Biotechnological 2-Phenylethanol Production: Recent Developments
Abstract
:1. Introduction
2. 2-PE Biotechnological Production
2.1. Metabolic Pathways
2.2. Producing Strains
2.3. Cultivation Process Optimization
2.3.1. Influence of Nitrogen Sources
2.3.2. Influence of Carbon Sources
2.3.3. Influence of Fermentation Parameters
3. Cytotoxicity of 2-PE
4. In Situ Product Removal and Product Recovery
4.1. Liquid–Liquid Extraction
4.2. Adsorption
4.3. Membrane-Based Extraction
5. Alternative Substrates to Produce 2-PE
6. 2-PE Properties and Possible Applications
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2-Phenylethanol Market to Hit $350 Million by 2027, Says Global Market Insights Inc. Available online: https://www.globenewswire.com/en/news-release/2021/06/03/2241082/0/en/2-Phenylethanol-Market-to-hit-350-million-by-2027-Says-Global-Market-Insights-Inc.htm (accessed on 6 March 2021).
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. Bioprocesses for 2-Phenylethanol and 2-Phenylethyl Acetate Production: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 9991–10004. [Google Scholar] [CrossRef] [PubMed]
- Mitri, S.; Koubaa, M.; Maroun, R.G.; Rossignol, T.; Nicaud, J.M.; Louka, N. Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 2022, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Yan, W.; Zhang, W.; Dong, W.; Ma, J.; Ochsenreither, K.; Jiang, M.; Xin, F. Current Status and Perspectives of 2-Phenylethanol Production through Biological Processes. Crit. Rev. Biotechnol. 2019, 39, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, J.; Jones, L.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Phenylethyl Alcohol. Food Chem. Toxicol. 2012, 50, S224–S239. [Google Scholar] [CrossRef]
- Kirm, I.; Medina, F.; Rodríguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J.E. Preparation of 2-phenylethanol by catalytic selective hydrogenation of styrene oxide using palladium catalysts. J. Mol. Catal. A Chem. 2005, 239, 215–221. [Google Scholar] [CrossRef]
- Yadav, V.G.; Chandalia, S.B. Synthesis of Phenethyl Alcohol by Catalytic Hydrogenation of Styrene Oxide. Org. Process Res. Dev. 1998, 2, 294–297. [Google Scholar]
- Gen Consulting Company Global 2-Phenylethanol Market Outlook 2020–2025. 2020. Available online: https://www.bonafideresearch.com/product/94002551/2-Phenylethanol-CAS-60-12-8-Market-Product-Synthetic-2-Phenylethanol-Natural-2-P (accessed on 2 October 2024).
- Vorster, A.; Smit, M.S.; Opperman, D.J. One-Pot Conversion of Cinnamaldehyde to 2-Phenylethanol via a Biosynthetic Cascade Reaction. Org. Lett. 2019, 21, 7024–7027. [Google Scholar] [CrossRef]
- Mannschreck, A.; von Angerer, E. The Scent of Roses and Beyond: Molecular Structures, Analysis, and Practical Applications of Odorants. J. Chem. Educ. 2011, 88, 1501–1506. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1334/2008 of the European Parliament and of the Council. Off. J. Eur. Union 2008, 354, 34–50. [Google Scholar]
- U.S. Food and Drug Administration; U.S. Government Publishing Office. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.22 (accessed on 5 February 2017).
- Akacha, N.B.; Gargouri, M. Microbial and Enzymatic Technologies Used for the Production of Natural Aroma Compounds: Synthesis, Recovery Modeling, and Bioprocesses. Food Bioprod. Process. 2015, 94, 675–706. [Google Scholar] [CrossRef]
- Hosoglu, M.I.; Guneser, O.; Yuceer, Y.K. Different Bioengineering Approaches on Production of Bioflavor Compounds; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128115008. [Google Scholar]
- Chreptowicz, K.; Mierzejewska, J. Enhanced Bioproduction of 2-Phenylethanol in a Biphasic System with Rapeseed Oil. New Biotechnol. 2018, 42, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Avila, O.; Muñoz-Torrero, P.; Sánchez, A.; Font, X.; Barrena, R. Valorization of Agro-Industrial Wastes by Producing 2-Phenylethanol via Solid-State Fermentation: Influence of Substrate Selection on the Process. Waste Manag. 2021, 121, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Daran, J.; Van Maris, A.J.A.; Pronk, J.T.; Dickinson, J.R. The Ehrlich Pathway for Fusel Alcohol Production: A Century of Research on Saccharomyces cerevisiae. Metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef]
- Hua, D.; Xu, P. Recent Advances in Biotechnological Production of 2-Phenylethanol. Biotechnol. Adv. 2011, 29, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bai, X.; Guo, X.; He, X. Regulation of Crucial Enzymes and Transcription Factors on 2-Phenylethanol Biosynthesis via Ehrlich Pathway in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2017, 44, 129–139. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Xu, S.; Shi, G. Improved Aromatic Alcohol Production by Strengthening the Shikimate Pathway in Saccharomyces cerevisiae. Process Biochem. 2021, 103, 18–30. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, M.; Jiang, X.; Zou, H.; Wang, C.; Xu, X.; Xian, M. De-Novo Synthesis of 2-Phenylethanol by Enterobacter sp. CGMCC 5087. BCM Biotechnol. 2014, 14, 30. [Google Scholar] [CrossRef]
- Zhan, Y.; Shi, J.; Xiao, Y.; Zhou, F.; Wang, H.; Xu, H.; Li, Z.; Yang, S.; Cai, D.; Chen, S. Multilevel Metabolic Engineering of Bacillus licheniformis for de Novo Biosynthesis of 2-Phenylethanol. Metab. Eng. 2022, 70, 43–54. [Google Scholar] [CrossRef]
- Kong, S.; Pan, H.; Liu, X.; Li, X.; Guo, D. De Novo Biosynthesis of 2-Phenylethanol in Engineered Pichia pastoris. Enzyme Microb. Technol. 2020, 133, 109459. [Google Scholar] [CrossRef]
- Deetae, P.; Bonnarme, P.; Spinnler, H.E.; Helinck, S. Production of Volatile Aroma Compounds by Bacterial Strains Isolated from Different Surface-Ripened French Cheeses. Appl. Microbiol. Biotechnol. 2007, 76, 1161–1171. [Google Scholar] [CrossRef]
- Jollivet, N.; Bézenger, M.C.; Vayssier, Y.; Belin, J.M. Production of Volatile Compounds in Liquid Cultures by Six Strains of Coryneform Bacteria. Appl. Microbiol. Biotechnol. 1992, 36, 790–794. [Google Scholar] [CrossRef]
- Liu, J.; Bai, Y.; Fan, T.P.; Zheng, X.; Cai, Y. Unveiling the Multipath Biosynthesis Mechanism of 2-Phenylethanol in Proteus mirabilis. J. Agric. Food Chem. 2020, 68, 7684–7690. [Google Scholar] [CrossRef] [PubMed]
- Mcnerney, R.; Mallard, K.; Okolo, P.I.; Turner, C. Production of Volatile Organic Compounds by Mycobacteria. FEMS Microbiol. Lett. 2012, 328, 150–156. [Google Scholar] [CrossRef]
- Spinnler, H.E.; Djian, A. Bioconversion of Amino Acids into Flavouring Alcohols and Esters by Erwinia carotovora Subsp. atroseptica. Appl. Microbiol. Biotechnol. 1991, 35, 264–269. [Google Scholar] [CrossRef]
- Bernardino, A.R.S.; Torres, C.A.V.; Grosso, F.; Peixe, L.; Reis, M.A.M. Optimal Conditions for 2-Phenylethanol Production from l-Phenylalanine by Acinetobacter soli ANG344B. J. Chem. Technol. Biotechnol. 2024, 99, 746–754. [Google Scholar] [CrossRef]
- Bernardino, A.R.S.; Grosso, F.; Torres, C.A.V.; Reis, M.A.M.; Peixe, L. Exploring the Biotechnological Potential of Acinetobacter soli ANG344B: A Novel Bacterium for 2-Phenylethanol Production. Biotechnol. Rep. 2024, 42, e00839. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Bai, Y.; Fan, T.; Zhao, Y.; Zheng, X.; Cai, Y. Mimicking a New 2-Phenylethanol Production Pathway from Proteus mirabilis JN458 in Escherichia coli. J. Agric. Food Chem. 2018, 66, 3498–3504. [Google Scholar] [CrossRef]
- Noda, S.; Mori, Y.; Ogawa, Y.; Fujiwara, R.; Dainin, M.; Shirai, T.; Kondo, A. Metabolic and Enzymatic Engineering Approach for the Production of 2-Phenylethanol in Engineered Escherichia coli. Bioresour. Technol. 2024, 406, 130927. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhou, M.; Wang, H.; Chen, L.; Li, Z.; Cai, D.; Wen, Z.; Ma, X.; Chen, S. Efficient Synthesis of 2-Phenylethanol from L-Phenylalanine by Engineered Bacillus licheniformis Using Molasses as Carbon Source. Appl. Microbiol. Biotechnol. 2020, 104, 7507–7520. [Google Scholar] [CrossRef]
- Xu, H.; Li, Z.; Li, L.; Xie, X.; Cai, D.; Wang, Z.; Zhan, Y.; Chen, S. Sustainable Production of 2-Phenylethanol from Agro-Industrial Wastes by Metabolically Engineered Bacillus licheniformis. LWT—Food Sci. Technol. 2023, 173, 114414. [Google Scholar] [CrossRef]
- Tong, Q.; Yang, L.; Zhang, J.; Zhang, Y.; Jiang, Y.; Liu, X.; Deng, Y. Comprehensive Investigations of 2-Phenylethanol Production by the Filamentous Fungus Annulohypoxylon stygium. Appl. Microbiol. Biotechnol. 2024, 108, 374. [Google Scholar] [CrossRef]
- Masuo, S.; Osada, L.; Zhou, S.; Fujita, T.; Takaya, N. Aspergillus oryzae Pathways That Convert Phenylalanine into the Flavor Volatile 2-Phenylethanol. Fungal Genet. Biol. 2015, 77, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Eshkol, N.; Sendovski, M.; Bahalul, M.; Katz-Ezov, T.; Kashi, Y.; Fishman, A. Production of 2-Phenylethanol from L-Phenylalanine by a Stress Tolerant Saccharomyces cerevisiae Strain. J. Appl. Microbiol. 2009, 106, 534–542. [Google Scholar] [CrossRef]
- Gao, F.; Daugulis, A.J. Bioproduction of the Aroma Compound 2-Phenylethanol in a Solid-Liquid Two-Phase Partitioning Bioreactor System by Kluyveromyces marxianus. Biotechnol. Bioeng. 2009, 104, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Celińska, E.; Kubiak, P.; Białas, W.; Dziadas, M.; Grajek, W. Yarrowia lipolytica: The Novel and Promising 2-Phenylethanol Producer. J. Ind. Microbiol. Biotechnol. 2013, 40, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, K.; Song, N.; Yao, W.; Xia, H.; Yang, Q.; Zhang, X.; Li, X.; Wang, Z.; Yao, L.; et al. Zygosaccharomyces rouxii, an Aromatic Yeast Isolated from Chili Sauce, Is Able to Biosynthesize 2-Phenylethanol via the Shikimate or Ehrlich Pathways. Front. Microbiol. 2020, 11, 597454. [Google Scholar] [CrossRef] [PubMed]
- Drężek, K.; Kozłowska, J.; Detman, A.; Mierzejewska, J. Development of a Continuous System for 2-Phenylethanol Bioproduction by Yeast on Whey Permeate-Based Medium. Molecules 2021, 26, 7388. [Google Scholar] [CrossRef]
- Fan, G.; Cheng, L.; Fu, Z.; Sun, B.; Teng, C.; Jiang, X.; Li, X. Screening of Yeasts Isolated from Baijiu Environments for 2-Phenylethanol Production and Optimization of Production Conditions. 3 Biotech 2020, 10, 275. [Google Scholar] [CrossRef]
- Huang, C.J.; Lee, S.L.; Chou, C.C. Production of 2-Phenylethanol, a Flavor Ingredient, by Pichia fermentans L-5 under Various Culture Conditions. Food Res. Int. 2001, 34, 277–282. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.; Zong, H.; Ji, H.; Zhuge, B.; Dong, Z. Bioconversion of L-Phenylalanine to 2-Phenylethanol by the Novel Stress-Tolerant Yeast Candida glycerinogenes WL2002-5. Bioengineered 2016, 7, 418–423. [Google Scholar] [CrossRef]
- Tian, S.; Liang, X.; Chen, J.; Zeng, W.; Zhou, J.; Du, G. Enhancement of 2-Phenylethanol Production by a Wild-Type Wickerhamomyces anomalus Strain Isolated from Rice Wine. Bioresour. Technol. 2020, 318, 124257. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, X.; Qian, X.; Zhou, J.; Dong, W.; Ma, J.; Zhang, W.; Xin, F.; Jiang, M. Comprehensive Investigations of 2-Phenylethanol Production by High 2-Phenylethanol Tolerating Meyerozyma sp. Strain YLG18. Enzyme Microb. Technol. 2020, 140, 109629. [Google Scholar] [CrossRef] [PubMed]
- de Lima, L.A.; Diniz, R.H.S.; de Queiroz, M.V.; Fietto, L.G.; da Silveira, W.B. Screening of Yeasts Isolated from Brazilian Environments for the 2-Phenylethanol (2-PE) Production. Biotechnol. Bioprocess Eng. 2018, 23, 326–332. [Google Scholar] [CrossRef]
- Chreptowicz, K.; Sternicka, M.K.; Kowalska, P.D.; Mierzejewska, J. Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media. Lett. Appl. Microbiol. 2018, 66, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, S.; Shu, Q.; Yang, X.; Deng, Y. Highly efficient production of 2-phenylethanol by wild-type Saccharomyces bayanus strain. Bioresour. Technol. 2024, 403, 130867. [Google Scholar] [CrossRef]
- Qian, T.; Wei, W.; Dong, Y.; Zhang, P.; Chen, X.; Chen, P.; Li, M.; Ye, B. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica for 2-phenylethanol overproduction. Bioresour. Technol. 2024, 411, 131354. [Google Scholar] [CrossRef]
- Sun, L.; Gao, Y.; Sun, R.; Liu, L.; Zhang, C. Metabolic and tolerance engineering of Komagataella phaffii for 2-phenylethanol production through genome-wide scanning. Biotechnol. Biofuels Bioprod. 2024, 14, 107. [Google Scholar] [CrossRef]
- Castillo, M.V.; Pachapur, V.L.; Brar, S.K.; Arriaga, S.; Blais, J.F.; Avalos Ramirez, A. Effect of the Concentration of L-Phenylalanine and Lactose on 2-Phenylethanol Production by Whey Fermentation Using the Yeasts Kluyveromyces marxianus and Debaryomyces hansenii under Co-Culture Mode. Bioresour. Technol. Rep. 2022, 18, 100994. [Google Scholar] [CrossRef]
- Shu, C.H.; Jhou, S.S.; Nirwana, W.O.C. Temperature Control and In Situ Product Recovery Strategies to Enhance the Bioconversion of L-Phenylalanine into 2-Phenylethanol. J. Chem. Technol. Biotechnol. 2021, 96, 899–908. [Google Scholar] [CrossRef]
- Chreptowicz, K.; Wielechowska, M.; Główczyk-Zubek, J.; Rybak, E.; Mierzejewska, J. Production of Natural 2-Phenylethanol: From Biotransformation to Purified Product. Food Bioprod. Process. 2016, 100, 275–281. [Google Scholar] [CrossRef]
- Etschmann, M.M.W.; Schrader, J. An Aqueous-Organic Two-Phase Bioprocess for Efficient Production of the Natural Aroma Chemicals 2-Phenylethanol and 2-Phenylethylacetate with Yeast. Appl. Microbiol. Biotechnol. 2006, 71, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Okuniewska, P.; Domańska, U.; Więckowski, M.; Mierzejewska, J. Recovery of 2-Phenylethanol from Aqueous Solutions of Biosynthesis Using Ionic Liquids. Sep. Purif. Technol. 2017, 188, 530–538. [Google Scholar] [CrossRef]
- Cordero-Soto, I.N.; Castillo-Araiza, C.O.; Rutiaga-Quiñones, O.M.; Moussa, M.; Béal, C.; Gallegos-Infante, A.; Soto-Cruz, N.O.; Ochoa-Martínez, L.A.; Huerta-Ochoa, S. Intensification of 2-Phenylethanol Production Using an Aerated System Assisted by a Membrane-Based Solvent Extraction Technique. Rev. Mex. Ing. Química 2021, 20, 739–750. [Google Scholar] [CrossRef]
- Adler, P.; Hugen, T.; Wiewiora, M.; Kunz, B. Modeling of an Integrated Fermentation/Membrane Extraction Process for the Production of 2-Phenylethanol and 2-Phenylethylacetate. Enzyme Microb. Technol. 2011, 48, 285–292. [Google Scholar] [CrossRef]
- Červeňanský, I.; Mihaľ, M.; Markoš, J. Pertraction-Adsorption in Situ Product Removal System: Intensification of 2-Phenyelthanol Bioproduction. Sep. Purif. Technol. 2020, 251, 117283. [Google Scholar] [CrossRef]
- Achmon, Y.; Goldshtein, J.; Margel, S.; Fishman, A. Hydrophobic Microspheres for In Situ Removal of 2-Phenylethanol from Yeast Fermentation. J. Microencapsul. 2011, 28, 628–638. [Google Scholar] [CrossRef]
- Mihaľ, M.; Červeňanský, I.; Markoš, J. Application of Immersed Silicone Rubber Membrane Module for Biocatalytic Production of 2-Phenylethanol and Phenylacetic Acid. Chem. Eng. Process.—Process Intensif. 2021, 166, 108474. [Google Scholar] [CrossRef]
- Bernardino, A.R.S.; Torres, C.A.V.; Crespo, J.G.; Reis, M.A.M. Assessment of in situ product recovery techniques to enhance 2-Phenylethanol production by Acinetobacter soli ANG344B. Biochem. Eng. J. 2024, 212, 109508. [Google Scholar] [CrossRef]
- Mei, J.; Min, H.; Lü, Z. Enhanced Biotransformation of L-Phenylalanine to 2-Phenylethanol Using an In Situ Product Adsorption Technique. Process Biochem. 2009, 44, 886–890. [Google Scholar] [CrossRef]
- Hua, D.; Lin, S.; Li, Y.; Chen, H.; Zhang, Z.; Du, Y.; Zhang, X.; Xu, P. Enhanced 2-Phenylethanol Production from L-Phenylalanine via In Situ Product Adsorption. Biocatal. Biotransform. 2010, 28, 259–266. [Google Scholar] [CrossRef]
- Alonso-Vargas, M.; Téllez-Jurado, A.; Gómez-Aldapa, C.A.; Ramírez-Vargas, M.D.R.; Conde-Báez, L.; Castro-Rosas, J.; Cadena-Ramírez, A. Optimization of 2-Phenylethanol Production from Sweet Whey Fermentation Using Kluyveromyces marxianus. Fermentation 2022, 8, 39. [Google Scholar] [CrossRef]
- Garavaglia, J.; Flôres, S.H.; Pizzolato, T.M.; Peralba, M.D.C.; Ayub, M.A.Z. Bioconversion of L-Phenylalanine into 2-Phenylethanol by Kluyveromyces marxianus in Grape Must Cultures. World J. Microbiol. Biotechnol. 2007, 23, 1273–1279. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Valdez Castillo, M.; Saini, R.; Brar, S.K.; Le Bihan, Y. Integrated Biorefinery Approach for Utilization of Wood Waste into Levulinic Acid and 2-Phenylethanol Production under Mild Treatment Conditions. J. Biotechnol. 2024, 389, 78–85. [Google Scholar] [CrossRef]
- Braga, A.; Freitas, B.; Cordeiro, A.; Belo, I. Valorization of Crude Glycerol as Carbon Source for the Bioconversion of L-Phenylamine to 2-Phenylethanol by Yarrowia Species. J. Chem. Technol. Biotechnol. 2021, 96, 2940–2949. [Google Scholar] [CrossRef]
- Mierzejewska, J.; Dąbkowska, K.; Chreptowicz, K.; Sokołowska, A. Hydrolyzed Corn Stover as a Promising Feedstock for 2-Phenylethanol Production by Nonconventional Yeast. J. Chem. Technol. Biotechnol. 2019, 94, 777–784. [Google Scholar] [CrossRef]
- Mu, L.; Hu, X.; Liu, X.; Zhao, Y.; Xu, Y. Production of 2-Phenylethanol By Microbial Mixed Cultures Allows Resource Recovery of Cane Molasses Wastewater. Fresenius Environ. Bull. 2014, 23, 1356–1365. [Google Scholar]
- Liu, S.; Ma, D.; Li, Z.; Sun, H.; Mao, J.; Shi, Y.; Han, X.; Zhou, Z.; Mao, J. Assimilable Nitrogen Reduces the Higher Alcohols Content of Huangjiu. Food Control 2021, 121, 107660. [Google Scholar] [CrossRef]
- Gethins, L.; Guneser, O.; Demirkol, A.; Rea, M.C.; Stanton, C.; Ross, R.P.; Yuceer, Y.; Morrissey, J.P. Influence of Carbon and Nitrogen Source on Production of Volatile Fragrance and Flavour Metabolites by the Yeast Kluyveromyces marxianus. Yeast 2015, 32, 67–76. [Google Scholar] [CrossRef]
- de Jesús Rodríguez-Romero, J.; Aceves-Lara, C.A.; Silva, C.F.; Gschaedler, A.; Amaya-Delgado, L.; Arrizon, J. 2-Phenylethanol and 2-Phenylethylacetate Production by Nonconventional Yeasts Using Tequila Vinasses as a Substrate. Biotechnol. Rep. 2020, 25, e00420. [Google Scholar] [CrossRef]
- Seguinot, P.; Bloem, A.; Brial, P.; Meudec, E.; Ortiz-Julien, A.; Camarasa, C. Analysing the Impact of the Nature of the Nitrogen Source on the Formation of Volatile Compounds to Unravel the Aroma Metabolism of Two Non-Saccharomyces Strains. Int. J. Food Microbiol. 2020, 316, 108441. [Google Scholar] [CrossRef]
- Shu, C.H.; Chen, Y.J.; Nirwana, W.O.C.; Cahyani, C. Enhanced Bioconversion of L-Phenylalanine into 2-Phenylethanol via an Oxygen Control Strategy and In Situ Product Recovery. J. Chem. Technol. Biotechnol. 2018, 93, 3035–3043. [Google Scholar] [CrossRef]
- Jain, A.N.; Khan, T.R.; Daugulis, A.J. Bioproduction of Benzaldehyde in a Solid-Liquid Two-Phase Partitioning Bioreactor Using Pichia pastoris. Biotechnol. Lett. 2010, 32, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Liu, L.; Zhao, S.; Huang, Z.; Li, C.; Jiang, S.; Li, Q.; Gu, P. Biosynthesis of Vanillin by Different Microorganisms: A Review. World J. Microbiol. Biotechnol. 2022, 38, 40. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Zhang, Y.; Li, Y. Systematic Engineering of Microorganisms to Improve Alcohol Tolerance. Eng. Life Sci. 2010, 10, 422–429. [Google Scholar] [CrossRef]
- Kleinwächter, I.S.; Pannwitt, S.; Centi, A.; Hellmann, N.; Thines, E.; Bereau, T.; Schneider, D. The Bacteriostatic Activity of 2-Phenylethanol Derivatives Correlates with Membrane Binding Affinity. Membranes 2021, 11, 254. [Google Scholar] [CrossRef]
- Nicolaou, S.A.; Gaida, S.M.; Papoutsakis, E.T. A Comparative View of Metabolite and Substrate Stress and Tolerance in Microbial Bioprocessing: From Biofuels and Chemicals, to Biocatalysis and Bioremediation. Metab. Eng. 2010, 12, 307–331. [Google Scholar] [CrossRef]
- Segura, A.; Molina, L.; Fillet, S.; Krell, T.; Bernal, P.; Muñoz-Rojas, J.; Ramos, J.L. Solvent Tolerance in Gram-Negative Bacteria. Curr. Opin. Biotechnol. 2012, 23, 415–421. [Google Scholar] [CrossRef]
- Stark, D.; Zala, D.; Münch, T.; Sonnleitner, B.; Marison, I.W.; Von Stockar, U. Inhibition Aspects of the Bioconversion of L-Phenylalanine to 2-Phenylethanol by Saccharomyces cerevisiae. Enzyme Microb. Technol. 2003, 32, 212–223. [Google Scholar] [CrossRef]
- Zhan, Y.; Xu, H.; Tan, H.T.; Ho, Y.S.; Yang, D.; Chen, S.; Ow, D.S.W.; Lv, X.; Wei, F.; Bi, X.; et al. Systematic Adaptation of Bacillus licheniformis to 2-Phenylethanol Stress. Appl. Environ. Microbiol. 2023, 89, e01568-22. [Google Scholar] [CrossRef]
- Jin, D.; Gu, B.; Xiong, D.; Huang, G.; Huang, X.; Liu, L.; Xiao, J. A Transcriptomic Analysis of Saccharomyces cerevisiae Under the Stress of 2-Phenylethanol. Curr. Microbiol. 2018, 75, 1068–1076. [Google Scholar] [CrossRef]
- Balbino, T.R.; da Silveira, F.A.; Ventorim, R.Z.; do Nascimento, A.G.; de Oliveira, L.L.; da Silveira, W.B. Adaptive Responses of Kluyveromyces marxianus CCT 7735 to 2-Phenylethanol Stress: Alterations in Membrane Fatty-Acid Composition, Ergosterol Content, Exopolysaccharide Production and Reduction in Reactive Oxygen Species. Fungal Genet. Biol. 2021, 151, 103561. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Lu, X.; Zong, H.; Zhuge, B. Advances in 2-Phenylethanol Production from Engineered Microorganisms. Biotechnol. Adv. 2019, 37, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Z.; Lu, X.; Zong, H.; Zhuge, B. Genetic Engineering of an Industrial Yeast Candida glycerinogenes for Efficient Production of 2-Phenylethanol. Appl. Microbiol. Biotechnol. 2020, 104, 10481–10491. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.G.; de Albuquerque, T.L.; Ribeiro, B.D.; Coelho, M.A.Z. In Situ Product Recovery Techniques Aiming to Obtain Biotechnological Products: A Glance to Current Knowledge. Biotechnol. Appl. Biochem. 2020, 68, 1044–1057. [Google Scholar] [CrossRef]
- Stark, D.; von Stockar, U. In Situ Product Removal (ISPR) in Whole Cell Biotechnology during the Last Twenty Years. Adv. Biochem. Eng. Biotechnol. 2003, 80, 149–175. [Google Scholar] [CrossRef]
- Teke, G.M.; Tai, S.L.; Pott, R.W.M. Extractive Fermentation Processes: Modes of Operation and Application. ChemBioEng Rev. 2022, 9, 146–163. [Google Scholar] [CrossRef]
- Stark, D.; Münch, T.; Sonnleitner, B.; Marison, I.W.; Von Stockar, U. Extractive Bioconversion of 2-Phenylethanol from L-Phenylalanine by Saccharomyces cerevisiae. Biotechnol. Prog. 2002, 18, 514–523. [Google Scholar] [CrossRef]
- Hua, D.L.; Liang, X.H.; Che, C.C.; Zhang, X.D.; Zhang, J.; Li, Y.; Xu, P. Extractive Bioconversion of L-Phenylalanine to 2-Phenylethanol Using Polypropylene Glycol 1500. Asian J. Chem. 2013, 25, 5951–5954. [Google Scholar] [CrossRef]
- Lukito, B.R.; Wu, S.; Saw, H.J.J.; Li, Z. One-Pot Production of Natural 2-Phenylethanol from L-Phenylalanine via Cascade Biotransformations. ChemCatChem 2019, 11, 831–840. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Q.; Guan, A.; Meng, C.; Shi, X.; Guo, Y. Synergistic Inhibition Effect of 2-Phenylethanol and Ethanol on Bioproduction of Natural 2-Phenylethanol by Saccharomyces cerevisiae and Process Enhancement. J. Biosci. Bioeng. 2011, 112, 26–31. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Q.; Meng, C.; Shi, X.A.; Guo, Y. A Continuous and Adsorptive Bioprocess for Efficient Production of the Natural Aroma Chemical 2-Phenylethanol with Yeast. Enzyme Microb. Technol. 2011, 48, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Serp, D.; Von Stockar, U.; Marison, I.W. Enhancement of 2-Phenylethanol Productivity by Saccharomyces cerevisiae in Two-Phase Fed-Batch Fermentations Using Solvent Immobilization. Biotechnol. Bioeng. 2003, 82, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Stark, D.; Kornmann, H.; Münch, T.; Sonnleitner, B.; Marison, I.W.; Von Stockar, U. Novel Type of In Situ Extraction: Use of Solvent Containing Microcapsules for the Bioconversion of 2-Phenylethanol from L-Phenylalanine by Saccharomyces cerevisiae. Biotechnol. Bioeng. 2003, 83, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Mihal’, M.; Goncalves, R.; Markoš, J. Intensive 2-Phenylethanol Production in a Hybrid System Combined of a Stirred Tank Reactor and an Immersed Extraction Membrane Module. Chem. Pap. 2014, 68, 1656–1666. [Google Scholar] [CrossRef]
- Etschmann, M.M.W.; Sell, D.; Schrader, J. Production of 2-Phenylethanol and 2-Phenylethylacetate from L-Phenylalanine by Coupling Whole-Cell Biocatalysis with Organophilic Pervaporation. Biotechnol. Bioeng. 2005, 92, 624–634. [Google Scholar] [CrossRef]
- Mihal’, M.; Vereš, R.; Markoš, J. Investigation of 2-Phenylethanol Production in Fed-Batch Hybrid Bioreactor: Membrane Extraction and Microfiltration. Sep. Purif. Technol. 2012, 95, 126–135. [Google Scholar] [CrossRef]
- Fabre, C.E.; Condoret, J.S.; Marty, A. Extractive Fermentation of Aroma with Supercritical CO2. Biotechnol. Bioeng. 1999, 64, 392–400. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S. Valorization of Agro-Industrial Wastes for Biorefinery Process and Circular Bioeconomy: A Critical Review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef]
- Conde-Báez, L.; Castro-Rosas, J.; Villagómez-Ibarra, J.R.; Páez-Lerma, J.B.; Gómez-Aldapa, C. Evaluation of Waste of the Cheese Industry for the Production of Aroma of Roses (Phenylethyl Alcohol). Waste Biomass Valorization 2017, 8, 1343–1350. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. Fed-Batch and Sequential-Batch Approaches to Enhance the Bioproduction of 2-Phenylethanol and 2-Phenethyl Acetate in Solid-State Fermentation Residue-Based Systems. J. Agric. Food Chem. 2019, 67, 3389–3399. [Google Scholar] [CrossRef]
- Conde-Báez, L.; López-Molina, A.; Gómez-Aldapa, C.; Pineda-Muñoz, C.; Conde-Mejía, C. Economic projection of 2-phenylethanolproduction from whey. Food Bioprod. Process. 2019, 115, 10–16. [Google Scholar] [CrossRef]
- Puga-Córdova, L.E.; Pérez-Sánchez, Z.A.; López-Molina, A.; Conde-Báez, L.; Jiménez-Gutiérrez, A.; Conde-Mejía, C. Design of a Separation Process for Natural 2-Phenylethanol with Economic and Safety Considerations. Processes 2020, 8, 1570. [Google Scholar] [CrossRef]
- Venkatesha, K.T.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): A review. Ind. Crops Prod. 2022, 184, 114984. [Google Scholar] [CrossRef]
- Addison, A.B.; Wong, B.; Ahmed, T.; Macchi, A.; Konstantinidis, I.; Huart, C.; Frasnelli, J.; Fjaeldstad, A.W.; Ramakrishnan, V.R.; Rombaux, P.; et al. Clinical Olfactory Working Group Consensus Statement on the Treatment of Postinfectious Olfactory Dysfunction. J. Allergy Clin. Immunol. 2021, 147, 1704–1719. [Google Scholar] [CrossRef]
- Oshima, T.; Ito, M. Sedative Effects of L-Menthol, d-Camphor, Phenylethyl Alcohol, and Geraniol. J. Nat. Med. 2021, 75, 319–325. [Google Scholar] [CrossRef]
- Ueno, H.; Shimada, A.; Suemitsu, S.; Murakami, S.; Kitamura, N.; Wani, K.; Matsumoto, Y.; Okamoto, M.; Ishihara, T. Anti-Depressive-like Effect of 2-Phenylethanol Inhalation in Mice. Biomed. Pharmacother. 2019, 111, 1499–1506. [Google Scholar] [CrossRef]
- Ramadan, B.; Cabeza, L.; Cramoisy, S.; Houdayer, C.; Andrieu, P.; Millot, J.L.; Haffen, E.; Risold, P.Y.; Peterschmitt, Y. Beneficial Effects of Prolonged 2-Phenylethyl Alcohol Inhalation on Chronic Distress-Induced Anxio-Depressive-like Phenotype in Female Mice. Biomed. Pharmacother. 2022, 151, 113100. [Google Scholar] [CrossRef]
- Majdabadi, N.; Falahati, M.; Heidarie-Kohan, F.; Farahyar, S.; Rahimi-Moghaddam, P.; Ashrafi-Khozani, M.; Razavi, T.; Mohammadnejad, S. Effect of 2-Phenylethanol as Antifungal Agent and Common Antifungals (Amphotericin B, Fluconazole, and Itraconazole) on Candida Species Isolated from Chronic and Recurrent Cases of Candidal Vulvovaginitis. Assay Drug Dev. Technol. 2018, 16, 141–149. [Google Scholar] [CrossRef]
- Rowley, J.V.; Wall, P.; Yu, H.; Tronci, G.; Devine, D.A.; Vernon, J.J.; Thornton, P.D. Antimicrobial Dye-Conjugated Polyglobalide-Based Organogels. ACS Appl. Polym. Mater. 2020, 2, 2927–2933. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Zhou, H.T.; Hu, Y.H.; Tang, J.Y.; Su, M.X.; Guo, Y.J.; Chen, Q.X.; Liu, B. Antityrosinase and Antimicrobial Activities of 2-Phenylethanol, 2-Phenylacetaldehyde and 2-Phenylacetic Acid. Food Chem. 2011, 124, 298–302. [Google Scholar] [CrossRef]
- Zou, X.; Wei, Y.; Jiang, S.; Xu, F.; Wang, H.; Zhan, P.; Shao, X. ROS Stress and Cell Membrane Disruption Are the Main Antifungal Mechanisms of 2-Phenylethanol against Botrytis cinerea. J. Agric. Food Chem. 2022, 70, 14468–14479. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Lin, Y.; Zheng, B.; Wang, H.; Qu, Z.; Zhang, X.; Cai, H.; Li, X.; Feng, S. 2-Phenylethanol Biocontrol Postharvest Tomato Gray Mold and Its Effect on Tomato Quality. Sci. Hortic. 2024, 337, 113550. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Li, L.; Qi, L.; Wang, Y.; Yang, S.; Xu, G.; Dou, D.; Liu, J.; Wang, X. Natural product 2-Phenylethanol inhibits ATP synthesis of P. infestans by blocking the oxidative phosphorylation pathway to prevent potato late blight Postharvest. Biol. Technol. 2023, 199, 112310. [Google Scholar] [CrossRef]
- Liu, P.; Cheng, Y.; Yang, M.; Liu, Y.; Chen, K.; Long, C.A.; Deng, X. Mechanisms of Action for 2-Phenylethanol Isolated from Kloeckera apiculata in Control of Penicillium Molds of Citrus Fruits. BMC Microbiol. 2014, 14, 12–18. [Google Scholar] [CrossRef]
Strain | Engineering Strategy | Improved Production (g/L) | Reference |
---|---|---|---|
Enterobacter sp. CGMCC 5087 | Shikimate pathway: transformation with two genes encoding rate-limiting enzymes from Escherichia coli and overexpression. | 0.33 | [21] |
E. coli/Proteus mirabilis JN458 | Mimic the new P. mirabilis pathway in E. coli and construction of a cofactor regeneration system. | 3.21 | [31] |
E. coli/Saccharomyces cerevisiae | Shikimate pathway: introduction of a modified phenylpyruvate decarboxylase gene from S. cerevisiae in E. coli. | 2.5 | [32] |
Bacillus licheniformis DW2 | Ehrlich pathway: introduction of Ehrlich pathway and blocking of competing pathways to redirect the carbon flux to that pathway. | 6.24 | [22,33] |
Bacillus licheniformis | Shikimate pathway: transformation to replace sucrose metabolism and increase phosphoenolpyruvate availability in the cell. | 6.43 | [34] |
Strain | Method | Carbon Source | L-Phe (g/L) | 2-PE (g/L) | Y(P/S) (g/g) | Rp (g/L·h) | Reference |
---|---|---|---|---|---|---|---|
Acinetobacter soli ANG344B | Batch 2 L bioreactor | Glucose | 5 | 2.14 | 0.45 | 0.10 | [29] |
Wickerhamomyces anomalus 1D6 | Single dose fed-batch 5 L Bioreactor | Glucose | 5 | 4.73 | - | 0.10 | [45] |
Yarrowia lipolytica NCYC3825 | Batch Shake flask | Glucose | 7 | 1.98 | 0.31 | 0.02 | [39] |
Kluyveromyces marxianus and Debaryomyces hansenii (co-culture) | Batch Shake flask | Lactose | 4 | 2.55 | 0.89 | 0.03 | [52] |
Zygosaccgaromyces rouxii M2013310 | Batch Shake flask | Glucose | - | 3.58 | - | 0.05 | [40] |
Saccharomyces cerevisiae Ye9-612 | Fed-batch 3 L Bioreactor | Glucose | 10 | 4.5 | 0.82 | 0.065 | [37] |
Saccharomyces cerevisiae BCRC 21812 | Batch 250 mL Bioreactor | Glucose | 4 | 2.53 | 0.69 | 0.013 | [53] |
Pichia kudriavzevii YF1702 | Batch Shake flask | Glucose | 10.7 | 5.09 | - | - | [42] |
Candida Glycerinogenes WL2002-5 | Batch 5 L Bioreactor | Glucose | 7 | 5 | 0.71 | 0.11 | [44] |
Saccharomyces cerevisiae JM2014 | Batch 6.2 L Bioreactor | Glucose | 6 | 3.60 | - | 0.05 | [54] |
Saccharomyces bayanus L1 | Fed-batch 5 L Bioreactor | Glucose | 9.7 | 6.5 | 0.67 | 0.108 | [49] |
Kluyveromyces marxianus CBS 600 | Fed-batch ISPR PPG 1200 2.4 L Bioreactor | Glucose | 7 | 10.2 | 0.61 | 0.33 | [55] |
Saccharomyces cerevisiae JM2014 | Batch ISPR rapeseed oil 4.5 L Bioreactor | Glucose | 5 | 9.79 | - | 0.14 | [15] |
Saccharomyces cerevisiae AM1-d | Batch ISPR [HMPyr][NTf2] Shake flask | Glucose, saccharose | 6 | 16.46 | - | 0.34 | [56] |
Kluyveromyces marxianus WUT240W | Continuous ISPR Ethyl acetate 4.8 L Bioreactor | Whey | 5 | 1.15 | 1.12 | 0.057 | [41] |
Kluyveromyces marxianus ITD0090 | Batch ISPR Oleyl alcohol membrane contactor 5 L Bioreactor | Glucose | 8 | 3.02 | - | 0.054 | [57] |
Kluyveromyces marxianus CBS 600 | Batch ISPR hollow fiber, Miglyol 2 L Bioreactor | Glucose | 9 | 4.0 | - | 0.29 | [58] |
Saccharomyces cerevisiae | Fed-batch ISPR pertraction–adsorption, octane Bioreactor | Glucose | 11 × 6.5 g | 2.69 | 0.65 | 0.498 | [59] |
Saccharomyces cerevisiae Ye9-612 | Fed-batch ISPR microspheres 3 L Bioreactor | Glucose | 10 | 7.05 | - | - | [60] |
Saccharomyces cerevisiae | Fed-batch ISPR hollow fiber + adsorption Macronet MN270 15 L Airlift bioreactor | Glucose | 45 g | 11 | - | 0.15 | [61] |
Kluyveromyces marxianus CBS 600 | ISPR pervaporationBioreactor | Molasses + glucose | 9 | 2.20 | 0.34 | - | [62] |
Acinetobacter soli ANG344B | Batch 2 L Bioreactor ISPR adsorption Amberlite XAD 4 | Glucose | 12 | 6.99 | 0.58 | 0.17 | [62] |
Kluyveromyces marxianus | Semi-continuousISPR adsorption Hytrel 8206 resin 3 L Bioreactor | Glucose | 26+ | 20.4 | 0.67 | 0.43 | [38] |
Saccharomyces cerevisiae BD | Batch ISPR adsorption D101 resin Shake flask | Sucrose | 12 | 6.17 | 0.51 | 0.23 | [63] |
Saccharomyces cerevisiae P-3 | Batch ISPR adsorption HZ818 resin Shake flask | Molasses | 12 | 6.6 | 0.55 | - | [64] |
Kluyveromyces marxianus | Batch 24-well plates | Sweet whey | 4.5 | 1.2 | - | 0.025 | [65] |
Kluyveromyces marxianus CBS 6556 | Batch 2 L Bioreactor | Grape must | 3 | 0.77 | 0.62 | 0.0077 | [66] |
Kluyveromyces marxianus NRRL Y-1109 | Batch Shake flask | Forestry residues | 4 | 1.09 | - | - | [67] |
Yarrowia lipolytica CH 1/5 | Fed-batch Bioreactor | Crude glycerol | 8 + 4 | 3.2 | 0.29 | 0.0143 | [68] |
Pichia fermentans WUT36 | Batch Shake flask | Corn stover | 5 | 3.67 | - | 0.05 | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardino, A.R.S.; Torres, C.A.V.; Crespo, J.G.; Reis, M.A.M. Biotechnological 2-Phenylethanol Production: Recent Developments. Molecules 2024, 29, 5761. https://doi.org/10.3390/molecules29235761
Bernardino ARS, Torres CAV, Crespo JG, Reis MAM. Biotechnological 2-Phenylethanol Production: Recent Developments. Molecules. 2024; 29(23):5761. https://doi.org/10.3390/molecules29235761
Chicago/Turabian StyleBernardino, Ana R. S., Cristiana A. V. Torres, João G. Crespo, and Maria A. M. Reis. 2024. "Biotechnological 2-Phenylethanol Production: Recent Developments" Molecules 29, no. 23: 5761. https://doi.org/10.3390/molecules29235761
APA StyleBernardino, A. R. S., Torres, C. A. V., Crespo, J. G., & Reis, M. A. M. (2024). Biotechnological 2-Phenylethanol Production: Recent Developments. Molecules, 29(23), 5761. https://doi.org/10.3390/molecules29235761