Chemical Profile and Biological Properties of Methanolic and Ethanolic Extracts from the Aerial Parts of Inula britannica L. Growing in Central Asia
Abstract
:1. Introduction
2. Results
2.1. Chemical Profile of Methanolic and Ethanolic Extracts from Inula britannica L.
2.2. Antioxidant Activity of Methanolic and Ethanolic Extracts from Inula britannica L.
2.3. Antimicrobial Activity of Methanolic and Ethanolic Extracts from Inula britannica L.
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Inula britannica L. Extracts
4.3. Determination of Total Polyphenol Content and Total Flavonoid Content
4.4. HPLC/ESI-QTOF-MS
4.5. RP-HPLC/DAD Analysis
4.6. Antioxidant Activity
4.7. Antimicrobial Activity
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ivanova, V.; Trendafilova, A.; Todorova, M.; Danova, K.; Dimitrov, D. Phytochemical profile of Inula britannica from Bulgaria. Nat. Prod. Commun. 2017, 12, 1934578X1701200201. [Google Scholar] [CrossRef]
- Khan, A.L.; Hussain, J.; Hamayun, M.; Gilani, S.A.; Ahmad, S.; Rehman, G.; Kim, Y.-H.; Kang, S.-M.; Lee, I.-J. Secondary metabolites from Inula britannica L. and their biological activities. Molecules 2010, 15, 1562–1577. [Google Scholar] [CrossRef]
- Meng, Z.; Li, M.; Wang, X.; Zhang, K.; Wu, C.; Zhang, X. Inula britannica ameliorates alcohol-induced liver injury by modulating SIRT1-AMPK/Nrf2/NF-κB signaling pathway. Chin. Herb. Med. 2024, 16, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Bae, Y.; Yu, S.; Chang, H.; Hong, H.; Lee, K.; Paik, D. Inula britannica fermented with probiotic Weissella cibaria D30 exhibited anti-inflammatory effect and increased viability in RAW 264.7 cells. Food Sci. Biotechnol. 2019, 29, 569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.B.; Wen, J.K.; Zhang, J.; Miao, S.B.; Ma, G.Y.; Wang, Y.Y.; Zheng, B.; Han, M. Flavonoids from Inula britannica reduces oxidative stress through inhibiting expression and phosphorylation of p47phox in VSMCs. Pharm. Biol. 2011, 49, 815–820. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Hou, A.; Zhang, J.; Wang, S.; Man, W.; Yu, H.; Zheng, S.; Wang, Q.; Jiang, H.; et al. A review of the botany, traditional uses, phytochemistry, and pharmacology of the flos Inulae. J. Ethnopharmacol. 2021, 276, 114125. [Google Scholar] [CrossRef]
- Baytenov, M.S. Generic complex of flora. In Flora of Kazakhstan; Gylym: Almaty, Kazakhstan, 2001; p. 183. [Google Scholar]
- Grudzinskaya, L.M. Annotated List of Medicinal Plants of Kazakhstan; Grudzinskaya, L.M., Gemedzhieva, N.G., Nelina, N.V., Karzhaubekov, Z.Z., Eds.; KazNMU: Almaty, Kazakhstan, 2014; Volume 20, p. 200. [Google Scholar]
- Olesinska, K. Sesquiterpene lactones-occurrence and biological properties. A review. Agron. Sci. 2018, 73, 83–95. [Google Scholar] [CrossRef]
- Ma, L.Q.; Duan, D.D.; Wang, Y.N.; Liu, Y.B.; Shi, G.L. Effects of Inula britannica extracts on biological activities against Tetranychus cinnabarinus and several enzyme systems in Tetranychus cinnabarinus. In Information Technology and Agricultural Engineering; Zhu, E., Sambath, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 134, pp. 673–682. [Google Scholar] [CrossRef]
- Tang, J.-J.; Guo, C.; Peng, X.-N.; Guo, X.-C.; Zhang, Q.; Tian, J.-M.; Gao, J.-M. Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract. Bioorg. Chem. 2021, 116, 105389. [Google Scholar] [CrossRef]
- Bai, N.; Zhou, Z.; Zhu, N.; Zhang, L.; Quan, Z.; He, K.; Zheng, Q.Y.; Ho, C.T. Antioxidative flavonoids from the flower of Inula britannica. J. Food Lipids 2005, 12, 141–149. [Google Scholar] [CrossRef]
- Wang, T.; Guo, S.; Zhang, S.; Yue, W.; Ho, C.-T.; Bai, N. Identification and quantification of seven sesquiterpene lactones in Inula britannica by HPLC-DAD-MS. Anal. Methods 2019, 11, 1822–1833. [Google Scholar] [CrossRef]
- Hong, C.R.; Lee, E.H.; Jung, Y.H.; Lee, J.-H.; Paik, H.-D.; Hong, S.-C.; Choi, S.J. Development and characterization of Inula britannica extract-loaded liposomes: Potential as anti-inflammatory functional food ingredients. Antioxidants 2023, 12, 1636. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Medicinal Plants of Mongolia; WHO: Geneva, Switzerland, 2014.
- Dabibeh, R.M.; Barhoumi, L.M.; Bdair, O.; Al-Jaber, H.L.; Afifi, F.U.; Al-Qudah, M.A.; Abaza, I.F.; Abu-Zarga, M.H.; Abu-Orabi, S.T. Effect of geographic location, ontogenesis on essential oil composition and spontaneously emitted volatile organic compounds of Inula viscosa (L.) Greuter. (Astraceae) grown in Jordan. Asian J. Chem. 2020, 32, 2559–2566. [Google Scholar] [CrossRef]
- Sellem, I.; Chakchouk-Mtibaa, A.; Zaghden, H.; Smaoui, S.; Ennouri, K.; Mellouli, L. Harvesting season dependent variation in chemical composition and biological activities of the essential oil obtained from Inula graveolens (L.) grown in Chebba (Tunisia) salt marsh. Arab. J. Chem. 2020, 13, 4835–4845. [Google Scholar] [CrossRef]
- Seca, A.; Pinto, D.; Silva, A. Metabolomic profile of the genus Inula. Chem. Biodivers. 2015, 12, 859–906. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.Z.; Lee, D.; Lee, J.H.; Lee, K.; Hong, Y.-S.; Choung, D.-H.; Kim, Y.H.; Lee, J.J. New sesquiterpene dimers from Inula britannica inhibit NF-ΚB activation and NO and TNF-α production in LPS-stimulated RAW264.7 cells. Planta Med. 2005, 72, 40–45. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Grigore, A.; Pinto, D.C.G.A.; Silva, A.M.S. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014, 154, 286–310. [Google Scholar] [CrossRef] [PubMed]
- Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [Google Scholar] [CrossRef]
- Cioni, E.; Di Stasi, M.; Iacono, E.; Lai, M.; Quaranta, P.; Luminare, A.G.; Gambineri, F.; De Leo, M.; Pistello, M.; Braca, A. Enhancing antimicrobial and antiviral properties of Cynara scolymus L. waste through enzymatic pretreatment and lactic fermentation. Food Biosci. 2024, 57, 103441. [Google Scholar] [CrossRef]
- Thang, N.Q.; Hoa, V.T.K.; Van Tan, L.; Tho, N.T.M.; Hieu, T.Q.; Phuong, N.T.K. Extraction of cynarine and chlorogenic acid from artichoke leaves (Cynara scolymus L.) and evaluation of antioxidant activity, antibacterial activity of extract. Vietnam J. Chem. 2022, 60, 571–577. [Google Scholar] [CrossRef]
- Topal, M.; Gocer, H.; Topal, F.; Kalin, P.; Köse, L.P.; Gülçin, İ.; Çakmak, K.C.; Küçük, M.; Durmaz, L.; Gören, A.C.; et al. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). J. Enzyme Inhib. Med. Chem. 2016, 31, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Liu, F.; Luo, Z.; Wu, H.; Zhang, X.; Wang, D.; Zhu, Y.; Sun, Z.; Xu, W.; Miao, Y. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa. Foodborne Pathog. Dis. 2019, 16, 823–830. [Google Scholar] [CrossRef]
- Tan, S.; Gao, J.; Li, Q.; Guo, T.; Dong, X.; Bai, X.; Yang, J.; Hao, S.; He, F. Synergistic effect of chlorogenic acid and levofloxacin against Klebsiella pneumonia infection in vitro and in vivo. Sci. Rep. 2020, 10, 20013. [Google Scholar] [CrossRef]
- Wang, H.; Chu, W.; Ye, C.; Gaeta, B.; Tao, H.; Wang, M.; Qiu, Z. Chlorogenic acid attenuates virulence factors and pathogenicity of Pseudomonas aeruginosa by regulating quorum sensing. Appl. Microbiol. Biotechnol. 2019, 103, 903–915. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Garayev, E.; Di Giorgio, C.; Herbette, G.; Mabrouki, F.; Chiffolleau, P.; Roux, D.; Sallanon, H.; Ollivier, E.; Elias, R.; Baghdikian, B. Bioassay-guided isolation and UHPLC-DAD-ESI-MS/MS quantification of potential anti-inflammatory phenolic compounds from flowers of Inula montana L. J. Ethnopharmacol. 2018, 226, 176–184. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-K.; Lee, J.-H.; Lee, Y.; Ahn, S.; Eom, S.; Paik, H.-D. Antimicrobial effect of Inula britannica flower extract against methicillin-resistant Staphylococcus aureus. Korean J. Microbiol. Biotechnol. 2013, 41, 335–340. [Google Scholar] [CrossRef]
- Ceylan, R.; Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Jugreet, S.; Cakır, O.; Ouelbani, R.; Paksoy, M.Y.; Yılmaz, M.A. Enzyme inhibition and antioxidant functionality of eleven Inula species based on chemical components and chemometric insights. Biochem. Syst. Ecol. 2021, 95, 104225. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.Y.; Kim, H.Y.; Kim, K.T.; Paik, H.D. Inhibitory effects of Inula britannica extract fermented by Lactobacillus plantarum KCCM 11613P on coagulase activity and growth of Staphylococcus aureus including methicillin-resistant strains. J. Food Biochem. 2019, 43, e12785. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, N.K.; Paik, H.D. Antimicrobial characterization of Inula britannica against Helicobacter pylori on gastric condition. JMB 2016, 26, 1011–1017. [Google Scholar] [CrossRef]
- Gonzalez-Pastor, R.; Carrera-Pacheco, S.E.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Mayorga-Ramos, A.; Guamán, L.P.; Barba-Ostria, C. Current landscape of methods to evaluate antimicrobial activity of natural extracts. Molecules 2023, 28, 1068. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.; Nedialkov, P.; Dimitrova, P.; Paunova-Krasteva, T.; Trendafilova, A. Inula salicina L.: Insights into its polyphenolic constituents and biological activity. Pharmaceuticals 2024, 17, 844. [Google Scholar] [CrossRef]
- Ghedira, K.; Goetz, P.; Le Jeune, R. Inula helenium L. (Asteraceae): Aunée. Phytothérapie 2011, 9, 176–179. [Google Scholar] [CrossRef]
- Choo, S.-J.; Ryoo, I.-J.; Kim, K.C.; Na, M.; Jang, J.-H.; Ahn, J.S.; Yoo, I.-D. Hypo-pigmenting effect of sesquiterpenes from Inula britannica in B16 melanoma cells. Arch. Pharm. Res. 2014, 37, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Long, Y.; Guo, L. Antiaging effect of Inula britannica on aging mouse model induced by D-galactose. Evid.-Based Complement. Altern. Med. 2016, 2016, 6049083. [Google Scholar] [CrossRef] [PubMed]
- Asraoui, F.; El Mansouri, F.; Cacciola, F.; Brigui, J.; Louajri, A.; Simonetti, G. Biofilm inhibition of Inula viscosa (L.) Aiton and Globularia alypum L. extracts against Candida infectious pathogens and in vivo action on Galleria mellonella model. Adv. Biol. 2023, 7, 2300081. [Google Scholar] [CrossRef]
- Dimitrova, P.D.; Ivanova, V.; Trendafilova, A.; Paunova-Krasteva, T. Anti-biofilm and anti-quorum-sensing activity of Inula extracts: A strategy for modulating Chromobacterium violaceum virulence factors. Pharmaceuticals 2024, 17, 573. [Google Scholar] [CrossRef] [PubMed]
- Malarz, J.; Michalska, K.; Stojakowska, A. Polyphenols of the Inuleae-Inulinae and their biological activities: A review. Molecules 2024, 29, 2014. [Google Scholar] [CrossRef] [PubMed]
- Ouari, S.; Benzidane, N. Chemical composition, biological activities, and molecular mechanism of Inula viscosa (L.) bioactive compounds: A review. Naunyn Schmiedebergs Arch. 2024, 397, 3857–3865. [Google Scholar] [CrossRef] [PubMed]
- Kheyar-Kraouche, N.; da Silva, A.B.; Serra, A.T.; Bedjou, F.; Bronze, M.R. Characterization by liquid chromatography–mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J. Pharm. Biomed. Anal. 2018, 156, 297–306. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Marek Kuś, P.; Jerković, I. Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, IX–XV. [Google Scholar]
- Okińczyc, P.; Widelski, J.; Nowak, K.; Radwan, S.; Włodarczyk, M.; Kuś, P.M.; Susniak, K.; Korona-Głowniak, I. Phytochemical profiles and antimicrobial activity of selected Populus spp. bud extracts. Molecules 2024, 29, 437. [Google Scholar] [CrossRef] [PubMed]
Inula britannica L. Extracts | Polyphenols | Flavonoids | ||
---|---|---|---|---|
mg GAE/g ± SD | RSD | mg QUE/g ± SD | RSD | |
methanolic | 58.02 ± 1.44 a | 2.48 | 21.69 ± 0.48 a | 2.19 |
ethanolic | 43.44 ± 1.14 b | 2.62 | 13.91 ± 0.54 b | 3.85 |
No | Tentative Assignment | Rt [min] | Formula | Molecular Ion [m/z] | Error [ppm] | MS/MS Fragments [m/z] | PubChem CID |
---|---|---|---|---|---|---|---|
1 | Malic acid | 2.063 | C4H6O5 | 133.0154 | 8.60 | 115.0033 | 525 |
2 | Citric acid | 2.130 | C6H8O7 | 191.0557 | −1.1 | 127.0406; 111.0081 | 311 |
3 | Neochlorogenic acid | 3.529 | C16H18O9 | 353.0892 | 3.94 | 191.0503 | 5,280,633 |
4 | Caffeic acid glucoside | 3.796 | C15H18O9 | 341.0908 | 8.75 | 179.0318; 161.0206; 135.0419 | 5,281,759 |
5 | Chlorogenic acid | 5.896 | C16H18O9 | 353.0871 | −1.99 | 191.0545 | 1,794,427 |
6 | Coumarylquinic acid isomer | 11.779 | C16H18O8 | 337.1230 | −1.19 | 191.0559 | 129,709,901 |
7 | Patulitrin | 17.412 | C22H22O13 | 493.1034 | 9.38 | 331.0446; 316.0206; 287.0198; 181.0133 | 5,320,435 |
8 | Cynarine | 18.162 | C25H24O11 | 515.1176 | −3.68 | 353.0867; 191.0544; 179.0343 | 5,281,769 |
9 | Nepitrin | 18.212 | C22H22O12 | 477.1031 | −1.58 | 315.0558; 299.0182; 161.0233; 152.0102; 114.0547 | 120,742 |
10 | Hispuduloside | 19.845 | C22H22O11 | 461.1091 | 0.89 | 298.0476; 283.0236; 255.0304; 161.0242; 137.0239 | 5,318,083 |
11 | Axillarin | 22.069 | C17H14O8 | 345.0604 | −3.44 | 330.0379; 315.0142; 287.0197; 271.0244; 243.0291 | 5,281,603 |
12 | Quercetin | 29.749 | C15H10O7 | 301.0337 | −5.55 | 178.9972; 151.0030; 121.0229; 107.0133 | 5,280,343 |
13 | Luteolin | 23.328 | C15H10O6 | 285.0386 | −6.51 | 199.0388; 175.0397; 151.0037; 133.0296; 107.0135 | 5,280,445 |
14 | Nepetin | 23.745 | C16H12O7 | 315.0489 | −6.73 | 300.0489; 243.0277; 228.0415; 216.0418; 165.9895; 136.9871 | 53,17,284 |
15 | Kaempferol methyl ether | 26.329 | C16H12O6 | 299.0550 | −3.7 | 284.0323; 256.0372; 227.0336; 151.0033 | 5,281,666 |
No * | Tentative Assignment | λ [nm] | Inula britannica L. Extract | |||
---|---|---|---|---|---|---|
Methanolic | Ethanolic | |||||
mg/g ± SD | RSD | mg/g ± SD | RSD | |||
3 | Neochlorogenic acid | 325 | 0.63 ± 0.01 a | 1.6 | 0.60 ± 0.01 b | 1.6 |
4 | Caffeic acid glucoside | 325 | 0.40 ± 0.01 a | 2.0 | 0.49 ± 0.00 b | 0.5 |
5 | Chlorogenic acid | 325 | 9.22 ± 0.03 a | 0.3 | 5.09 ± 0.02 b | 0.4 |
nd | Caffeic acid | 325 | 1.02 ± 0.01 a | 1.3 | 1.31 ± 0.02 b | 1.2 |
8 | Cynarine | 325 | 13.96 ± 0.1 a | 0.7 | 11.68 ± 0.05 b | 0.4 |
9 | Nepitrin | 254 | 3.06 ± 0.04 a | 1.2 | 1.9 ± 0.05 b | 0.4 |
12 | Quercetin | 254 | 0.8 ± 0.01 a | 1.8 | 0.55 ± 0.02 b | 2.8 |
13 | Luteolin | 254 | 0.3 ± 0.00 a | 1.3 | 0.4 ± 0.01 b | 2.1 |
Inula britannica L. Extracts | FRAP | DPPH | ||
---|---|---|---|---|
mmol Fe2+/g ± SD | RSD | mg GAE/g ± SD | RSD | |
methanolic | 5.07 ± 0.18 a | 3.46 | 19.78 ± 0.12 a | 0.60 |
ethanolic | 0.39 ± 0.01 b | 3.29 | 15.56 ± 0.24 b | 1.56 |
Gram-Positive Bacteria | Inula britannica L. Extracts | |||||
---|---|---|---|---|---|---|
Methanolic | Ethanolic | |||||
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
Staphylococcus epidermidis ATCC 12228 | 2 | 2 | 1 | 2 | 2 | 1 |
Staphylococcus aureus ATCC 29213 | 2 | 4 | 2 | 2 | 2 | 1 |
Staphylococcus aureus ATCC BAA-1707 | 2 | 4 | 2 | 2 | 4 | 2 |
Enterococcus faecalis ATCC 29212 | 2 | 16 | 8 | 2 | 16 | 8 |
Enterococcus faecalis ATCC 51299 | 2 | 16 | 8 | 2 | 16 | 8 |
Bacillus cereus ATCC 10876 | 2 | 2 | 1 | 2 | 2 | 1 |
Clostridioides difficile ATCC 43593 | 2 | 4 | 2 | 4 | 4 | 1 |
Gram-negative bacteria | ||||||
Escherichia coli ATCC 25922 | 16 | 16 | 1 | 16 | 16 | 1 |
Salmonella typhimurium ATCC 14028 | 16 | 16 | 1 | 16 | 16 | 1 |
Pseudomonas aeruginosa ATCC 27853 | 16 | 16 | 1 | 16 | 16 | 1 |
Listeria monocytogenes ATCC 19115 | 16 | >16 | >1 | 16 | 16 | 1 |
Campylobacter jejunii ATCC 33560 | 8 | 8 | 1 | 8 | 8 | 1 |
Helicobacter pylori ATCC 43504 | 0.25 | nd | nd | 0.125 | nd | nd |
Yeasts | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC |
Candida albicans ATCC 10231 | 8 | 16 | 2 | 8 | 16 | 2 |
Candida glabrata ATCC 90030 | 16 | 16 | 1 | 16 | 16 | 1 |
Candida auris CDC B11903 | 16 | 16 | 1 | 8 | 16 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibadullayeva, A.K.; Kasela, M.; Kozhanova, K.K.; Kadyrbayeva, G.M.; Widelski, J.; Wojtanowski, K.; Józefczyk, A.; Suśniak, K.; Okińczyc, P.; Tleubayeva, M.I.; et al. Chemical Profile and Biological Properties of Methanolic and Ethanolic Extracts from the Aerial Parts of Inula britannica L. Growing in Central Asia. Molecules 2024, 29, 5749. https://doi.org/10.3390/molecules29235749
Ibadullayeva AK, Kasela M, Kozhanova KK, Kadyrbayeva GM, Widelski J, Wojtanowski K, Józefczyk A, Suśniak K, Okińczyc P, Tleubayeva MI, et al. Chemical Profile and Biological Properties of Methanolic and Ethanolic Extracts from the Aerial Parts of Inula britannica L. Growing in Central Asia. Molecules. 2024; 29(23):5749. https://doi.org/10.3390/molecules29235749
Chicago/Turabian StyleIbadullayeva, Aktolkyn K., Martyna Kasela, Kaldanay K. Kozhanova, Gulnara M. Kadyrbayeva, Jarosław Widelski, Krzysztof Wojtanowski, Aleksandra Józefczyk, Katarzyna Suśniak, Piotr Okińczyc, Meruyert I. Tleubayeva, and et al. 2024. "Chemical Profile and Biological Properties of Methanolic and Ethanolic Extracts from the Aerial Parts of Inula britannica L. Growing in Central Asia" Molecules 29, no. 23: 5749. https://doi.org/10.3390/molecules29235749
APA StyleIbadullayeva, A. K., Kasela, M., Kozhanova, K. K., Kadyrbayeva, G. M., Widelski, J., Wojtanowski, K., Józefczyk, A., Suśniak, K., Okińczyc, P., Tleubayeva, M. I., Karaubayeva, A. A., Zhandabayeva, M. A., Mukhamedsadykova, A. Z., & Malm, A. (2024). Chemical Profile and Biological Properties of Methanolic and Ethanolic Extracts from the Aerial Parts of Inula britannica L. Growing in Central Asia. Molecules, 29(23), 5749. https://doi.org/10.3390/molecules29235749