Benzylic C–H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis
Abstract
:1. Introduction
2. Review on the Latest Benzylic C–H Oxidations
2.1. Metal-Catalyzed Oxidation of Benzylic C–H Bonds
2.2. Non-Metal Catalyzed Oxidation of Benzylic C–H Bonds
2.3. Photocatalytic Oxidation of Benzylic C–H Bonds
2.4. Electrochemical Benzylic C–H Oxidation
3. Applications of Benzylic C–H Oxidation in Heterocyclic Compounds Preparation
3.1. Six-Membered Heterocycles
3.2. Five-Membered Ring Heterocycles
4. Concluding Remarks
Funding
Conflicts of Interest
Abbreviations
atm | atmospheres |
Ar | Argon |
AQ | Anthraquinone |
BQC | 2,2′-biquinoline-4,4′-dicarboxylic acid dipotassium salt |
BiOBr | Bismuth bromide oxide |
CBr4 | Tetrabromomethane |
CeO2 | Ceric oxide |
CF | Carbon felt |
CF3SO2Na | trifluoromethanesulfinate |
Co | Cobalt |
Co(OAc)2 | Cobalt (II) acetate |
Conv. | Conversion |
Cu | Copper |
CuCl2 | Copper (II) Chloride |
Cu2O | Copper (I) oxide |
CuO | Copper (II) oxide |
CuI | Copper iodide |
Cu2(O2CR)4 | Copper (II) carboxylate |
CuOTf | Copper triflate |
Cr | Chromium |
CPET | Concerted proton–electron transfer |
DDQ | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone |
DMF | Dimethyl formamide |
DMSO | Dimethyl sulfoxide |
DTBP | Di |
EtOH | Ethanol |
EPR | Electro paramagnetic resonance |
Fe(NO3)3·9H2O | Iron (III) nitrate nonahydrate |
GC | Glassy Carbon |
GF | Graphite Felt |
GVL | |
h | hours |
HAT | Hydrogen atom transfer |
HCl | Hydrochloric acid |
H2C2O4·H2O | Oxalic acid dihydrate |
H2O | Water |
H2O2 | Hydrogen peroxide |
HMS | Hexagonal mesoporous silica |
K | Kelvin |
K2CO3 | Potassium carbonate |
KPF6 | Potassium hexafluorophosphate |
KI | Potassium iodide |
LaMnO3 | Lanthanium manganite |
LED | Light-emitting diode |
MeCN | Acetonitrile |
Mg6MnO8 | Murchodite-type oxide |
MgFe-LDH | Magnesium-iron layered double hydroxide |
MFM-170 | [Cu2(L)](H4L = 4′, 4′′′-(pyridine-3,5-diyl)bis([1,1′-biphenyl]-3,5-dicarboxylic acid |
mL | milliliters |
Mn | Manganese |
Mn-ZSM-5-50 | Manganese-incorporated ZSM-5 zeolite |
MOFs | Metal–organic frameworks |
MPa | Megapascals |
Na | Sodium |
Na2CO3 | Sodium carbonate |
NBu4Cl | Tetrabutylammonium chloride |
nBu4NI | Tetrabutyl ammonium iodide |
NFSI | N-fluorobenzenesulfonimide |
NHI | N-Hydroxyimide |
NHPI | N-hydroxyphthalimide |
(NH4)3[CrMo6O18(OH)6] | Ammonium Hexamolybdochromate(III) |
Ni(OTf)2 | Nickel (II) trifluoromethanesulfonate |
Ni2Mn-LDH | Nickel-manganese layered double hydroxide |
nm | Nanometers |
O2 | Molecular oxygen |
PC-4 | 6-Bromobenzo[d]thiazole |
Pd | Palladium |
PhCN | Benzonitrile |
[Ph3C]+[B(C6F5)4]− | Triphenylmethyliumtetrakis(perfluorophenyl)borate |
POMOFs | Polyoxometalate-based metal–organic frameworks |
iPrOH | Isopropyl alcohol |
Pt | Platinum |
PT-ET | Proton-transfer/electron-transfer |
rpm | Rotations per minute |
rt | Room temperature |
RuO2 | Ruthenium dioxide |
Select. | Selectivity |
SPXRD | Synchroton powder X-ray diffraction |
SS | Stainless steel |
T(2,3,6-triCl)PPCo | 5,10,15,20-Tetrakis(2,3,6-trichlorophenyl)porphyrin Cobalt (II) |
TBAC | Tetrabutylammonium chloride |
TBHP | tert-Butyl Hydroperoxide |
TEMPO | 2,2,6,6-tetramethyl,1-piperidonyloxy |
TiO2 | Titanium dioxide |
UV | Ultraviolet |
UVA | Ultraviolet A |
UVB | Ultraviolet B |
V2O5 | Vanadium (V) pentoxide |
References
- Bindu, V.H.; Parvathaneni, S.P.; Rao, V.J. Iodosobenzoic acid (IBA) catalysed benzylic and aromatic C–H oxidations. Catal. Lett. 2017, 147, 1434–1440. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, T.; Yu, Y.; Xu, K. TBHP-promoted direct oxidation reaction of benzylic Csp3–H bonds to ketones. RSC Adv. 2017, 7, 15176–15180. [Google Scholar] [CrossRef]
- Karakaya, I.; Rizwan, K.; Munir, S. Transition-Metal Catalyzed Coupling Reactions for the Synthesis of (Het) aryl Ketones. An Approach from their Synthesis to Biological Perspectives. ChemistrySelect 2023, 8, e202204005. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Shen, G.; Xin, N.; Lin, Z.; Chi, Y.; Dou, J.; Li, D.; Hu, C. Three Pd-decavanadates with a controllable molar ratio of Pd to decavanadate and their heterogeneous aerobic oxidation of benzylic C–H bonds. Dalton Trans. 2018, 47, 726–733. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C–H Bond Functionalization. Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed. 2012, 51, 8960–9009. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhang, P.; Wang, Y.; Li, H. Metal-free allylic/benzylic oxidation strategies with molecular oxygen. recent advances and future prospects. Green Chem. 2014, 16, 2344–2374. [Google Scholar] [CrossRef]
- Nikitas, N.F.; Tzaras, D.I.; Triandafillidi, I.; Kokotos, C.G. Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant. Green Chem. 2020, 22, 471–477. [Google Scholar] [CrossRef]
- Zhang, Y.; Schilling, W.; Das, S. Metal-Free Photocatalysts for C–H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem 2019, 12, 2898–2910. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Huang, B.; Liu, Y. Copper (ii)-mediated, carbon degradation-based amidation of phenylacetic acids toward N-substituted benzamides. Org. Biomol. Chem. 2018, 16, 1552–1556. [Google Scholar] [CrossRef]
- Jin, X.; Wang, A.; Cao, H.; Zhang, S.; Wang, L.; Zheng, X.; Zheng, X. A new efficient method for the preparation of intermediate aromatic ketones by Friedel–Crafts acylation. Res. Chem. Intermed. 2018, 44, 5521–5530. [Google Scholar] [CrossRef]
- Groggins, P.H.; Nagel, R.H. Studies in the Friedel and Crafts Reaction Preparation of Ketones and Keto Acids. Ind. Eng. Chem. 1934, 26, 1313–1316. [Google Scholar] [CrossRef]
- Partenheimer, W. Methodology and scope of metal/bromide autoxidation of hydrocarbons. Catal. Today 1995, 23, 69–158. [Google Scholar] [CrossRef]
- Urgoitia, G.; SanMartin, R.; Herrero, M.T.; Domínguez, E. Recent Advances in Homogeneous Metal-Catalyzed Aerobic C–H Oxidation of Benzylic Compounds. Catalysts 2018, 8, 640. [Google Scholar] [CrossRef]
- Lubov, D.P.; Talsi, E.P.; Bryliakov, K.P. Methods for selective benzylic C–H oxofunctionalization of organic compounds. Russ. Chem. Rev. 2020, 89, 587. [Google Scholar] [CrossRef]
- Lounis, Z.; Riahi, A.; Djafri, F.; Muzart, J. Chromium-exchanged zeolite (CrE-ZSM-5) as catalyst for alcohol oxidation and benzylic oxidation with t-BuOOH. Appl. Catal. A Gen. 2006, 309, 270–272. [Google Scholar] [CrossRef]
- Punniyamurthy, T.; Rout, L. Recent advances in copper-catalyzed oxidation of organic compounds. Coord. Chem. Rev. 2008, 252, 134–154. [Google Scholar] [CrossRef]
- Singh, S.J.; Jayaram, R.V. Oxidation of alkylaromatics to benzylic ketones using TBHP as an oxidant over LaMO3 (M = Cr, Co, Fe, Mn, Ni) perovskites. Catal. Commun. 2009, 10, 2004–2007. [Google Scholar] [CrossRef]
- Ajjou, A.N.; Rahman, A. Green organic solvent-free oxidation of alkylarenes with tert-butyl hydroperoxide catalyzed by water-soluble copper complex. Open Chem. 2020, 18, 165–174. [Google Scholar] [CrossRef]
- Huang, D.; Zheng, J.; Yang, Q.; Yang, D.; Sun, H.; Chen, G.; Gao, D.; Zhao, H. RuO2 supported on MOF-derived CeO2 as an efficient catalyst for selective C–H oxidation of alkylarenes in water at room temperature. Microporous Mesoporous Mater. 2023, 354, 112548. [Google Scholar] [CrossRef]
- Kong, S.; Liu, R.; Hao, Z.; Han, Z.; Lu, G.-L.; Lin, J. Ruthenium(II) carbonyl complexes bearing schiff-base ligands. Syntheses, characterization, and their catalytic activities for benzylic C-H oxidation. J. Mol. Struct. 2024, 1296, 136870. [Google Scholar] [CrossRef]
- Tang, S.Y.; Bourne, R.A.; Smith, R.L.; Poliakoff, M. The 24 principles of green engineering and green chemistry.“IMPROVEMENTS PRODUCTIVELY”. Green Chem. 2008, 10, 268–269. [Google Scholar] [CrossRef]
- Shen, H.-M.; Liu, L.; Qi, B.; Hu, M.-Y.; Ye, H.-L.; She, Y.-B. Efficient and selective oxidation of secondary benzylic C–H bonds to ketones with O2 catalyzed by metalloporphyrins under solvent-free and additive-free conditions. Mol. Catal. 2020, 493, 111102. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Wang, X.; Wang, Y.; Liu, Y.; Huang, K.; Hu, J.; Duan, L.; Hu, C.; Liu, J. Selective Oxidation of Benzylic C–H Bonds Catalyzed by Cu(II)/{PMo12}. J. Org. Chem. 2020, 85, 3101–3109. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, S.; Liu, M.; Chen, C.; Zhu, G.; Gao, J.; Xu, J. Hydrophobic modification of microenvironment of highly dispersed Co3O4 nanoparticles for the catalytic selective oxidation of ethylbenzene. ChemCatChem 2020, 12, 903–910. [Google Scholar] [CrossRef]
- Zuo, S.; Liu, J.; Zuo, A. N-Hydroxy-1, 6-methano[10]annulene-3, 4-dicarboximide/Co(OAc)2. A novel catalytic system for the aerobic oxidation of alkylarenes. J. Heterocycl. Chem. 2020, 57, 2634–2639. [Google Scholar] [CrossRef]
- Chaudhary, V.; Sharma, S. Synthesis of polymer-silica hybrid-supported catalysts for solvent-free oxidation of ethylbenzene with TBHP. Asia-Pac. J. Chem. Eng. 2020, 15, e2441. [Google Scholar] [CrossRef]
- Kalita, L.; Saikia, L. Palladium-Supported Nanoceria. A Highly Efficient Catalyst for Solvent-Free Selective Oxidation of Ethylbenzene to Acetophenone. ChemistrySelect 2020, 5, 4848–4855. [Google Scholar] [CrossRef]
- Liu, X.; Gao, S.; Yang, F.; Zhou, S.; Kong, Y. High promoting of selective oxidation of ethylbenzene by Mn-ZSM-5 synthesized without organic template and calcination. Res. Chem. Intermed. 2020, 46, 2817–2832. [Google Scholar] [CrossRef]
- Kal, S.; Xu, S.; Que Jr, L. Bio-inspired Nonheme Iron Oxidation Catalysis. Involvement of Oxoiron(V) Oxidants in Cleaving Strong C–H Bonds. Angew. Chem. Int. Ed. 2020, 59, 7332–7349. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, T.; Wang, M.; Yun, R.; Xiang, X. Recent Advances in Heterogeneous Photo-Driven Oxidation of Organic Molecules by Reactive Oxygen Species. ChemSusChem 2020, 13, 5173–5184. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, S.; Kamata, K.; Hara, M. Dioxygen Activation by a Hexagonal SrMnO3 Perovskite Catalyst for Aerobic Liquid-Phase Oxidation. ChemCatChem 2016, 8, 3247–3253. [Google Scholar] [CrossRef]
- Sugahara, K.; Kamata, K.; Muratsugu, S.; Hara, M. Amino Acid-Aided Synthesis of a Hexagonal SrMnO3 Nanoperovskite Catalyst for Aerobic Oxidation. ACS Omega 2017, 2, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Sugahara, K.; Kamata, K.; Hara, M. Liquid-phase oxidation of alkanes with molecular oxygen catalyzed by high valent iron-based perovskite. Chem. Commun. 2018, 54, 6772–6775. [Google Scholar] [CrossRef] [PubMed]
- Sahin, Y.; Sika-Nartey, A.T.; Ercan, K.E.; Kocak, Y.; Senol, S.; Ozensoy, E.; Türkmen, Y.E. Precious Metal-Free LaMnO3 Perovskite Catalyst with an Optimized Nanostructure for Aerobic C–H Bond Activation Reactions. Alkylarene Oxidation and Naphthol Dimerization. ACS Appl. Mater. Interfaces 2021, 13, 5099–5110. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Kumar, S.; Maurya, S.K. V2O5@TiO2 Catalyzed Green and Selective Oxidation of Alcohols, Alkylbenzenes and Styrenes to Carbonyls. ChemCatChem 2021, 13, 3594–3600. [Google Scholar] [CrossRef]
- Wang, A.; Zhou, W.; Sun, Z.; Zhang, Z.; Zhang, Z.; He, M.; Chen, Q. Mn (III) active site in hydrotalcite efficiently catalyzes the oxidation of alkylarenes with molecular oxygen. Mol. Catal. 2021, 499, 111276. [Google Scholar] [CrossRef]
- Kimberley, L.; Sheveleva, A.M.; Li, J.; Carter, J.H.; Kang, X.; Smith, G.L.; Han, X.; Day, S.J.; Tang, C.C.; Tuna, F. The Origin of Catalytic Benzylic C–H Oxidation over a Redox-Active Metal–Organic Framework. Angew. Chem. Int. Ed. 2021, 60, 15243–15247. [Google Scholar] [CrossRef]
- Kanarat, J.; Bunchuay, T.; Klysubun, W.; Tantirungrotechai, J. Cu2O-CuO/Chitosan Composites as Heterogeneous Catalysts for Benzylic C–H Oxidation at Room Temperature. ChemCatChem 2021, 13, 4833–4840. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Ye, X.-Q.; Du, W.; Zeng, S.; Xu, J.-H.; Yin, H. An efficient and practical aerobic oxidation of benzylic methylenes by recyclable N-hydroxyimide. RSC Adv. 2021, 11, 3003–3011. [Google Scholar] [CrossRef]
- Hayashi, E.; Tamura, T.; Aihara, T.; Kamata, K.; Hara, M. Base-assisted aerobic C–H Oxidation of Alkylarenes with a Murdochite-type oxide Mg6MnO8 nanoparticle catalyst. ACS Appl. Mater. Interfaces 2022, 14, 6528–6537. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Huang, Y.; Jia, X.; Zhuang, D.; Wan, Z.; Li, Z. Remote carbamate-directed site-selective benzylic C–H oxygenation via synergistic copper/TEMPO catalysis at room temperature. Org. Chem. Front. 2022, 9, 3169–3178. [Google Scholar] [CrossRef]
- Gupta, N.; Baraiya, B.A.; Jha, P.K.; Soni, H.P. Differentiating the {100} surfaces of Cu2O nanocrystals from {111} and {110} for benzylic Csp3-H bond oxidation. Oxidations of diphenyl methane to benzophenone and cumene to cumene hydroperoxide under mild conditions. Mol. Catal. 2022, 528, 112490. [Google Scholar] [CrossRef]
- Dai, X.; Chen, Y.; Zhou, W.; Peng, X. Reduced MgFe hydrotalcite efficiently catalyzes the aerobic oxidation of alkylarenes. Appl. Catal. A Gen. 2023, 657, 119143. [Google Scholar] [CrossRef]
- Zhao, C.; Xie, Y.; Shi, D.; Yu, H. Selective Oxidation of Alkylarene in H2O Catalyzed by the Polyoxometalate Supported Chromium Catalyst. ChemCatChem 2023, 15, e202300186. [Google Scholar] [CrossRef]
- Song, J.; Hua, M.; Huang, X.; Ma, J.; Xie, C.; Han, B. Robust Bio-derived Polyoxometalate Hybrid for Selective Aerobic Oxidation of Benzylic C(sp3)–H Bonds. ACS Catal. 2023, 13, 4142–4154. [Google Scholar] [CrossRef]
- Tan, H.-R.; Zhou, X.; Gong, T.; You, H.; Zheng, Q.; Zhao, S.-Y.; Xuan, W. Anderson-type polyoxometalate-based metal–organic framework as an efficient heterogeneous catalyst for selective oxidation of benzylic C–H bonds. RSC Adv. 2024, 14, 364–372. [Google Scholar] [CrossRef]
- Wang, A.; Huang, J.; Zhao, C.; Fan, Y.; Qian, J.; Chen, Q.; He, M.; Zhou, W. A simple and convenient strategy for the oxidation of C(sp3)–H bonds based on γ-valerolactone. Green Chem. 2024, 26, 353–361. [Google Scholar] [CrossRef]
- Finney, L.C.; Mitchell, L.J.; Moody, C.J. Visible light mediated oxidation of benzylic sp 3 C–H bonds using catalytic 1, 4-hydroquinone, or its biorenewable glucoside, arbutin, as a pre-oxidant. Green Chem. 2018, 20, 2242–2249. [Google Scholar] [CrossRef]
- Wang, D.; Ingram, A.A.; Okumura, A.; Spaniol, T.P.; Schwaneberg, U.; Okuda, J. Benzylic C(sp3)−H Bond Oxidation with Ketone Selectivity by a Cobalt(IV)-Oxo Embedded in a β-Barrel Protein. Chem. Eur. J. 2024, 30, e202303066. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, S.; Li, L.; Song, A.; Yu, S.; Zhuo, S.; Xing, L.-B. Metal-free catalyst for the visible-light-induced photocatalytic synthesis of quinazolinones. Mol. Catal. 2021, 509, 111668. [Google Scholar] [CrossRef]
- Nicewicz, D.A.; Nguyen, T.M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 2014, 4, 355–360. [Google Scholar] [CrossRef]
- Liu, X.; Geng, H.; Zhu, Q. Visible light-mediated, high-efficiency oxidation of benzyl to acetophenone catalyzed by fluorescein. Tetrahedron Lett. 2022, 88, 153570. [Google Scholar] [CrossRef]
- Najminejad, Z. Chemoselective benzylic oxidation of alkyl-substituted aromatics with singlet molecular oxygen generated from trans-3,5 hydroperoxy-3,5 dimethyl-1,2-dioxolan-3-yl ethaneperoxate. Synth. Commun. 2022, 52, 2301–2310. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Wen, Z.; Yao, J.; Li, H. Mechanistic insights on base-DMSO mediated aerobic oxidation of (hetero)benzylic C–H bonds. Mol. Catal. 2022, 530, 112645. [Google Scholar] [CrossRef]
- Gan, H.; Ma, P.; Wu, H. Flavin-catalyzed, TBHP-promoted oxidation of (het) aryl alkane to ketone. Mol. Catal. 2024, 567, 114419. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, M.; Zhang, Z.; Zhang, Q.; Li, H.; Sun, Y.; Wang, Z.; Liu, S.; Sun, Z.; Yan, X.; et al. From Lignin to Value-Added Pharmaceutical Intermediates Based on a Benzylic Oxidation Method with O2. Org. Lett. 2024, 26, 6076–6080. [Google Scholar] [CrossRef] [PubMed]
- Nicewicz, D.A.; MacMillan, D.W. Merging photoredox catalysis with organocatalysis. the direct asymmetric alkylation of aldehydes. Science 2008, 322, 77–80. [Google Scholar] [CrossRef]
- Silvi, M.; Verrier, C.; Rey, Y.P.; Buzzetti, L.; Melchiorre, P. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals. Nat. Chem. 2017, 9, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, Y.; Liu, C.; Yang, H.; Fu, H. Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. Green Chem. 2020, 22, 4357–4363. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, K.; Li, X.; Hai, G.; Huang, X.; Wang, G. Conjugated polymer coated MIL-125(Ti) as an efficient photocatalyst for selective oxidation of benzylic C–H bond under visible light. Appl. Surf. Sci. 2021, 555, 149732. [Google Scholar] [CrossRef]
- Bo, C.; Bu, Q.; Liu, J.; Dai, B.; Liu, N. Photocatalytic Benzylic Oxidation Promoted by Eosin Y in Water. ACS Sustain. Chem. Eng. 2022, 10, 1822–1828. [Google Scholar] [CrossRef]
- Krylov, I.B.; Lopat’eva, E.R.; Subbotina, I.R.; Nikishin, G.I.; Yu, B.; Terent’ev, A.O. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. Chin. J. Catal. 2021, 42, 1700–1711. [Google Scholar] [CrossRef]
- Pokluda, A.; Anwar, Z.; Boguschová, V.; Anusiewicz, I.; Skurski, P.; Sikorski, M.; Cibulka, R. Robust Photocatalytic Method Using Ethylene-Bridged Flavinium Salts for the Aerobic Oxidation of Unactivated Benzylic Substrates. Adv. Synth. Catal. 2021, 363, 4371–4379. [Google Scholar] [CrossRef]
- Niu, K.; Shi, X.; Ding, L.; Liu, Y.; Song, H.; Wang, Q. HCl-Catalyzed Aerobic Oxidation of Alkylarenes to Carbonyls. ChemSusChem 2022, 15, e202102326. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-González, J.; Vosburg, D.A.; Mora-Rodriguez, S.E.; Vázquez, M.A.; Zepeda, L.G.; Villegas Gomez, C.; Lagunas-Rivera, S. Anthraquinones. versatile organic photocatalysts. ChemCatChem 2020, 12, 3811–3827. [Google Scholar] [CrossRef]
- Li, C.; Xu, R.; Song, Q.; Mao, Z.; Li, J.; Yang, H.; Chen, J. Highly efficient photocatalytic oxidation of C–H bond based on microchannel reactor. Tetrahedron Lett. 2022, 98, 153818. [Google Scholar] [CrossRef]
- Nguyen, K.; Nguyen, V.; Tran, H.; Pham, P. Organo-photocatalytic C–H bond oxidation. an operationally simple and scalable method to prepare ketones with ambient air. RSC Adv. 2023, 13, 7168–7178. [Google Scholar] [CrossRef]
- Xu, N.; Peng, X.; Luo, C.; Huang, L.; Wang, C.; Chen, Z.; Li, J. Light-Promoted Chlorine-Radical-Mediated Oxidation of Benzylic C(sp3)–H Bonds utilizing Air as Oxidant. Adv. Synth. Catal. 2023, 365, 142–147. [Google Scholar] [CrossRef]
- Bo, C.; Li, M.; Chen, F.; Liu, J.; Dai, B.; Liu, N. Visible-Light-Initiated Air-Oxygenation of Alkylarenes to Carbonyls Mediated by Carbon Tetrabromide in Water. ChemSusChem 2024, 17, e202301015. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Xu, D.; Zhang, J.; Xu, Q.; Yang, Y.; Wei, Z.; Su, Z. Cs3Bi2Br9/BiOBr S-scheme heterojunction for selective oxidation of benzylic C–H bonds. J. Mater. Sci. Technol. 2024, 180, 150–159. [Google Scholar] [CrossRef]
- Yang, X.; Ren, B.; Guo, H.; Liu, R.; Zhou, R. Metal- and oxidant-free carbonylation of benzylic and allylic C–H bonds with H2O via dual oxidative radical-polar crossover. Green Chem. 2024, 26, 10344–10349. [Google Scholar] [CrossRef]
- Shariati, Y.; Kazemi, F.; Kaboudin, B. CH activation under visible light using DDQ organo-photocatalyst. Practical, tunable and additive free. J. Photochem. Photobiol. A Chem. 2024, 457, 115905. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Li, K.; Zhou, Z.; Zha, Z.; Wang, Z. Selective electrochemical oxidation of aromatic hydrocarbons and preparation of mono/multi-carbonyl compounds. Sci. China Chem. 2021, 64, 2134–2141. [Google Scholar] [CrossRef]
- Kong, J.; Zhang, F.; Zhang, C.; Chang, W.; Liu, L.; Li, J. An efficient electrochemical oxidation of C(sp3)–H bond for the synthesis of arylketones. Mol. Catal. 2022, 530, 112633. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Xing, J.; Bai, T.; Wang, D.; Zhou, P. Electrochemically driven aerobic oxygenation of alkylarenes to carbonyl compounds. Mol. Catal. 2023, 550, 113614. [Google Scholar] [CrossRef]
- Tang, S.; Wang, S.; Zhang, D.; Zhang, X.; Yang, G.; Wang, Y.; Qiu, Y. Selective nickel-electrocatalyzed benzylic C–H oxygenation of functionalized alkyl arenes. Chin. Chem. Lett. 2024, 35, 108660. [Google Scholar] [CrossRef]
- Xue, M.; Pan, T.; Shao, Z.; Wang, W.; Li, H.; Zhao, L.; Zhou, X.; Zhang, Y. Sustainable Electrochemical Benzylic C–H Oxidation Using MeOH as an Oxygen Source. ChemSusChem 2024, 17, e202400028. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Ji, L.; Chen, P.; Han, S.; Zhu, Y.; Li, L.; Jia, Z.; Loh, T.-P. Triaryl Carbenium Ion Pair Mediated Electrocatalytic Benzylic C–H Oxygenation in Air. Angew. Chem. Int. Ed. 2024, 63, e202406588. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Liu, Y.; Ruan, Y.; He, Y.; Wang, X.; Xuan, J.; Shen, X.; Ye, N.; Mo, Y. Pyridine N-Oxide Mediators for Electrochemical Benzylic C(sp3)–H Oxygenation. ACS Electrochem. 2024. [Google Scholar] [CrossRef]
- Khan, I.; Zaib, S.; Ibrar, A. New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates. An overview and current status. Org. Chem. Front. 2020, 7, 3734–3791. [Google Scholar] [CrossRef]
- Song, X.-R.; Yang, R.; Xiao, Q. Recent Advances in the Synthesis of Heterocyclics via Cascade Cyclization of Propargylic Alcohols. Adv. Synth. Catal. 2021, 363, 852–876. [Google Scholar] [CrossRef]
- Mohammadi Ziarani, G.; Kheilkordi, Z.; Mohajer, F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J. Iran. Chem. Soc. 2020, 17, 247–282. [Google Scholar] [CrossRef]
- Kant, K.; Patel, C.K.; Banerjee, S.; Naik, P.; Atta, A.K.; Kabi, A.K.; Malakar, C.C. Recent Advancements in Strategies for the Synthesis of Imidazoles, Thiazoles, Oxazoles, and Benzimidazoles. ChemistrySelect 2023, 8, e202303988. [Google Scholar] [CrossRef]
- Rajai-Daryasarei, S.; Gohari, M.H.; Mohammadi, N. Reactions involving aryl methyl ketone and molecular iodine. A powerful tool in the one-pot synthesis of heterocycles. New J. Chem. 2021, 45, 20486–20518. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, D.; Guo, P.; Fang, L.; Hu, Y.; He, Q.; Yang, B. Q39, a novel synthetic Quinoxaline 1,4-Di-N-oxide compound with anti-cancer activity in hypoxia. Eur. J. Pharmacol. 2008, 581, 262–269. [Google Scholar] [CrossRef] [PubMed]
- El Rayes, S.M.; Aboelmagd, A.; Gomaa, M.S.; Ali IA, I.; Fathalla, W.; Pottoo, F.H.; Khan, F.A. Convenient Synthesis and Anticancer Activity of Methyl 2-[3-(3-Phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and N-Alkyl 3-((3-Phenyl-quinoxalin-2-yl)sulfanyl)propanamides. ACS Omega 2019, 4, 18555–18566. [Google Scholar] [CrossRef] [PubMed]
- Black, C.B.; Andrioletti, B.; Try, A.C.; Ruiperez, C.; Sessler, J.L. Dipyrrolylquinoxalines. efficient sensors for fluoride anion in organic solution. J. Am. Chem. Soc. 1999, 121, 10438–10439. [Google Scholar] [CrossRef]
- Lian, M.; Li, Q.; Zhu, Y.; Yin, G.; Wu, A. Logic design and synthesis of quinoxalines via the integration of iodination/oxidation/cyclization sequences from ketones and 1,2-diamines. Tetrahedron 2012, 68, 9598–9605. [Google Scholar] [CrossRef]
- Kong, L.; Meng, J.; Tian, W.; Liu, J.; Hu, X.; Jiang, Z.-H.; Zhang, W.; Li, Y.; Bai, L.-P. I2-Catalyzed Carbonylation of α-Methylene Ketones to Synthesize 1,2-Diaryl Diketones and Antiviral Quinoxalines in One Pot. ACS Omega 2022, 7, 1380–1394. [Google Scholar] [CrossRef] [PubMed]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey TH, M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection. green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, J.; Hu, Y.; Liu, H.; Sun, J.; Liu, L. Electrosynthesis of Quinoxalines via Intermolecular Cyclization/Dehydrogenation of Ketones with o-Phenylenediamines. Synlett 2024, 35, A–F. [Google Scholar] [CrossRef]
- Yar, M.; Bajda, M.; Shahzad, S.; Ullah, N.; Gilani, M.A.; Ashraf, M.; Rauf, A.; Shaukat, A. Organocatalyzed solvent free an efficient novel synthesis of 2,4,5-trisubstituted imidazoles for α-glucosidase inhibition to treat diabetes. Bioorganic Chem. 2015, 58, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Slee, D.H.; Romano, S.J.; Yu, J.; Nguyen, T.N.; John, J.K.; Raheja, N.K.; Axe, F.U.; Jones, T.K.; Ripka, W.C. Development of Potent Non-Carbohydrate Imidazole-Based Small Molecule Selectin Inhibitors with Antiinflammatory Activity. J. Med. Chem. 2001, 44, 2094–2107. [Google Scholar] [CrossRef]
- Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Suzuki, K.; Ueda, T.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.J.B.; et al. Synthesis and antibacterial activity of novel and potent DNA gyrase inhibitors with azole ring. Bioorganic Med. Chem. 2004, 12, 5515–5524. [Google Scholar] [CrossRef]
- Wicht, K.J.; Combrinck, J.M.; Smith, P.J.; Hunter, R.; Egan, T.J. Identification and mechanistic evaluation of hemozoin-inhibiting triarylimidazoles active against Plasmodium falciparum. ACS Med. Chem. Lett. 2017, 8, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Jayram, J.; Jeena, V. Copper-catalyzed aerobic benzylic sp 3 C–H oxidation mediated synthesis of 2, 4, 5-trisubstituted imidazoles via a domino multi-component reaction. Green Chem. 2017, 19, 5841–5845. [Google Scholar] [CrossRef]
- Jayram, J.; Jeena, V. An iodine/DMSO-catalyzed sequential one-pot approach to 2, 4, 5-trisubstituted-1 H-imidazoles from α-methylene ketones. RSC Adv. 2018, 8, 37557–37563. [Google Scholar] [CrossRef]
- Mabizela, L.P.; Jeena, V. Molecular Iodine Mediated Synthesis of 2, 4, 5-Trisubstituted Imidazoles Commencing from alpha-Methylene Ketones and Benzylic Pimary Acohols Using a One-Pot, Two-Step Approach. Heterocycles 2022, 104, 1649–1660. [Google Scholar]
- Mhlongo, J.T.; Brasil, E.; de la Torre, B.G.; Albericio, F. Naturally Occurring Oxazole-Containing Peptides. Mar. Drugs 2020, 18, 203. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, R.D.; Kadam, K.S.; Kandre, S.; Guha, T.; Reddy, M.M.K.; Brahma, M.K.; Deshmukh, N.J.; Dixit, A.; Doshi, L.; Potdar, N.; et al. Synthesis and biological evaluation of isoxazole, oxazole, and oxadiazole containing heteroaryl analogs of biaryl ureas as DGAT1 inhibitors. Eur. J. Med. Chem. 2012, 54, 324–342. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, R.; Gautam, H.; Jadon, G.; Dahiya, S. Bioactive Oxazole-Based Cyclopolypeptides from Marine Resources and Their Health Potential. In Bioactive Peptides; CRC Press: Boca Raton, FL, USA,, 2021; pp. 133–168. [Google Scholar]
- Lu, X.; Liu, X.; Wan, B.; Franzblau, S.G.; Chen, L.; Zhou, C.; You, Q. Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Part 2. Eur. J. Med. Chem. 2012, 49, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Landowski, T.H.; Samulitis, B.K.; Dorr, R.T. The diaryl oxazole PC-046 is a tubulin-binding agent with experimental anti-tumor efficacy in hematologic cancers. Investig. New Drugs 2013, 31, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Giddens, A.C.; Boshoff HI, M.; Franzblau, S.G.; Barry, C.E.; Copp, B.R. Antimycobacterial natural products. synthesis and preliminary biological evaluation of the oxazole-containing alkaloid texaline. Tetrahedron Lett. 2005, 46, 7355–7357. [Google Scholar] [CrossRef]
- Chatterjee, T.; Cho, J.Y.; Cho, E.J. Synthesis of Substituted Oxazoles by Visible-Light Photocatalysis. J. Org. Chem. 2016, 81, 6995–7000. [Google Scholar] [CrossRef]
- Hussain, H.; Green, I.R.; Abbas, G.; Adekenov, S.M.; Hussain, W.; Ali, I. Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential anti-diabetes agents. patent review (2015–2018). Expert Opin. Ther. Pat. 2019, 29, 689–702. [Google Scholar] [CrossRef]
- Mazibuko, M.; Jeena, V. Synthesis of 2,4,5-Trisubstituted Oxazoles from Copper-Mediated Benzylic sp3 C–H Aerobic Oxidative Annulation of Ketones and Amines via a Cascade Reaction. J. Org. Chem. 2023, 88, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst | Reaction Conditions | %Conv. | %Select. | Ref. |
---|---|---|---|---|---|
1 | Co/Ph-HMS | O2 (1.0 MPa), 6 h, 393 K | 55.1 | 86.1 | Shi and co-workers [29] |
2 | N-hydroxy-1,6-methano [10]-annulene-3,4-dicarboximide/Co(OAc)2 | O2 (0.1 MPa) in AcOH, 6 h, 100 °C | 75 | 63 | Zuo and co-workers [30] |
3 | Co-Cu/SAPS-15 | TBHP, 6 h, 100 °C | 96.54 | 99.77 | Chaudhary and Sharma [31] |
4 | Pd/CeO2 (10 wt%) | TBHP (1 mmol), 4 h, 80 °C | 99.8 | 79 | Kalita and Saikia [32] |
5 | Mn-ZSM-5-50 | TBHP (3 mmol), 6 h, 80 °C | 43.6 | 68.8 | Liu and co-workers [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majola, N.; Jeena, V. Benzylic C–H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis. Molecules 2024, 29, 6047. https://doi.org/10.3390/molecules29246047
Majola N, Jeena V. Benzylic C–H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis. Molecules. 2024; 29(24):6047. https://doi.org/10.3390/molecules29246047
Chicago/Turabian StyleMajola, Nonhlelo, and Vineet Jeena. 2024. "Benzylic C–H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis" Molecules 29, no. 24: 6047. https://doi.org/10.3390/molecules29246047
APA StyleMajola, N., & Jeena, V. (2024). Benzylic C–H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis. Molecules, 29(24), 6047. https://doi.org/10.3390/molecules29246047