The Application of Machine Learning on Antibody Discovery and Optimization
Abstract
:1. Introduction
2. Traditional Antibody Discovery and Computational Antibody Discovery Methods
2.1. Traditional Antibody Discovery
2.2. Computational Antibody Engineering Methods
3. Machine Learning for Antibody Discovery
3.1. Machine Learning-Based Antibody Structure Prediction
3.2. Machine Learning-Based Antibody–Antigen Interaction
3.3. Machine Learning-Based Antibody Docking on Antigen
4. Machine Learning for Antibody Optimization
4.1. Machine Learning-Based Antibody Affinity Optimization
4.2. Machine Learning-Based Developability Optimization
4.2.1. Predicting Antibody Biophysical Properties
4.2.2. Machine Learning Models for Immunogenicity Prediction
5. Opportunities and Challenges
5.1. Antibody Design AI Agent
5.2. Antibody Data Foundry
5.3. Ethical Considerations and Regulatory Compliance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsao, L.-C.; Force, J.; Hartman, Z.C. Mechanisms of Therapeutic Antitumor Monoclonal Antibodies. Cancer Res. 2021, 81, 4641–4651. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2022, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA Approves 100th Monoclonal Antibody Product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Verdin, P. Top Companies and Drugs by Sales in 2023. Nat. Rev. Drug Discov. 2024, 23, 240. [Google Scholar] [CrossRef]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using Modeller. CP Bioinform. 2006, 15. [Google Scholar] [CrossRef] [PubMed]
- Leem, J.; Dunbar, J.; Georges, G.; Shi, J.; Deane, C.M. ABodyBuilder: Automated Antibody Structure Prediction with Data–driven Accuracy Estimation. mAbs 2016, 8, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Shirai, H.; Ikeda, K.; Yamashita, K.; Tsuchiya, Y.; Sarmiento, J.; Liang, S.; Morokata, T.; Mizuguchi, K.; Higo, J.; Standley, D.M.; et al. High-Resolution Modeling of Antibody Structures by a Combination of Bioinformatics, Expert Knowledge, and Molecular Simulations. Proteins 2014, 82, 1624–1635. [Google Scholar] [CrossRef]
- Khakzad, H.; Igashov, I.; Schneuing, A.; Goverde, C.; Bronstein, M.; Correia, B. A New Age in Protein Design Empowered by Deep Learning. Cell Syst. 2023, 14, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Notin, P.; Rollins, N.; Gal, Y.; Sander, C.; Marks, D. Machine Learning for Functional Protein Design. Nat. Biotechnol. 2024, 42, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A Universal Deep-Learning Model of Protein Sequence and Function. Bioinformatics 2022, 38, 2102–2110. [Google Scholar] [CrossRef] [PubMed]
- Dauparas, J.; Anishchenko, I.; Bennett, N.; Bai, H.; Ragotte, R.J.; Milles, L.F.; Wicky, B.I.M.; Courbet, A.; De Haas, R.J.; Bethel, N.; et al. Robust Deep Learning–Based Protein Sequence Design Using ProteinMPNN. Science 2022, 378, 49–56. [Google Scholar] [CrossRef]
- Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Ruffolo, J.A.; Chu, L.-S.; Mahajan, S.P.; Gray, J.J. Fast, Accurate Antibody Structure Prediction from Deep Learning on Massive Set of Natural Antibodies. Nat. Commun. 2023, 14, 2389. [Google Scholar] [CrossRef]
- Luo, S.; Su, Y.; Peng, X.; Wang, S.; Peng, J.; Ma, J. Antigen-Specific Antibody Design and Optimization with Diffusion-Based Generative Models for Protein Structures. Adv. Neural Inf. Process. Syst. 2022, 35, 9754–9767. [Google Scholar] [CrossRef]
- Shuai, R.W.; Ruffolo, J.A.; Gray, J.J. IgLM: Infilling Language Modeling for Antibody Sequence Design. Cell Syst. 2023, 14, 979–989.e4. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, J.; Xu, J.; Shan, H.; Shen, S.; Gao, S.; Xu, H.E. AI-Driven Antibody Design with Generative Diffusion Models: Current Insights and Future Directions. Acta Pharmacol. Sin. 2024, 1–10. [Google Scholar] [CrossRef]
- Wossnig, L.; Furtmann, N.; Buchanan, A.; Kumar, S.; Greiff, V. Best Practices for Machine Learning in Antibody Discovery and Development. Drug Discov. Today 2024, 29, 104025. [Google Scholar] [CrossRef] [PubMed]
- Joubbi, S.; Micheli, A.; Milazzo, P.; Maccari, G.; Ciano, G.; Cardamone, D.; Medini, D. Antibody Design Using Deep Learning: From Sequence and Structure Design to Affinity Maturation. Brief. Bioinform. 2024, 25, bbae307. [Google Scholar] [CrossRef] [PubMed]
- Khuat, T.T.; Bassett, R.; Otte, E.; Grevis-James, A.; Gabrys, B. Applications of Machine Learning in Antibody Discovery, Process Development, Manufacturing and Formulation: Current Trends, Challenges, and Opportunities. Comput. Chem. Eng. 2024, 182, 108585. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage Antibodies: Filamentous Phage Displaying Antibody Variable Domains. Nature 1990, 348, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Ledsgaard, L.; Ljungars, A.; Rimbault, C.; Sørensen, C.V.; Tulika, T.; Wade, J.; Wouters, Y.; McCafferty, J.; Laustsen, A.H. Advances in Antibody Phage Display Technology. Drug Discov. Today 2022, 27, 2151–2169. [Google Scholar] [CrossRef]
- Rosowski, S.; Becker, S.; Toleikis, L.; Valldorf, B.; Grzeschik, J.; Demir, D.; Willenbücher, I.; Gaa, R.; Kolmar, H.; Zielonka, S.; et al. A Novel One-Step Approach for the Construction of Yeast Surface Display Fab Antibody Libraries. Microb. Cell Factories 2018, 17, 3. [Google Scholar] [CrossRef]
- Uchański, T.; Zögg, T.; Yin, J.; Yuan, D.; Wohlkönig, A.; Fischer, B.; Rosenbaum, D.M.; Kobilka, B.K.; Pardon, E.; Steyaert, J. An Improved Yeast Surface Display Platform for the Screening of Nanobody Immune Libraries. Sci. Rep. 2019, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Traggiai, E.; Becker, S.; Subbarao, K.; Kolesnikova, L.; Uematsu, Y.; Gismondo, M.R.; Murphy, B.R.; Rappuoli, R.; Lanzavecchia, A. An Efficient Method to Make Human Monoclonal Antibodies from Memory B Cells: Potent Neutralization of SARS Coronavirus. Nat. Med. 2004, 10, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Margreitter, C.; Mayrhofer, P.; Kunert, R.; Oostenbrink, C. Antibody Humanization by Molecular Dynamics Simulations—In-Silico Guided Selection of Critical Backmutations. J. Mol. Recognit. 2016, 29, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T. Toward Rational Antibody Design: Recent Advancements in Molecular Dynamics Simulations. Int. Immunol. 2018, 30, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, A.; Sircar, A.; Chaudhury, S.; Gray, J.J. Toward High-Resolution Homology Modeling of Antibody Fv Regions and Application to Antibody–Antigen Docking. Proteins 2009, 74, 497–514. [Google Scholar] [CrossRef]
- Jetha, A.; Thorsteinson, N.; Jmeian, Y.; Jeganathan, A.; Giblin, P.; Fransson, J. Homology Modeling and Structure-Based Design Improve Hydrophobic Interaction Chromatography Behavior of Integrin Binding Antibodies. mAbs 2018, 10, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Ruffolo, J.A.; Gray, J.J.; Sulam, J. Deciphering Antibody Affinity Maturation with Language Models and Weakly Supervised Learning. arXiv 2021. [Google Scholar] [CrossRef]
- Abanades, B.; Wong, W.K.; Boyles, F.; Georges, G.; Bujotzek, A.; Deane, C.M. ImmuneBuilder: Deep-Learning Models for Predicting the Structures of Immune Proteins. Commun. Biol. 2023, 6, 575. [Google Scholar] [CrossRef] [PubMed]
- Zambaldi, V.; La, D.; Chu, A.E.; Patani, H.; Danson, A.E.; Kwan, T.O.C.; Frerix, T.; Schneider, R.G.; Saxton, D.; Thillaisundaram, A.; et al. De Novo Design of High-Affinity Protein Binders with AlphaProteo. arXiv 2024. [Google Scholar] [CrossRef]
- Pacesa, M.; Nickel, L.; Schmidt, J.; Pyatova, E.; Schellhaas, C.; Kissling, L.; Alcaraz-Serna, A.; Cho, Y.; Ghamary, K.H.; Vinué, L.; et al. BindCraft: One-Shot Design of Functional Protein Binders. arXiv 2024. [Google Scholar] [CrossRef]
- Bennett, N.R.; Watson, J.L.; Ragotte, R.J.; Borst, A.J.; See, D.L.; Weidle, C.; Biswas, R.; Shrock, E.L.; Leung, P.J.Y.; Huang, B.; et al. Atomically Accurate De Novo Design of Single-Domain Antibodies. arXiv 2024. [Google Scholar] [CrossRef]
- Nabla Bio. De Novo Design of Epitope-Specific Antibodies Against Soluble and Multipass Membrane Proteins with High Specificity, Developability, and Function. Nabla Bio, 23 November 2024.
- Goverde, C.A.; Pacesa, M.; Goldbach, N.; Dornfeld, L.J.; Balbi, P.E.M.; Georgeon, S.; Rosset, S.; Kapoor, S.; Choudhury, J.; Dauparas, J.; et al. Computational Design of Soluble and Functional Membrane Protein Analogues. Nature 2024, 631, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Ruffolo, J.A.; Harmalkar, A.; Gray, J.J. Flexible Protein–Protein Docking with a Multitrack Iterative Transformer. Protein Sci. 2024, 33, e4862. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Buchanan, A.; Taddese, B.; Deane, C.M. DLAB: Deep Learning Methods for Structure-Based Virtual Screening of Antibodies. Bioinformatics 2022, 38, 377–383. [Google Scholar] [CrossRef]
- Kong, X.; Huang, W.; Liu, Y. End-to-End Full-Atom Antibody Design. arXiv 2023. [Google Scholar] [CrossRef]
- Jin, W.; Barzilay, R.; Jaakkola, T. Antibody-Antigen Docking and Design via Hierarchical Equivariant Refinement. arXiv 2022. [Google Scholar] [CrossRef]
- Mirabello, C.; Wallner, B. DockQ v2: Improved Automatic Quality Measure for Protein Multimers, Nucleic Acids, and Small Molecules. Bioinformatics 2024, 40, btae586. [Google Scholar] [CrossRef]
- McPartlon, M.; Xu, J. Deep Learning for Flexible and Site-Specific Protein Docking and Design. arXiv 2023. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, N.; Huang, Y.; Min, X.; Zeng, X.; Ge, S.; Zhang, J.; Xia, N. PointDE: Protein Docking Evaluation Using 3D Point Cloud Neural Network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3128–3138. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A Protein–Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.M.C.; Honorato, R.V.; Giulini, M.; Bonvin, A.; Alidoost, S.; Reys, V.; Jimenez, B.; Schulte, D.; van Noort, C.; Verhoeven, S.; et al. Haddocking/Haddock3: V3.0.0-Beta.5; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Giulini, M.; Schneider, C.; Cutting, D.; Desai, N.; Deane, C.M.; Bonvin, A.M.J.J. Towards the Accurate Modelling of Antibody–Antigen Complexes from Sequence Using Machine Learning and Information-Driven Docking. Bioinformatics 2024, 40, btae583. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Li, P.; Song, S.; Peng, J. Deep Geometric Representations for Modeling Effects of Mutations on Protein-Protein Binding Affinity. PLoS Comput. Biol. 2021, 17, e1009284. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Zhang, Z.; Wang, M.; Zhong, B.; Li, Q.; Zhong, Y.; Wu, Y.; Ying, T.; Tang, J. Pretrainable geometric Graph Neural Network for Antibody Affinity Maturation. Nat. Commun. 2024, 15, 7785. [Google Scholar] [CrossRef]
- Saka, K.; Kakuzaki, T.; Metsugi, S.; Kashiwagi, D.; Yoshida, K.; Wada, M.; Tsunoda, H.; Teramoto, R. Antibody Design Using LSTM Based Deep Generative Model from Phage Display Library for Affinity Maturation. Sci. Rep. 2021, 11, 5852. [Google Scholar] [CrossRef] [PubMed]
- Mason, D.M.; Friedensohn, S.; Weber, C.R.; Jordi, C.; Wagner, B.; Meng, S.M.; Ehling, R.A.; Bonati, L.; Dahinden, J.; Gainza, P.; et al. Optimization of Therapeutic Antibodies by Predicting Antigen Specificity from Antibody Sequence via Deep Learning. Nat. Biomed. Eng. 2021, 5, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.M.; Kirby, M.B.; Chrispens, K.M.; Irvin, O.M.; Strawn, I.K.; Haas, C.M.; Walker, A.M.; Baumer, Z.T.; Ulmer, S.A.; Ayala, E.; et al. An Integrated Technology for Quantitative Wide Mutational Scanning of Human Antibody Fab Libraries. Nat. Commun. 2024, 15, 3974. [Google Scholar] [CrossRef]
- Li, L.; Gupta, E.; Spaeth, J.; Shing, L.; Jaimes, R.; Engelhart, E.; Lopez, R.; Caceres, R.S.; Bepler, T.; Walsh, M.E. Machine Learning Optimization of Candidate Antibody Yields Highly Diverse Sub-Nanomolar Affinity Antibody Libraries. Nat. Commun. 2023, 14, 3454. [Google Scholar] [CrossRef]
- Waight, A.B.; Prihoda, D.; Shrestha, R.; Metcalf, K.; Bailly, M.; Ancona, M.; Widatalla, T.; Rollins, Z.; Cheng, A.C.; Bitton, D.A.; et al. A Machine Learning Strategy for the Identification of Key In Silico Descriptors and Prediction Models for IgG Monoclonal Antibody Developability Properties. mAbs 2023, 15, 2248671. [Google Scholar] [CrossRef]
- Lai, P.-K.; Gallegos, A.; Mody, N.; Sathish, H.A.; Trout, B.L. Machine Learning Prediction of Antibody Aggregation and Viscosity for High Concentration Formulation Development of Protein Therapeutics. mAbs 2022, 14, 2026208. [Google Scholar] [CrossRef] [PubMed]
- Rollins, Z.A.; Widatalla, T.; Cheng, A.C.; Metwally, E. AbMelt: Learning Antibody Thermostability from Molecular Dynamics. Biophys. J. 2024, 123, 2921–2933. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T.H.; Boyles, F.; Deane, C.M. Observed Antibody Space: A Diverse Database of Cleaned, Annotated, and Translated Unpaired and Paired Antibody Sequences. Protein Sci. 2022, 31, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hao, X.; He, Y.; Fan, L. AbImmPred: An Immunogenicity Prediction Method for Therapeutic Antibodies Using AntiBERTy-Based Sequence Features. PLoS ONE 2024, 19, e0296737. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Fang, A.; Huang, Y.; Giunchiglia, V.; Noori, A.; Schwarz, J.R.; Ektefaie, Y.; Kondic, J.; Zitnik, M. Empowering Biomedical Discovery with AI Agents. Cell 2024, 187, 6125–6151. [Google Scholar] [CrossRef]
- Rapp, J.T.; Bremer, B.J.; Romero, P.A. Self-Driving Laboratories to Autonomously Navigate the Protein Fitness Landscape. Nat. Chem. Eng. 2024, 1, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Ghafarollahi, A.; Buehler, M.J. ProtAgents: Protein Discovery via Large Language Model Multi-Agent Collaborations Combining Physics and Machine Learning. Digit. Discov. 2024, 3, 1389–1409. [Google Scholar] [CrossRef]
- Baryshev, A.; La Fleur, A.; Groves, B.; Michel, C.; Baker, D.; Ljubetič, A.; Seelig, G. Massively Parallel Measurement of Protein–Protein Interactions by Sequencing Using MP3-Seq. Nat. Chem. Biol. 2024, 20, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Hanning, K.R.; Minot, M.; Warrender, A.K.; Kelton, W.; Reddy, S.T. Deep Mutational Scanning for Therapeutic Antibody Engineering. Trends Pharmacol. Sci. 2022, 43, 123–135. [Google Scholar] [CrossRef] [PubMed]
- FDA. Using Artificial Intelligence and Machine Learning in the Development of Drug and Biological Products; FDA: Silver Spring, MD, USA, 2023. [Google Scholar]
- Xu, R.; Baracaldo, N.; Joshi, J. Privacy-Preserving Machine Learning: Methods, Challenges and Directions. arXiv 2021. [Google Scholar] [CrossRef]
- FDA; Health Canada; MHRA. Transparency for Machine Learning-Enabled Medical Devices: Guiding Principles; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Pagano, T.P.; Loureiro, R.B.; Lisboa, F.V.N.; Peixoto, R.M.; Guimarães, G.A.S.; Cruz, G.O.R.; Araujo, M.M.; Santos, L.L.; Cruz, M.A.S.; Oliveira, E.L.S.; et al. Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big Data Cogn. Comput. 2023, 7, 15. [Google Scholar] [CrossRef]
Name | Class | Model | Docking Score | Disadvantages |
---|---|---|---|---|
GeoDock | Protein | Transformer | SSR: 41% | Relies on transformer models that can struggle with large, highly diverse datasets. |
dyMEAN | Antibody | MEAN | DockQ: Full: 41.2% CDRs: 39.6% H3: 40.9% | Performance on docking antibody CDRs and H3 regions is relatively low, with limited generalization across diverse antibody–antigen interfaces. |
DockGPT | Antibody | Transformer | DockQ: 26.1% | Exhibits low DockQ scores compared to other models, indicating challenges in achieving accurate docking for complex antibody–antigen interactions. |
PointDE | Protein | PMLP | SSR protein: 65.6% Ab-Ag: 56.6% | Only use PDB file. |
AlphaFold3 | Protein | Pairformer | Antibody: 8.9% Nanobdy: 13.4% | Low DockQ scores for antibodies (8.9%) and nanobodies (13.4%), reflecting limited docking precision compared to its structural prediction capabilities. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Wang, Y.; Liang, Q.; Cui, L.; Wang, L. The Application of Machine Learning on Antibody Discovery and Optimization. Molecules 2024, 29, 5923. https://doi.org/10.3390/molecules29245923
Zheng J, Wang Y, Liang Q, Cui L, Wang L. The Application of Machine Learning on Antibody Discovery and Optimization. Molecules. 2024; 29(24):5923. https://doi.org/10.3390/molecules29245923
Chicago/Turabian StyleZheng, Jiayao, Yu Wang, Qianying Liang, Lun Cui, and Liqun Wang. 2024. "The Application of Machine Learning on Antibody Discovery and Optimization" Molecules 29, no. 24: 5923. https://doi.org/10.3390/molecules29245923
APA StyleZheng, J., Wang, Y., Liang, Q., Cui, L., & Wang, L. (2024). The Application of Machine Learning on Antibody Discovery and Optimization. Molecules, 29(24), 5923. https://doi.org/10.3390/molecules29245923