analysis
2.2. Pollutant Treatment Capability
2.3. Hydrogen Production
Produced alkenes: nCO + 2nH2 → CnH2n + nH2O, ΔH > 0
2.4. Compositions of Liquid Phase
2.4.1. Organic Components
2.4.2. Inorganic Components
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Catalysts
3.3. Anaerobic Digestion Process
3.4. Aqueous-Phase Reforming Experiments
3.5. Data Analysis
3.6. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Li, J.; Yan, B.B.; Zhou, S.Q.; Zhu, X.C.; Cheng, Z.J.; Chen, G.Y. Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 2024, 199, 114518. [Google Scholar] [CrossRef]
- Jiang, H.E.; Deng, F.; Luo, Y.P.; Xie, Z.J.; Chen, Y.C.; Zhou, P.; Liu, X.F.; Li, D. Hydrothermal carbonization of corn straw in biogas slurry. J. Clean. Prod. 2022, 353, 131682. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.M.; Meng, J.; Zhang, J.; Zhuang, H.F.; Zheng, G.Y.; Xie, W.Y.; Ping, L.F.; Shan, S.D. Long-term biogas slurry application increased antibiotics accumulation and antibiotic resistance genes (ARGs) spread in agricultural soils with different properties. Sci. Total Environ. 2021, 759, 143473. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.S.; Qiu, J.R.; Wang, D.H.; Wu, Z.Y.; He, L.T. Ultrafiltration concentrated biogas slurry can reduce the organic pollution of groundwater in fertigation. Sci. Total Environ. 2022, 810, 151294. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.H.; Xu, L.; Ji, L.; He, Q.Y.; Wu, L.L.; Yan, S.P. A new approach for biogas slurry disposal by adopting CO2-rich biogas slurry as the flower fertilizer of Spathiphyllum: Feasibility, cost and environmental pollution potential. Sci. Total Environ. 2021, 770, 145333. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- Cortright, R.; Davda, R.; Dumesic, J. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964–967. [Google Scholar] [CrossRef]
- Saenz de Miera, B.; Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Rodriguez, J.J.; Gilarranz, M.A. Treatment and valorisation of fruit juice wastewater by aqueous phase reforming: Effect of pH, organic load and salinity. J. Clean. Prod. 2020, 252, 119849. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Guo, Q.; Sun, Y.; Zhang, S.; Qu, Y.Q. Stabilized *OH species by K+-doped Pt for H2 generation with ultra-low levels of CO through aqueous-phase reforming of methanol at low temperature. Appl. Catal. B-Environ. 2023, 338, 123011. [Google Scholar] [CrossRef]
- Mao, Q.L.; Guo, Y.; Liu, X.H.; Shakouri, M.; Hu, Y.F.; Wang, Y.Q. Identifying the realistic catalyst for aqueous phase reforming of methanol over Pt supported by lanthanum nickel perovskite catalyst. Appl. Catal. B-Environ. 2022, 313, 121435. [Google Scholar] [CrossRef]
- Nozawa, T.; Mizukoshi, Y.; Yoshida, A.; Naito, S. Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts. Appl. Catal. B-Environ. 2014, 146, 221–226. [Google Scholar] [CrossRef]
- Liu, D.S.A.; Dou, B.L.; Zhang, H.; Wu, K.; Luo, C.Q.; Du, J.B.; Gao, D.X.; Chen, H.S.; Xu, Y.J. Sorption enhanced aqueous phase reforming of biodiesel byproduct glycerol for hydrogen production over Cu-Ni bimetallic catalysts supported on gelatinous MgO. J. Clean. Prod. 2023, 383, 135491. [Google Scholar] [CrossRef]
- Shu, G.Q.; Lin, Y.Q.; Wang, S.H.; Zhang, S.H.; Fan, L.; Wang, C.; Zhou, C.G.; Song, L.; Zheng, L.R.; Zhang, J.; et al. Dynamic Metal−Support Interaction-Activated Sub-Nanometer Pt Clusters on FeOx Supports for Aqueous Phase Reforming and Hydrogenolysis of Glycerol. ACS Catal. 2023, 13, 8423–8436. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhong, X.Y.; Xie, X.Y.; Jia, X.Y.; Chen, B.Q.; Wang, N.; Huang, L.H. Auto-thermal reforming of acetic acid for hydrogen production by ordered mesoporous Ni-xSm-Al-O catalysts: Effect of samarium promotion. Renew. Energy 2020, 145, 2316–2326. [Google Scholar] [CrossRef]
- Muthukumar, P.; Kumar, A.; Afzal, M.; Bhogilla, S.; Sharma, P.; Parida, A.; Jana, S.; Kumar, E.A.; Pai, R.K.; Jain, I.P. Review on large-scale hydrogen storage systems for better sustainability. Int. J. Hydrogen Energy 2023, 48, 33223–33259. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. Green hydrogen: A pathway to a sustainable energy future. Int. J. Hydrogen Energy 2024, 50, 310–333. [Google Scholar] [CrossRef]
- Remón, J.; Ruiz, J.; Oliva, M.; García, L.; Arauzo, J. Cheese whey valorisation: Production of valuable gaseous and liquid chemicals from lactose by aqueous phase reforming. Energy Convers. Manag. 2016, 124, 453–469. [Google Scholar] [CrossRef]
- Remón, J.; Laseca, M.; García, L.; Arauzo, J. Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound. Energy Convers. Manag. 2016, 114, 122–141. [Google Scholar] [CrossRef]
- Remón, J.; García, L.; Arauzo, J. Cheese whey management by catalytic steam reforming and aqueous phase reforming. Fuel Process. Technol. 2016, 154, 66–81. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Cordero-Lanzac, T.; Baeza, J.A.; Calvo, L.; Heras, F.; Rodriguez, J.J.; Gilarranz, M.A. Continuous aqueous phase reforming of a synthetic brewery wastewater with Pt/C and PtRe/C catalysts for biohydrogen production. Chemosphere 2021, 281, 130885. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Cordero-Lanzac, T.; Baezaa, J.A.; Calvo, L.; Rodriguez, J.J.; Gilarranz, M.A. Continuous aqueous phase reforming of wastewater streams: A catalyst deactivation study. Fuel 2021, 305, 121506. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Gilarranz, M.A. Aqueous phase reforming of starch wastewater over Pt and Pt-based bimetallic catalysts for green hydrogen production. Chem. Eng. J. 2023, 460, 141770. [Google Scholar] [CrossRef]
- Rej, S.; Hejazi, S.M.H.; Badura, Z.; Zoppellaro, G.; Kalytchuk, S.; Kment, Š.; Fornasiero, P.; Naldoni, A. Light-Induced Defect Formation and Pt Single Atoms Synergistically Boost Photocatalytic H2 Production in 2D TiO2-Bronze Nanosheets. ACS Sustain. Chem. Eng. 2022, 10, 17286–17296. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.B.; Liang, R.; Yan, B.B.; Tao, J.Y.; Su, H.; Chen, G.Y. Aqueous phase reforming of distiller’s grain derived biogas Plant wastewater over α-MoO3 nanosheets. Chem. Eng. J. 2022, 430, 132735. [Google Scholar] [CrossRef]
- Khani, Y.; Kamyar, N.; Bahadoran, F.; Safari, N.; Amini, M.M. A520 MOF-derived alumina as unique support for hydrogen production from methanol steam reforming: The critical role of support on performance. Renew. Energy 2020, 156, 1055–1064. [Google Scholar] [CrossRef]
- Du, J.K.; Chai, J.L.; Li, Q.M.; Zhang, W.; Tang, B.H.J. Application of two-dimensional layered Mo-MOF@ppy with high valency molybdenum in lithium-ion batteries. Colloids Surf. A 2022, 632, 127810. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wang, H.; Xing, Q.; Cui, W.; Li, J.Y.; Wu, S.J.; Sun, L.D. The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism. Chin. J. Catal. 2019, 40, 647–655. [Google Scholar] [CrossRef]
- Zhang, G.B.; Xiong, T.F.; Yan, M.Y.; He, L.; Liao, X.B.; He, C.Q.; Yin, C.S.; Zhang, H.N.; Mai, L.Q. α-MoO3−x by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy 2018, 49, 555–563. [Google Scholar] [CrossRef]
- Yan, P.F.; Ji, L.; Liu, X.P.; Guan, Q.H.; Guo, J.J.; Shen, Y.L.; Zhang, H.J.; Wei, W.F.; Cui, X.W.; Xu, Q. 2D amorphous-MoO3−x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy 2021, 86, 106139. [Google Scholar] [CrossRef]
- Kim, H.S.; Cook, J.B.; Lin, H.; Ko, J.S.; Tolbert, S.H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460. [Google Scholar] [CrossRef]
- Lu, C.Y.; Rooney, D.W.; Jiang, X.; Sun, W.; Wang, Z.; Wang, J.; Sun, K. Achieving high specific capacity of lithium-ion battery cathodes by modification with “N–O˙” radicals and oxygen-containing functional groups. J. Mater. Chem. 2017, 5, 24636–24644. [Google Scholar] [CrossRef]
- García-Jarana, M.B.; Portela, J.R.; Sánchez-Oneto, J.; Martinez de la Ossa, E.J.; Al-Duri, B. Analysis of the Supercritical Water Gasification of Cellulose in a Continuous System Using Short Residence Times. Appl. Sci. 2020, 10, 5185. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, Y.S.; Chen, M.Q.; Liang, D.F.; Li, C.; Yang, Z.L.; Wang, J. Hydrogen production from aqueous phase reforming of glycerol over attapulgite-supported nickel catalysts: Effect of acid/base treatment and Fe additive. Int. J. Hydrogen Energy 2022, 47, 7082–7099. [Google Scholar] [CrossRef]
- Khallouk, K.; Solhy, A.; Idrissi, N.; Flaud, V.; Kherbeche, A.; Barakat, A. Microwave-assisted selective oxidation of sugars to carboxylic acids derivatives in water over zinc-vanadium mixed oxide. Chem. Eng. J. 2020, 385, 123914. [Google Scholar] [CrossRef]
- Xi, S.B.; Zhang, J.; Xie, K. Low-temperature Water-gas Shift Reaction Enhanced by Oxygen Vacancies in Pt-loaded Porous Single-crystalline Oxide Monoliths. Angew. Chem. Int. Ed. 2022, 61, e202209851. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.Y.; Ye, H.C.; Chen, S.M.; Ju, H.X.; Liu, D.B.; Lin, Y.; Ye, W.; Wang, C.M.; Xu, Q.; et al. Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation. J. Am. Chem. Soc. 2016, 138, 8928–8935. [Google Scholar] [CrossRef]
- Yousefifar, A.; Baroutian, S.; Farid, M.M.; Gapes, D.J.; Young, B.R. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review. Water Res. 2017, 123, 607–622. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Garcia, D.; Saenz de Miera, B.; Calvo, L.; Rodriguez, J.J.; Gilarranz, M.A. Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production. Renew. Energy 2020, 148, 889–896. [Google Scholar] [CrossRef]
- Zhang, H.L.; Jiang, Y.X.; Dai, W.W.; Tang, N.; Zhu, X.L.; Li, C.Y.; Shan, H.H.; Wang, G.W. Catalytic dehydrogenation of propane over unconventional Pb/SiO2 catalysts. Fuel 2022, 318, 123532. [Google Scholar] [CrossRef]
- Lu, X.L.; Ma, X.Q.; Qin, X.F.; Chen, Z.; Qi, X. Investigation of aqueous phase recirculation on co-hydrothermal carbonization of sewage sludge and lignite: Hydrochar properties and heavy metal chemical speciation. J. Environ. Chem. Eng. 2022, 10, 107111. [Google Scholar] [CrossRef]
- Yakubovich, M.N.; Struzhko, V.L.; Strizhak, P.E. Secondary reactions of ethylene and propylene in the Fischer-Tropsch synthesis on cobalt-aluminum and cobalt-chromium catalysts. Theor. Exp. Chem. 2008, 44, 121–127. [Google Scholar] [CrossRef]
- Jiao, F.; Li, J.J.; Pan, X.L.; Xiao, J.P.; Li, H.B.; Ma, H.; Wei, M.M.; Pan, Y.; Zhou, Z.Y.; Li, M.R.; et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Zhang, X.S.; Qv, Y.C.; Jiang, H.; Yu, H.Q. Bio-oil upgrading at ambient pressure and temperature using zero valent metals. Green Chem. 2012, 14, 2226–2233. [Google Scholar] [CrossRef]
- El Hajjouji, H.; Merlina, G.; Pinelli, E.; Winterton, P.; Revel, J.-C.; Hafidi, M. 13C NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content. J. Hazards Mater. 2008, 154, 927–932. [Google Scholar] [CrossRef]
- GB 5084-2021; National Standards of China: Irrigation Water Quality Standards. China Environmental Science Press: Beijing, China, 2021.
- Su, W.; Zhao, M.M.; Xing, Y.; Ma, H.Z.; Liu, P.; Li, X.Y.; Zhang, H.S.; Wu, Y.J.; Xia, C.L. Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts. Environ. Res. 2022, 214, 114093. [Google Scholar] [CrossRef] [PubMed]
- Pendem, C.; Sarkar, B.; Siddiqui, N.; Konathala, L.N.S.; Baskar, C.; Bal, R. K-Promoted Pt-Hydrotalcite Catalyst for Production of H2 by Aqueous Phase Reforming of Glycerol. ACS Sustain. Chem. Eng. 2018, 6, 2122–2131. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, Z.Y.; Yang, G.X.; Zuo, X.Y.; Cao, Y.; Li, X.J.; Chen, G.Y.; Yan, B.B. A coupling strategy for comprehensive utilization of distillers’ grains towards energy recovery and carbon sequestration. Energy Convers. Manag. 2023, 275, 116494. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.X.; Tao, J.Y.; Kumar, A.; Liu, Z.B.; Yan, B.B.; Su, H.; Chen, G.Y. Ni/MOFs-derived α-MoO3 catalyst for renewable hydrogen production and treatment of biogas slurry by aqueous-phase reforming. Fuel Process. Technol. 2023, 245, 107738. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Alonso-Morales, N.; Heras, F.; Lemus, J.; Rodrigueza, J.J.; Gilarranz, M.A. Exploration of the treatment of fish-canning industry effluents by aqueous-phase reforming using Pt/C catalysts. Environ. Sci. Water Res. Technol. 2018, 4, 1979–1987. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Baeza, J.A.; Calvo, L.; Alonso-Morales, N.; Heras, F.; Rodriguez, J.J.; Gilarranz, M.A. Production of hydrogen from brewery wastewater by aqueous phase reforming with Pt/C catalysts. Appl. Catal. B-Environ. 2019, 245, 367–375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, Q.; Wang, J.; Chen, Y.; Tao, J.; Kumar, A.; Yan, B.; Chen, G. Aqueous-Phase Reforming of Biogas Slurry over MOF-Derived α-MoO3 Catalyst for Producing Renewable Hydrogen: Effect of Fermenting Time. Molecules 2024, 29, 5565. https://doi.org/10.3390/molecules29235565
Bu Q, Wang J, Chen Y, Tao J, Kumar A, Yan B, Chen G. Aqueous-Phase Reforming of Biogas Slurry over MOF-Derived α-MoO3 Catalyst for Producing Renewable Hydrogen: Effect of Fermenting Time. Molecules. 2024; 29(23):5565. https://doi.org/10.3390/molecules29235565
Chicago/Turabian StyleBu, Qingguo, Jian Wang, Yuxuan Chen, Junyu Tao, Akash Kumar, Beibei Yan, and Guanyi Chen. 2024. "Aqueous-Phase Reforming of Biogas Slurry over MOF-Derived α-MoO3 Catalyst for Producing Renewable Hydrogen: Effect of Fermenting Time" Molecules 29, no. 23: 5565. https://doi.org/10.3390/molecules29235565
APA StyleBu, Q., Wang, J., Chen, Y., Tao, J., Kumar, A., Yan, B., & Chen, G. (2024). Aqueous-Phase Reforming of Biogas Slurry over MOF-Derived α-MoO3 Catalyst for Producing Renewable Hydrogen: Effect of Fermenting Time. Molecules, 29(23), 5565. https://doi.org/10.3390/molecules29235565